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The theory of plate tectonics is widely accepted by scientists and provides a robust frameworkwith which to de-
scribe and predict the behavior of Earth’s rigid outer shell – the lithosphere – in space and time. Expressions of
plate tectonic interactions at theEarth’s surface alsoprovide critical insight into themachinationsof ourplanet’s in-
accessible interior, and allowpostulation about the geological characteristics of other rockybodies in our solar sys-
tem and beyond. Formalization of this paradigm occurred at a landmark Penrose conference in 1969, representing
the culmination of centuries of study, andour understandingof the “what”, “where”, “why”, and “when” of plate tec-
tonics onEarthhas continued to improve since. In thisCentennial review,we summarize themajordiscoveries that
have beenmade in thesefields andpresent amodern-day holisticmodel for the geodynamic evolution of the Earth
that best accommodates key lines of evidence for its changes over time. Plate tectonics probably began at a global
scale during the Mesoarchean (c. 2.9–3.0 Ga), with firm evidence for subduction in older geological terranes
accounted for by isolatedplate tectonic ‘microcells’ that initiatedat theheads ofmantleplumes. Such early subduc-
tion likely operated at shallowangles andwas short-lived, owing to the buoyancy and low rigidity of hotter oceanic
lithosphere.A transitionalperiodduring theNeoarcheanandPaleoproterozoic/Mesoproterozoicwascharacterized
by continued secular cooling of the Earth’s mantle, which reduced the buoyancy of oceanic lithosphere and in-
creased its strength, allowing theangleof subductionat convergentplatemargins tograduallysteepen.Theappear-
ance of rocks during the Neoproterozoic (c. 0.8–0.9 Ga) diagnostic of subduction do not mark the onset of plate
tectonics, but simply record the beginning of modern-style cold, deep, and steep subduction that is an end-
member state of an earlier, hotter, mobile lid regime.
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1. Introduction

The formulation and eventual acceptance of the theory of plate tec-
tonics in the late 1960s was a monumental turning point for science,
which has forever changed the way that we think about the Earth and
other extraterrestrial rocky bodies. Amongst other key criteria, the op-
eration of plate tectonics is thought to be a necessary condition for the
emergence of complex life (Stern, 2016) and hence the ongoing search
for habitable planets outside of our solar system is now deeply
entwined with understanding how, when, and why this unusual
geodynamic regime initiated on Earth. These questions have been in-
vestigated by countless authors and many reviews have been written
on the topic in recent years (e.g. Condie and Kröner, 2008; Shirey
et al., 2008; Hawkesworth et al., 2010; Korenaga, 2013; Palin et al.,
2020 and others); however, there remainsmuch contention. The defin-
ing feature of plate tectonics is independent horizontal motion of litho-
spheric plates across the Earth’s surface, which is enabled by sea floor
spreading at divergent plate boundaries (Le Pichon, 1968), by strike-
slip faulting at transform plate boundaries (Woodcock, 1986), and by
one-sided subduction into the mantle at convergent plate boundaries
(St-Onge et al., 2013; Parsons et al., 2020; Zhang et al., 2020). As such,
reported discrepancies concerning the timing of onset of plate tectonics
are intrinsically linked to the different strengths and weaknesses of ev-
idence supporting operation of the Wilson Cycle (e.g. Li et al., 2018;
Wan et al., 2020) or independent plate motion and rotation (e.g.
Brenner et al., 2020).

In this Centennial review, we summarize the major contributions
that have been made to key aspects of this debate since acceptance of
the plate tectonic paradigm in the late 1960s, focusing on four funda-
mental discussion points: what defines a plate tectonic regime, where
does plate tectonics operate, why does it occur, and when did it begin
on Earth? Major unanswered questions that remain in this field of
study are then outlined, alongside opportunities that we propose as
valuable future research directions. We also provide references to
more comprehensive works on each topic where more detailed discus-
sion can be found.

2. Birth of a paradigm

Plate tectonics has been accepted by most scientists since the late
1960s as a reliable description of how the Earth’s lithosphere ‘behaves’;
however, the inception of this paradigm began many years earlier
(Romm, 1994). First-order observations of similar shapes of coastlines
either side of the Atlantic Ocean have been noted and theorized upon
since the late 16th century by explorers such as Sir Francis Bacon. In
his 1620 work Novum Orgaum, he noted “both the New World [South
America] and the Old World [Africa] are broad and extended towards
the north, narrow and pointed towards the south”, though Bacon
made no inference of both having been joined together in the past.
Later papers published in the 18th and 19th century by various philoso-
phers and naturalists, including Theodor Christoph Lilienthal and Alex-
ander von Humboldt, continued to document geometric and geologic
similarities along each coastline, but attributed their current separation
to a Biblical catastrophe (cf. Kearey et al., 2009).

Fundamental discoveries by renowned geologists James Hutton and
Charles Lyell in the 18th and 19th centuries marked a transition in scien-
tific thought from “catastrophism”, where geological change occurs due
to highly energetic events happening suddenly and unpredictably, to
“uniformitarianism”, where change takes place by lower-energy events
occurring gradually over time (Gould, 1965). The concept of uniformi-
tarianism, often encapsulated by the maxim “the present is the key to
the past”, forced the subsidiary implication that the Earthwas extremely
old, conflictingwith estimates of ~20–200Myrmade at the time by Lord
Kelvin (cf. Burchfield, 1990). Uniformitarianistic principles were first
applied to the idea of “drifting” landmasses by Frank Taylor, an
American physicist, in 1910, who presented a hypothesis resembling
2

what is now referred to as continental drift (cf. Le Grand, 1988). In
Taylor’s model, formerly polar continents were driven laterally towards
the equator, creating an equatorial bulge around the Earth and colliding
to form approximately east–west trending mountain ranges (e.g. the
Alpine–Himalayan orogenic belt). A continent was also suggested to
have broken apart to form the Atlantic Ocean. While conceptually
close to the truth, Taylor incorrectly suggested that the gravitational
pull of the Moon (i.e. tidal forces) was responsible for the continental
migrations, which led to his overall hypothesis being discounted by
his peers.

In 1912, Alfred Wegener – a German meteorologist – proposed a
similar model of horizontal continental motion and expanded on
Taylor’s ideas by documenting several independent sets of older,
“pre-drift” geologic data, supporting the idea that somewere previously
connected (Wegener, 1912). The most compelling of these arguments
involved the continuity of geological structures (e.g. the Cape Fold
Belt), stratigraphic sequences, and fossil fauna and flora across the
modern-day continental shorelines of South America and Africa
(Wright, 1968; Piper et al., 1973). Further evidence was provided by
documentation of the current distribution of Permian–Carboniferous
glacial deposits and associated striations,which showmore sensible ori-
entations and distribution patterns if continents were re-assembled
with South Africa centered on the south pole (Opdyke, 1962). Wegener
termed this continental assembly Pangaea – literally meaning “all the
Earth” – which is now understood to have later broken apart into two
supercontinents: Laurasia in the north (North America, Greenland,
Europe, and Asia) and Gondwana in the south (South America,
Antarctica, Africa, Madagascar, India, and Australasia) (e.g. Olsen,
1997). These continental masses were separated by the Tethys Ocean
– the proto-Mediterranean Sea – and surrounded by Panthalassa – the
proto-Pacific Ocean (Arias, 2008). Unfortunately, Wegener’s ideas
were initially rejected by many European and North American geolo-
gists, as they required discarding the existing scientific orthodoxy of a
static Earth, and due to his theory being based on multidisciplinary
data in fields of study that he was not an expert. Small faults were
used by prominent scientists at the time to reject the broader-scale hy-
pothesis outright, and a critical limitation was Wegener’s inability to
provide a plausible mechanism for continental motion (cf. Kearey
et al., 2009). Soon afterwards, Holmes (1928) proposed that convection
currents in the mantle powered by the heat of radioactive decay may
have dragged continents across the Earth’s surface, though it is known
today that this force hasminimal influence on lithospheric platemotion
(see Section 5). Nonetheless, this idea, which emerged nearly 40 years
before formalization of the theory of plate tectonics, planted the seed
for deciphering mechanisms that could explain the wealth of observa-
tional data supporting a mobile Earth surface.

Developments in the field of paleomagnetism and radiometric dat-
ing during the 1940s and 1950s revealed thatmany continental igneous
rocks preservemagnetic pole positions and orientations that differ from
the present day (Keevil, 1941; Holmes and Smales, 1948; Collinson and
Runcorn, 1960). Two competing interpretations can be drawn from
these data: (1) the Earth’s magnetic poles remained static over time,
but the continents wandered; or (2) the continents remained fixed as
magnetic poles migrated across the Earth’s surface. The latter interpre-
tation would be acceptable for data obtained from a single superconti-
nent, such as Pangea, but cannot account for several discrete
landmasses identifying multiple poles in different places at the same
time in Earth history, unless the ancient magnetic field was not bipolar.
These data thus provided further support for the notion that landmasses
may have moved great distances across the Earth’s surface over time
(Cox and Doell, 1960).

Mapping of the ocean floor during and afterWorldWar II revealed a
semi-continuous “mid-ocean ridge” (MOR) system more than
65,000 km long that stood tall above the adjacent abyssal plains (e.g.
Ewing and Heezen, 1956). In 1962, marine geophysicist Harry Hess
studied these maps and developed his seminal theory of sea floor
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spreading, suggesting that newocean crustwas created atMOR systems
and spread out laterally, pushing the continents apart (Hess, 1962). In
this model, new oceanic crust formed from upwelling and cooling of
magma at ridges, divided in two, and each half moved laterally away
from the ridge. Hess hypothesized that sea floor spreading would thus
be driven by thermal convection cells in the mantle, and old, cold
crustmust be destroyed elsewhere on the Earth so that the planet’s sur-
face area remained constant. Continued mapping of the oceans ulti-
mately revealed vast bathymetric depressions situated at some ocean
margins that were associated with intense volcanic and seismic activity
(e.g. Jongsma, 1977). These phenomena were concluded to be consis-
tent with features expected from subduction of oceanic lithosphere at
convergent plate boundaries. Further and final support for the sea
floor spreading hypothesis came from the discovery of “magnetic
anomalies” retainedwithin seafloor basalt, which formed roughly paral-
lel to a central MOR and were symmetrical on either side (Vine and
Matthews, 1963). The recognition of transform faults that connect lin-
ear belts of tectonic activity (Wilson, 1965) allowed the Earth’s surface
to be divided into a complexmosaic of seven major and several smaller
plates that rearrange continuously like a jigsaw puzzle. Geometrical re-
lationships defined between plates moving across a spherical planetary
surface (e.g. McKenzie and Parker, 1967) andmore information derived
from seismic observations about their behavior following subduction
into the mantle (Coney and Reynolds, 1977) refined these geophysical
models of oceanic lithosphere formation, evolution, and destruction.

Formalization andwidespread acceptance of the plate tectonic para-
digm is often agreed to have occurred in 1969 at the Geological Society
of America Penrose Conference, Pacific Grove, California, entitled “The
Meaning of the New Global Tectonics for Magmatism, Sedimentation, and
Metamorphism in Orogenic Belts”. Many prominent geoscientists
outlined observations and interpretations at themeeting and published
seminal papers soon afterwards that supported plate tectonics having
operated on Earth for many millions of years (Dewey and Bird, 1970;
Kay et al., 1970; Minear and Toksöz, 1970; Oxburgh and Turcotte,
1970). Notably, the broad-scale synthesis presented at that meeting
has changed surprisingly little since (Le Pichon, 2019); but what was
the geological orthodoxy beforehand and how did interpretations of
Earth evolution differ? The pre-plate tectonics ‘static’ model of the
Earth interpreted all tectonic features as having formed essentially by
vertical movements at specific locations – so-called “geosynclinal the-
ory”. The fundamental concepts of this theory were first outlined by ge-
ologist James Hall at his Presidential address made to the Geological
Society of America in 1857 (cf. Knopf, 1960). In thismodel, geosynclines
were geographically fixed domains of deep subsidence where sedi-
ments accumulated and were eventually buried deeply enough for
metamorphism and partial melting to occur at their bases. The mor-
phology of a mountain belt thus corresponded to the original location
of greatest sediment accumulation in the geosyncline (i.e. the deepest
part of the trough). Sub-types of these geosynclines were classified
based on whether volcanic rocks were present in the succession: if so,
these were called eugeosynclines, and if not, they were called
miogeosynclines (Bond and Kominz, 1988). As such, in the context of
the plate tectonic paradigm, miogeosynclines would represent basins
forming along the passivemargin of a continent, which typically contain
clastic and biogenic sedimentary rocks (sandstone, limestone, and
shale), and eugeosynclines would represent accretionary or collisional
orogens containing deformed and metamorphosed sedimentary and
volcanic sequences (Shimron, 1980; Palin et al., 2013; Sepidbar et al.,
2019).

Many mechanisms were suggested to drive the formation and evo-
lution of geosynclines, but most prominent was ‘gravitational sliding’,
which invoked isostatic warping of sedimentary piles andminor thrust-
ing of different strata along low-angle fault systems (Krebs and
Wachendorf, 1973). Alternatively, some scientists supported the idea
of a contracting Earth (cf. Dott, 1997), which assumed that our planet
formed in a fully molten state and has since been cooling and
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contracting. Shrinkage of the Earth’s outer shell would have caused lat-
eral compressional forces that folded (or crinkled) geosynclinal sedi-
mentary sequences upwards to produce orogenic belts. While both
hypotheses involve minor components of local horizontal motion, it is
important to note that geosynclinal theory personified the idea of a
static (immobile) Earth surface and so struggled to explain many com-
mon geological structures and phenomena that are prevalent on Earth
today. By contrast, the theory of plate tectonics provides a unified expla-
nation of all the Earth’s major surface features and has revealed unprec-
edented linkages between many fields of study (Condie, 2015; Palin
et al., 2020). We explore some of these phenomena in the sections
below.

3. What?

What defines a plate tectonic regime and how does this differ from
other possible geodynamic scenarios? Multidisciplinary study of rocky
bodies in our solar system – including planets, moons, and asteroids of
various sizes – shows that a wide range of tectonic regimes may occur
at their surfaces (Watters, 2010), and these may transition between
states with time as the body cools (Fig. 1). Following established con-
ventions, we emphasize that ‘plate’ is the colloquial term for a discrete
mass of lithosphere (Barrell, 1914), which may be entirely oceanic, en-
tirely continental, or have components of both. The lithosphere – or lid –
on a rocky body may be distinguished from its underlying astheno-
sphere in several ways. For example, a thermal definition can be used
based on whether the dominant mode of heat flow is by conduction
(lithosphere) or convection (asthenosphere) (Chapman and Pollack,
1977). Alternatively, from a rheological perspective, the lithosphere
acts in a rigidmanner, whereas the underlying asthenosphere is weaker
and able to flow over geological timescales (Walcott, 1970; Doglioni
et al., 2011). The behavior of the lithosphere divides geodynamic sce-
narios into two end members: stagnant and mobile.

Stagnant lid regimes are characterized by significantly lower hori-
zontal surface (lid) velocities compared to internal (asthenospheric
mantle) velocities, which differ by around two to three orders ofmagni-
tude (Weller and Lenardic, 2018). Many forms of stagnant lid regime
are theorized to occur on rocky planets during their lifecycles, all of
which allow mass and energy exchange between the surface and inte-
rior, but with limited (if any) horizontal displacement (Solomatov and
Moresi, 1997; Piccolo et al., 2019, 2020). Recent conceptualmodels con-
sider that the early Earth was an unstable stagnant lid planet with
unsubductable lithosphere, and that mantle overturns were triggered
by inefficient coiling of the stagnant lid (Bédard, 2018). As such, stag-
nant lid regimes may be considered analogous in many respects with
the pre-plate tectonic orthodoxy of geosynclinal theory, where almost
all tectonic activity occurs due to vertical motion. By contrast, mobile
lid regimes are characterized by substantial horizontal motion of litho-
spheric plates with respect to the underlying asthenosphere (Cawood
et al., 2006), which typically have relative velocity ratios of 0.8–1.8
(Weller and Lenardic, 2018). Plate tectonics, as it occurs on Earth
today, is the only known form of amobile lid tectonics in the rocky bod-
ies in our solar system (Poirier, 1982; Head et al., 2002; Wade et al.,
2017; Stern et al., 2018), although others can be speculated upon.
Mass and energy exchange between a planet’s surface and interior is
relatively easy in a mobile lid geodynamic regime, with subduction of
oceanic and/or continental lithosphere at convergent plate margins
continuously transporting volatiles and solid rock into the Earth’s inte-
rior (Poli and Schmidt, 2002; Rüpke et al., 2004; Weller et al., 2016;
Cao et al., 2019; Lamont et al., 2020), and return processes generating
new crust at arcs (Hawkesworth et al., 1997; Collins et al., 2016; Li
et al., 2020) and divergent spreading centers (Spiegelman and
McKenzie, 1987; Sinton and Detrick, 1992; Morgan et al., 1994).

Given the vast amount of observational data that now exist for
planets, satellites, and smaller bodies (e.g. Ceres) in our solar system,
we are learning more and more about the rich variety of geological



Fig. 1. Temporal evolution of various forms of stagnant-lid tectonic regimes on silicate bodies, such as the Earth. Layer thicknesses are diagrammatic and not shown to scale. Direction of
arrows represents a schematic birth-to-death evolution. Modified after Palin et al. (2020).
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features that may form on the surfaces of rocky or icy bodies (e.g. Stern
et al., 2015). A conceptual tectono-magmatic evolution of a rocky planet
over time is shown in Fig. 1 (after Palin et al., 2020). Critically, plate tec-
tonics (i.e. a mobile lid tectonic regime) does not feature in this generic
evolution, as it is an ‘unexpected’ geodynamic state that is thought to re-
quire many independent factors to be favorable, such as the presence of
surface water (Korenaga, 2020). The initial condition for all rocky
planets and satellites that can internally differentiate is that of a
magma ocean near to the body’s surface above a solid lower mantle
and metallic core (Weyer et al., 2005; Elkins-Tanton, 2012). The thick-
ness of this magma ocean depends on body radius; for instance, small
bodies with low gravity, such as theMoon, will experience a smaller in-
crease in pressure with depth (dP/dz), and so the peridotite solidus is
reached at much greater depth than larger bodies with higher dP/dz,
such asMars (Elkins-Tanton, 2008). Integrated petrological and thermal
models of the very early Earth suggest a fully molten magma ocean to
shallow depths (~20–30 km) situated above a partially molten crystal-
rich mush that extended to a depth of ~300 km (Abe, 1997; Elkins-
Tanton, 2012). Complete solidification of this terrestrial magma ocean/
mush likely occurred within 1–10 Myr (e.g. Monteux et al., 2016), al-
though this timescale on other planets depends strongly on body size,
which controls the surface area to volume ratio (SA/V). For example,
Earth has SA/V ~ 4.6 × 10−4, although the hypothesized magma ocean
on 4 Vesta – the second largest body in the asteroid belt, but with a ra-
dius just ~9% of Earth’s and SA/V ~ 1.1 × 10−2 – is thought to have solid-
ified completely in just hundreds of thousands of years (Neumann et al.,
2014). Thus, larger rocky bodies are expected to remain geologically ac-
tive over significantly longer timescales than smaller rocky bodies.

Crystallization of a primitive terrestrial magma ocean would have
proceeded by expulsion of melts towards the Earth’s surface, where
4

they may either extrude as volcanic lava flows or solidify during ascent,
forming plutons (Mole et al., 2014; Rozel et al., 2017; Piccolo et al.,
2020). The earliest stage of the evolution of a stagnant lid geodynamic
regime is expected to be dominated by volcanism onto a relatively
thin and hot primordial crust that thickens with time. This scenario,
with volcanism dominating over plutonism, has been suggested for
the Hadean Earth and has been dubbed heat-pipe tectonics (Fig. 1:
Moore andWebb, 2013). Continuous eruption of lava and thus repeated
burial of older flows causes this primitive crust to thicken, whichmakes
it increasingly more difficult for ascending melts to reach the surface
(Malviya et al., 2006; O’Neil and Carlson, 2017). Thus, over time, volca-
nism becomes subsidiary to intrusive magmatism. Old mafic lavas that
are buried during continued igneous activity and crustal thickening
will undergometamorphic transformation to amphibolite and granulite
at pressures exceeding ~6 kbar, with garnet stabilizing at lower crustal
conditions (>12 kbar; Raase et al., 1986; Palin et al., 2016a). If suffi-
ciently hydrated, these metabasalts will partially melt, and experimen-
tal and petrological modeling has shown that they should produce
magmas of tonalite–trondhjemite–granodiorite (TTG) composition
(Moyen and Stevens, 2006; Martin et al., 2014; Palin et al., 2016b).
These felsic melts rise towards the surface of the Earth and may either
stall and form plutons in the lower, middle, or upper crust, or erupt
onto the surface as lavas and pyroclastic materials. All Archean terranes
contain abundant TTG plutons (or metamorphosed versions thereof –
gray gneisses), which are thought to represent Earth’s first stable conti-
nental crust (Martin, 1993; Moyen and Martin, 2012; White et al.,
2017), and importantly, as discussed in Section 6, likely did not form
via subduction (e.g. Martin et al., 2014; Palin et al., 2016b).

Continued thickening of amafic crust produces high-density eclogite
at >20 kbar (>60 km), which is gravitationally unstable compared to
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underlying peridotite (Ito and Kennedy, 1971; Aoki and Takahashi,
2004). On the hotter Archean Earth, these lower crustal portions are
predicted to ductilely deform and “drip” into the underlying mantle
via short-wavelength, density-driven downwellings (van Thienen
et al., 2004; Fischer and Gerya, 2016). Mantle plume activity is expected
to accompany this regime, with new crust forming via enhanced mag-
matic activity over regions of upwelling (e.g. Piccolo et al., 2019). This
stagnant lid environment dominated by intrusive magmatism into a
thick crust instead of the repeated extrusion of lavas is often referred
to as a drip-and-plume geodynamic regime, or colloquially “plutonic
squishy lid” (e.g. Lourenço et al., 2020). Cooling of the mantle and
thickening of newly formed lithosphere is shown via two- and three-
dimensional thermo-mechanical models of the Archean Earth to in-
crease the spacing between mantle plumes and to inhibit localized
drip-like density inversions (Fischer and Gerya, 2016; Piccolo et al.,
2020). Then, high-density eclogite and underlying depleted mantle ter-
minally sink into the asthenosphere via broad-wavelength and large-
volume delaminations (e.g. Kay and Kay, 1993; Zegers and van Keken,
2001; Foley et al., 2003; Piccolo et al., 2019). Convective upwellings in
the asthenospheric mantle drive decompressionmelting and continued
formation of newmafic crust, whichmay be buried and melted to form
new felsic TTGs in a cyclical process that continually builds new conti-
nents (Kamber et al., 2002; Moyen and Martin, 2012; Palin et al.,
2016b; Wiemer et al., 2018).

All differentiated planetary bodies –whether they exhibit a stagnant
or mobile lid regime while geologically active – will ultimately evolve
towards having a global, thick crust and whole-mantle lithosphere as
their terminal state (Fig. 1). This is an inevitable result of secular cooling
of a planet’s interior causing the Rayleigh number to fall below the
threshold at which convection is effective, such that any remaining in-
ternal heat can only be lost via conduction (Jarvis, 1984; Bunge et al.,
1997). In this terminal stagnant lid state, the body geologically ‘dies’
and is expected to exhibit minimal if any tectonic activity at is surface,
although continued cooling andplanetary contractionmay induce local-
ized deformation or cause reactivation of pre-existing lines of weakness
(e.g. Watters et al., 2012; Watters et al., 2016; Valantinas and Schultz,
2020). This tectonic mode is expressed today in the solar system by
Mercury and the Earth’s Moon (Hauck II et al., 2004).

4. Where?

The question ofwhere plate tectonics operates is not straightforward
to answer, despite earlier statements that Earth is the only known
planet to exhibit this style of mobile lid regime. If plate tectonics is
one of many intermediate steps in the ever-changing lifecycle of a sili-
cate body (Fig. 3), there is every possibility that another planet – in
our solar system or beyond – may have transitioned into this regime
at some point in time and has since transitioned out. Such an argument
could theoretically be made for Venus, which experienced a global
resurfacing event at c. 300 Ma (Strom et al., 1994); the cause of which
remains unknown. Can we confidently ascertain the geodynamic re-
gime(s) that came before if all surface evidence has been erased? Even
if relics of Venus’ ancient past remain, we will likely not discover them
for many years. Focused mapping and detailed laboratory investigation
of rocks on the Earth’s surface have been conducted for decades, al-
thoughmany points of debate about relatively simple questions remain
concerning the evolution of tectonics on our planet. How long, then,
might it take tomap out, sample, analyze, and interpret the vast geolog-
ical richness of the Venusian surface in order to come to a somewhat
complete understanding of its geological past? While we present this
as simply a rhetorical question, it raises the key philosophical issue
that ‘where’ may be just as readily phrased as ‘when’ if we are not
discussing the Earth.

Many forms of tectonic activity have been documented elsewhere in
our solar system, of which two unique cases occur on the Galilean satel-
lites – the four largest moons of Jupiter. The innermost satellite, Io, is
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thought to currently exhibit heat-pipe tectonics (Turcotte, 1989;
Spencer et al., 2020), as expressed by hundreds of active volcanoes
widely distributed across its surface (Spencer et al., 2007). Remote sens-
ing suggests that Io is internally differentiated, and its bulk density indi-
cates the presence of ametallic core, thick silicatemantle, and relatively
thin crust (Anderson et al., 1996, 2001). Extensive volcanism requires
the existence of a global source of magma at depth below its surface,
which is thought bymany to be sustained by tidal heating of its solid in-
terior (Hamilton et al., 2013), although someworkers suggest that it has
a global magma ocean (Khurana et al., 2011). Spectral analyses of erup-
tions imply very MgO-rich lavas of picritic or komatiitic composition,
equivalent to those predicted to form during decompression melting
of a hotter Archean terrestrial mantle (Williams et al., 2000) or at the
head of a mantle plume (Arndt et al., 1997). As such, Io may represent
an analogue for the very early Earth, albeit at a much smaller scale.

By contrast, Europa, the smallest of the Galilean moons, has recently
been reported to exhibit a form of mobile-lid behavior that closely re-
sembles plate tectonics on Earth (Kattenhorn and Prockter, 2014),
though with some subtle differences. Europa contains a small metallic
core, a thick rocky mantle, and a subsurface liquid-water ocean
(~80–100 km) immediately beneath a solid H2O-ice crust (~10–30
km) (Anderson et al., 1998; Kuskov and Kronrod, 2005). Evidence for
active cryo-tectonics is provided by the extremely low crater densities
across Europa’s surface, which implies a very young mean age and so
a mechanism for continuous recycling (Bierhaus et al., 2005). Dilational
bands with surface features offset symmetrically on either side thus re-
semble terrestrial MOR spreading zones and provide evidence of new
ice generation. Conservation of surface area and ‘tectonic’ reconstruc-
tions of ice-crust plates were interpreted by Kattenhorn and Prockter
(2014) to support transport of surface material into the interior of Eu-
ropa’s ice shell along a linear domain, taken to be an analogue of a con-
vergent plate boundary on Earth. Interestingly, active cryo-volcanism
has been inferred on the ‘overriding’ ice crust, thus providing further
support for a brittle, mobile, plate-like shell of H2O-ice situated above
a warmer, convecting layer (Sparks et al., 2017). Thus, despite most
studies focusing on our neighbor rocky planets that have similar physi-
cal and chemical properties to Earth, Europamay instead be the first ex-
traterrestrial solar system discovered to exhibit features closely
resembling mobile lid tectonics.

Our neighboring rocky planets Venus and Mars both show a wide
variety of geological features on their surfaces, most of which are ex-
pressions of various forms of stagnant lid tectonics (Fig. 1; Solomatov
and Moresi, 1996; Reese et al., 1998), although others have been de-
bated to represent evidence for plate tectonic-like behavior. Abundant
>1000-km-diameter shield volcanoes on Venus (Ernst and Desnoyers,
2004) and lava flows spatially resembling terrestrial flood basalts
(Lancaster et al., 1995) both indicate extensive subsurface mantle
plume activity,which is common in a “drip-and-plume” geodynamic re-
gime. However, transform faults (Ford and Pettengill, 1992; Koenig
and Aydin, 1998), linear MOR-like features (Head and Crumpler,
1987), and asymmetric and curved trench-like depressions (Sandwell
and Schubert, 1992) observed in radar maps morphologically resemble
surface structures associated with the three types of terrestrial plate
margin. Transient spikes in sulfur dioxide contents in the Venusian at-
mosphere (Esposito, 1984; Marcq et al., 2013) suggest that several re-
gions of the surface are currently volcanically active, indicating that
the interior is hot enough to maintain planetary-scale geological activ-
ity. Evenmore importantly, crater counting suggests that the entire Ve-
nusian surface is younger than c. 300Ma (Strom et al., 1994), indicating
that all such features formed in the same geodynamic environment,
lending support to hypotheses for the early Earth that plate tectonic-
like features make form locally within a larger-scale stagnant lid regime
(Nimmo and McKenzie, 1998).

Mars exhibits recent (<40 Ma), localized volcanism (Hartmann
et al., 1999; Schumacher and Breuer, 2007) and sporadic seismic activity
(Anderson et al., 1977; Banerdt et al., 2020), althoughmost planet-wide
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geological activity is thought to have ceased at c. 3 Ga (Carr and Head III,
2010). Older terranes show clear evidence for active tectonics, meta-
morphism, and magmatism, with one of the most curious features of
the planet being its pronounced hemispheric dichotomy (Andrews-
Hanna et al., 2008): here, the northern hemisphere is comprised of
low-elevation plains and thin (~32 km)mafic crust, whereas the south-
ern highlands are high-elevation and the crust ismuch thicker (~58 km)
(Wieczorek and Zuber, 2004). The hemispheric boundary has been
studied in detail and has revealed much geomorphological evidence
for the flow of liquid water, which has led many researchers to suggest
that the northern lowlandsmay once have been covered by a vast ocean
(Baker, 1979; DiAchille and Hynek, 2010; Oehler andAllen, 2012;Wade
et al., 2017). Given the importance of surface water for stabilizing sub-
duction of oceanic lithosphere, this observation has spurned many in-
vestigations into whether Mars has ever exhibited a mobile lid
tectonic regime (Sleep, 1994).

Two major geological features on Mars lend support to this hypoth-
esis. First, mafic rocks of the southern highlands preserve elongate lin-
ear remnant magnetic anomalies that have alternating polarities
(Connerney et al., 2005) and so superficially resemble the magnetic
stripes that form on the ocean floor via sea floor spreading on Earth
(Vine and Matthews, 1963). This hypothesis is weakened somewhat
by the lack of a geometrical ‘spreading center’ and that their widths
are an order of magnitude greater than the stripes observed on Earth
(Connerney et al., 1999); however, in rebuttal, it can be argued that
these may record similar plate tectonic-like behavior at a much faster
rate than on Earth – thus producing thick stripes instead of thin stripes
– or that magnetic-field reversal rates occurred over a much longer
timescale on Mars. Nonetheless, these features may also be accounted
for by non-plate tectonic processes, such as the episodic intrusion of
dikes (Nimmo, 2000). The other major geological feature on Mars that
shows cursory resemblance to plate tectonic features on Earth is the
Valles Marineris trough system, which Yin (2012) suggested is a
>2000-km-long and 50-km-wide strike-slip fault zone. Purported evi-
dence for offset comes from displaced impact craters on either flank of
the valley, although the trough system has been alternatively argued
to have formed due to catastrophic flooding or graben-like crustal col-
lapse due to movement of subsurface magma (Schultz, 1998;
Andrews-Hanna, 2012a, 2012b, 2012c). As such, current opinionwithin
the geological and planetary science communities is that Mars did not
ever exhibit subduction. Nonetheless, both Mars and Venus hold much
promise for understanding the geological processes that operate in stag-
nant lid tectonic regimes and continued exploration of both planets in
the future will return a wealth of new data that may also shed light on
the evolution of the early Earth.

A final note to bemade concerning ‘where’ plate tectonicsmay oper-
ate must mention planets that lie outside of our own solar system –
exoplanets. There have been many technological advances in the past
50 years that have substantially improved our ability to locate and
quantify physical (e.g. mass and radius), orbital (e.g. period, semi-
major axis), and/or geochemical (e.g. atmospheric composition) prop-
erties of exoplanets (Seager and Deming, 2010; Marcy et al., 2005).
Some such criteria may be used to argue for the operation of plate tec-
tonics; for example, monitoring of an exoplanet’s atmosphere may
allow detection of sudden spikes of sulphate aerosols injected into it
by large explosive volcanic eruptions (Misra et al., 2015). While not di-
agnostic of plate tectonics, observations on Earth show that explosive
volcanism is most commonly related with silica- and gas-rich magmas
that form above subduction zones (Eichelberger et al., 1986), as op-
posed tomore silica-poor and effusive volcanism that occurs in large ig-
neous provinces caused bymantle plume activity (White andMcKenzie,
1995). As a consequence, both 2D and 3D thermo-mechanical modeling
has been applied to rocky exoplanets of various mass–radius relation-
ships to determine the likelihood of convection and/or surface platemo-
tion (O’Neill and Lenardic, 2007; Noack and Breuer, 2014), and
thermodynamic modelling of exoplanet compositions has been used
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to predict their interior mineralogy (Wagner et al., 2011; Dorn et al.,
2015; Unterborn et al., 2016; Foley and Smye, 2018; Putirka and
Rarick, 2019). Such studies predict that plate tectonicsmay be inevitable
on super-Earths (Valencia et al., 2007), which are defined by having a
mass ~2–10 times that of Earth. Other exogenic factors that likely con-
trol whether an exoplanet develops mobile lid behavior include its ini-
tial internal temperature (Noack and Breuer, 2014), the degree of
solar insolation (Van Summeren et al., 2011), and the presence of sur-
face water (Korenaga, 2011).
5. Why?

The question of why Earth exhibits plate tectonics is surprisingly
well understood in terms of broad-scale geodynamics, although there
is still much fine detail to resolve. Indeed, soon after formulation of
the plate tectonic paradigm, several studies were dedicated to under-
standingwhat drives platemotion, approaching the issue fromboth ob-
servational and theoretical/modeling perspectives. In a landmark study,
Forsyth and Uyeda (1975) compared key physical properties of Earth’s
major tectonic plates and identified certain variables that showed
strong positive and negative relationships, while others showed no cor-
relation. The main conclusion to emerge from that study was that the
forces acting on the downgoing slab control the velocity of oceanic
plates and are an order of magnitude stronger than any other ‘edge’ or
‘body’ force. Thus, the sinking of dense oceanic lithosphere into the un-
derlying mantle at convergent plate boundaries appears to be the main
driving force for horizontal surface motion (e.g. Carlson et al., 1983;
Conrad and Lithgow-Bertelloni, 2004; Coltice et al., 2019). This gravita-
tional edge force – slab pull (FSP) – dominates, although pushing apart
newly formed oceanic lithosphere at mid-ocean ridges (ridge push:
FRP) also contributes. In addition, convection in the asthenospheric
mantle makes a small contribution to driving plate motion by friction-
ally dragging the underside of the lithospheric mantle (basal drag:
FBD), and iceberg-like lithospheric roots that hang down into the as-
thenosphere may be pushed along by this ‘mantle wind’ (Kaban et al.,
2015). The absolutemagnitudes of these competing forces and their rel-
ative importance through time has been further refined and quantified
by geodynamic modeling; for example, young and hot oceanic litho-
sphere is more buoyant than old and cold oceanic lithosphere (Afonso
et al., 2007; Weller et al., 2019), such that the magnitude of FSP may
evolve as a subduction zone matures (Conrad and Lithgow-Bertelloni,
2002), and higher temperatures within the Archean mantle (below)
would have reduced mantle viscosity and thus absolute values of FBD
(Artemieva and Mooney, 2002).

Convection is a fundamental characteristic of the mantle and facili-
tates cooling of the Earth over time (e.g. Hanks and Anderson, 1969;
Davies, 1993; DeLandro-Clarke and Jarvis, 1997; Korenaga, 2003;
Labrosse and Jaupart, 2007). As temperature changes both horizontally
and vertically through the Earth’smantle, and the absolute depths of the
Moho and lithosphere–asthenosphere boundary vary according to tec-
tonic setting (Karato and Karki, 2001; Anderson, 2000; Profeta et al.,
2015), discussion of secular cooling of the Earth and other rocky bodies
in our solar system requires use of a common reference frame. As de-
fined byMcKenzie and Bickle (1988), themantle potential temperature
(TP) is the adiabatic extrapolation of a mantle geotherm to a planet’s
surface in any given geological environment; for example, the mantle
TP above amantle plumewould be higher than themantle TP for a diver-
gent plate margin (mid-ocean spreading ridge). The TP for ambient
mantle reflects interplay between heat lost due to convection in the as-
thenosphere and/or conduction through the lithosphere, and heat
gained due to radioactive decay of heat-producing elements in theman-
tle and conductive heating from the core (e.g. Korenaga, 2011). Impor-
tantly, because the efficiency of each of these parameters varies with
time, ambient mantle TP must also have changed simultaneously since
formation of the Earth (Fig. 2), alongside the ratio of internal heat
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generation in the mantle compared to mantle heat flux, called the con-
vective Urey ratio (Ur) (Korenaga, 2008a, 2008b).

Themagnitude and rate of change ofmantle TP can be constrained in
numerous ways, and so allows estimation of the value of Ur at different
points in geological time. The Phanerozoic value of Ur is estimated to be
0.23± 0.15, and thermal models that extrapolate it backwards through
the Proterozoic, Archean, and Hadean eons (Korenaga, 2008a, 2008b)
produce a concave-upwards mantle TP curve that has a maximum
value at c. 2.8–3.2 Ga between ~1675 °C (Ur = 0.23) and ~1575 °C
(Ur = 0.38) (Fig. 2). As today’s ambient mantle TP is ~1350 °C
(Herzberg et al., 2010), these thermal models predict cooling of
~75–100 °C/Gyr, although this intrinsically relies on geochemical as-
sumptions of the Earth, such as it having chondritic concentrations of
radiogenic heat-producing elements (Leitch and Yuen, 1989). This ther-
mal modeling exercise has been supported in recent years by analytical
petrology. For example, the chemistry of unaltered mantle-derived
magmas is an excellent recorder of the physical conditions present in
their source region at the time of extraction from their residue (e.g.
Cone et al., 2020), including temperature and pressure. This was
exploited by Herzberg et al. (2010), who calculated the liquidus tem-
peratures for a small dataset of non-arc basalts of various ages, which
fall roughly between curves for Ur of 0.23 and 0.38, implying Archean
upper-mantle TP values around 1500–1650 °C (Fig. 2). Similar calcula-
tions for komatiites require liquidus temperatures up to 1800 °C, consis-
tent with independent evidence that such lavas form due to mantle
plume activity (Campbell et al., 1989). It should be noted that other
studies have applied similar petrological analysis to larger datasets
(e.g. Condie et al., 2016; Ganne and Feng, 2017) and concluded that am-
bient Archean mantle TP outside periods of supercontinent formation
was colder than estimates provided by Herzberg et al. (2010); poten-
tially as low as ~1350–1500 °C (Fig. 2). This would define a less pro-
nounced secular cooling rate of ~30–50 °C/Gyr. While an absolute
difference of ~150–200 °C in predictedmantle TP seems small, it has pro-
found implications for the viability of subduction during the Archean,
and so the operation or not of global plate tectonics (e.g. Gerya, 2014;
Piccolo et al., 2019).

The structure and composition of oceanic lithosphere created at di-
vergent spreading centers is controlled by mantle TP (McKenzie and
Bickle, 1988) and so the viability of subduction initiation and the transi-
tion from any form of stagnant lid tectonics to a stable, global form of
Fig. 2. Proposed variation in ambient mantle potential temperature since c. 4 Ga based on v
temperature is 1350 ± 50 °C. Ur = convective Urey ratio. See main text for discussion of data
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mobile lid tectonics is fundamentally linked to the thermal history of
the Earth. Petrological modeling of melting in the mantle and construc-
tion of new oceanic lithosphere at divergent plate margins has been
performed by many workers. For detailed reviews of these processes,
the reader is referred to Langmuir et al. (1992), Kinzler (1997), and
Asimowet al. (2004); however, in relation to secular change and the ini-
tiation of plate tectonics on Earth, it is sufficient to note that a cold
present-day mantle TP produces a thin and low-MgO oceanic crust,
whereas a hotter Archean mantle TP produces a thicker and high-MgO
oceanic crust (Ziaja et al., 2014). The petrophysical and geodynamical
implications of such a secular change in oceanic crust composition are
profound, impacting the lithologies that form in descending slabs
(Palin and White, 2016; Palin and Dyck, 2018), and so their density
and material strength (McNutt and Menard, 1982; Weller et al., 2019).
Comparative thermo-mechanicalmodeling of Phanerozoic and Archean
oceanic lithosphere has suggested that a hotter Archeanmantle reduced
the buoyancy contrast between oceanic lithosphere and underlying as-
thenosphere (e.g. Van Hunen and Moyen, 2012). Generation of a rela-
tively thick and strong (more depleted) mantle lithosphere and
relatively thick and weak (hotter) oceanic crust in the Archean would
have produced mechanically weak subducting slabs that experienced
frequent losses of coherency (Van Hunen and van den Berg, 2008),
thus breaking apart at shallow depths and developing an episodic
style of Archean subduction, with a typical duration of a few Myr
(Moyen and VanHunen, 2012). Similar petrological calculations of den-
sity variation according to metamorphic phase transformations also
predict that the thicker Archean oceanic lithospherewas primed to sub-
duct (e.g.Weller et al., 2019), although likely not at steep angles (>10°)
that characterizemost Phanerozoic convergentmargins (Syracuse et al.,
2010).

The issue of identifying how and why subduction could initiate on
the early Earth is separate from constraining the petrological and
geodynamic conditions that are needed for it to become self-
sustainable. Numerical modeling shows that one-sided subduction
consisting of a downgoing slab and an overlying arc requires a low-
strength zone to form at the plate interface (Hassani et al., 1997;
Tagawa et al., 2007) with an effective coefficient of friction <0.1. Dry
rocks are unable to achieve this condition, indicating that aqueousfluids
must be present at convergent plate margins to ‘lubricate’ plate motion
(Gerya et al., 2008). This is readily achieved on Earthwhere liquidwater
arious petrological and geodynamic proxies and models. Present-day mantle potential
and data sources.
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has been present on the planet’s surface since c. 4.4. Ga (Wilde et al.,
2001;Maruyama et al., 2013) andmay be transported to various depths
within subduction zones as pore fluids in sediments and sedimentary
rocks (e.g. mudstone; You et al., 1996), structurally bound water in hy-
drous minerals, such as chlorite and amphibole, in hydrothermally al-
tered and metamorphosed oceanic crust (Katayama et al., 2006; Palin
et al., 2014; Hernández-Uribe and Palin, 2019a), and serpentine in
metasomatized mantle lithosphere (Hyndman and Peacock, 2003;
Ranero et al., 2003; Coltorti and Grégoire, 2008). Metamorphism during
burial of these lithologies causes dehydration and pulse-like release of
H2O, CO2, and other volatile species (e.g. halogens) at fore-arc and
sub-arc depths (Poli and Schmidt, 1995; van Keken et al., 2011;
Hernández-Uribe and Palin, 2019b). Transport of water into the deep
mantle may be achieved by its incorporation into nominally anhydrous
minerals, such as olivine and clinopyroxene (Karato, 2003). The ability
for a planet to acquire and retain surface water over geological time-
scales thus appears to be a critical factor for determining the viability
of plate tectonics (Regenauer-Lieb et al., 2001; Lécuyer, 2013; Wade
et al., 2017) and should be considered alongside other important astro-
nomical factors when predicting the habitability of planets outside of
our solar system.
6. When?

When did plate tectonics initiate on Earth? Given that independent
plate motion must be facilitated by a global network of plate bound-
aries, evidence for isolated occurrences of subduction at any point in
time is not enough to justify the operation of this planet-wide
geodynamic regime. This sobering fact is undoubtedly the reason for
such contention in the literature, where the wide range of interpreta-
tions of the timing of onset of plate tectonics presented in Fig. 3 stems
from the reliability of different lines of evidence for satisfying this
‘global’ criterion. Additional opaqueness comes from the likely interpre-
tation that the initiation of subduction occurred over an extended pe-
riod, and so it is unreasonable to assign a well-defined age to this
onset, as is often the case in the literature. In a recent review of secular
Fig. 3.Representative set of proposed ages for the onset of plate tectonics on Earth. Selected glob
discussion of key features. Ages are from Komiya et al. (1999), Nutman et al. (2002), Van Hun
(2018), and Palin et al. (2020).
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change, Palin et al. (2020) divided indicators of subduction preserved in
the geological record into three groups – petrological, tectonic, and geo-
chemical/isotopic. Although not data in the purest sense of the word,
the results of thermo-mechanical (geodynamic) and/or petrological
modeling can also be used to interpret the timing of subduction initia-
tion by comparing simulation output to real-world observations. We
follow this scheme again here by briefly outlining evidence for plate tec-
tonic processes for each category, and the strengths and weaknesses
of each.
6.1. Petrological evidence

Petrological evidence for plate tectonics comprises rocks that form
only in convergent plate margin settings, including those belonging to
the downgoing slab and the overlying arc. If these lithologies are discov-
ered in the rock record and can be reliably dated using geochronology,
they would represent firm evidence of subduction having operated at
that point in Earth history, although this need not have been at a global
scale. Associated evidence of horizontal plate motion may be inferred
from rocks that are diagnostic of oceanic spreading ridges – for example,
mid-ocean ridge basalt (MORB) and associated sheeted dike complexes
– although these features alone do not require subduction to be operat-
ing elsewhere on a planet, as lithosphere may be readily destroyed in
non-plate boundary settings to preserve surface area, as shown in Fig. 1.

A key group of petrological indicators used to identify subduction is
high-pressure/low-temperature (HP/LT) metamorphic rocks, such as
blueschist and jadeitite (e.g. Stern, 2005; Stern et al., 2013). These lithol-
ogies form exclusively in subduction zones along geothermal gradients
of ~150–440 °C/GPa (Fig. 4; Ernst, 1988; Sorensen et al., 2006; Palin and
White, 2016) due to metamorphism of hydrated basalt and metasoma-
tism of the mantle wedge just above the slab interface, respectively.
Blueschists and jadeitite also often occur as exotic blocks in
serpentinite-bearing mélanges, confirming a subduction zone
environment of formation (Tsujimori and Harlow, 2012). Eclogite is
often considered within this HP/LT category of rocks that are diagnostic
of subduction zone metamorphism, although deeply buried mafic roots
al-scale tectonic events and petrological milestones are included for reference. See text for
en et al. (2004), Hopkins et al. (2010), Greber et al. (2017), Ernst (2018), Maruyama et al.
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of overthickened continental crust – such as in the Pamir region of the
Himalayan orogen (Hacker et al., 2005) – show that some eclogite can
form by extreme crustal deformation and thickening (Austrheim,
1991). Nonetheless, eclogite with either MORB geochemistry or con-
taining the minerals lawsonite and/or glaucophane is diagnostic of
metamorphism in subduction zones (Becker et al., 2000; Palin and
Dyck, 2018). The polymorphic transition of quartz to coesite defines
the boundary between HP and UHP metamorphism, which occurs at ~
26 kbar at 500 °C and ~28 kbar at 900 °C kbar (Chopin, 1984; Liou
et al., 2004). As such, coesite-bearing eclogite represents exceptionally
deep burial and exhumation of crustal materials from a depth of at
least 100 km in the mantle, which is difficult to explain without invok-
ing steep subduction of oceanic lithosphere (e.g. Jahn et al., 2001).

The oldest blueschist, UHP eclogite, and jadeitite on Earth are c.
0.8–0.7 Ga (West Africa, India, and western China: Maruyama et al.,
1996), c. 0.63 Ga (Pan African orogenic belt, Southwestern Brazil; Liou
et al., 2009), and c. 0.47 Ga (Oya-Wakasa, Japan; Nishimura and
Shibata, 1989), respectively, although HP eclogite, with or without
MORB geochemical signatures, occurs in several Paleoproterozoic ter-
ranes worldwide (see below: Fig. 4). Themarked increase in abundance
of theseHP/LT rock types during theNeoproterozoic has been attributed
to many factors, including a late onset of global subduction at that time
(e.g. Stern, 2005). However, in light of other lines of evidence suggesting
plate tectonics having begun prior to c. 0.9 Ga (Fig. 3), preservation bias
likely also plays a key role in overprinting older occurrences (Whitney
and Davis, 2006), a change in exhumation mechanism may have taken
place during the Neoproterozoic (Agard et al., 2009; Palin et al., 2020)
such that older examples were unable to return to the Earth’s surface,
or else the hotter Archean mantle (Fig. 2) may have increased
subducted slab-top geotherms so that diagnostic low-temperaturemin-
erals, such as glaucophane and lawsonite, could not stabilize (cf. Early
and Late Archean subduction zone geotherms in Martin and Moyen,
2002). A recentmodel, supported by observed secular changes in basalt
compositions through time (Keller and Schoene, 2012; Furnes et al.,
2014), is that a cooling of the mantle and an associated decrease in
the maficity of oceanic crust through time gradually allowed sodic
Fig. 4. Secular distribution of metamorphic lithologies of different facies in the rock record (d
intended to show general trends rather than precise proportions of metamorphic rock types o
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amphibole (glaucophane) and lawsonite to stabilize in Neoproterozoic
(and younger) low-MgO hydrated basalt (Palin and White, 2016). In
this scenario, older Paleoproterozoic and Archean high-MgO hydrated
basalt would have formed actinolite and chlorite-rich assemblages at
equivalent HP/LT subduction zone conditions (Palin and Dyck, 2018),
which resemble greenschist-facies assemblages that occur throughout
Archean greenstone belts. Thus, detailed geochemical investigation
and thermobarometry are required to assess whether inconspicuous
greenstone-like units in ancient terranes record hidden evidence of
subduction-related HP metamorphism (e.g. François et al., 2018).

A final note on this topic must be made concerning the relevance of
HP vs. UHP eclogite as an indicator for the operation of plate tectonics.
Geodynamic arguments (see Section 6.4) suggest that subduction on a
hotter early Earth would have occurred at shallow (<10°) angles – if it
did at all – such that it may have been impossible for subducted crust
to reach UHP conditions. Even if subduction operated at high angles, it
is also notable that hotter Archean slabs are predicted to have beenme-
chanically weaker than colder Phanerozoic counterparts, meaning that
they would lose coherency during subduction and break apart at shal-
low depths before reaching the HP–UHP transition (Van Hunen and
Moyen, 2012). Detached and eclogitized slab fragments that had trans-
formed to become denser than the surrounding mantle and would ter-
minally sink into the deep Earth (Aoki and Takahashi, 2004), achieving
UHPmetamorphic conditions, but never able to return to the surface for
study. By contrast, detached but partially eclogitized (buoyant) frag-
ments would ascend towards the surface, recording HP peakmetamor-
phic conditions. Thus, the presence of coesite should therefore be
viewed as sufficient, but not necessary, for identifying steep subduction
during the Archean. With this in mind, it is notable that several HP
eclogites occur in Paleoproterozoic terranes (Fig. 4) with ages c. 1.8 Ga
to c. 2.1 Ga, including the Congo Craton, Democratic Republic of the
Congo (François et al., 2018), the Nagssugtoqidian Orogen, south-east
Greenland (Müller et al., 2018a, 2018b), and the Trans-Hudson Orogen,
Canada (Weller and St-Onge, 2017). Although individual occurrences of
HP eclogite may be viewed as potential evidence for localized subduc-
tion systems, similar lithologies forming in multiple terranes in the
ata modified from Gard et al., 2019). Note that this dataset is not comprehensive and is
f any age.
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same ~300 Myr period is notably more likely to support a global net-
work of plate boundaries having been established at that time (cf.
Wan et al., 2020). The curious paucity of HP eclogite in the rock record
between 1.8 and 0.8 Ga (Fig. 4) is yet to be satisfactorily explained, al-
though coincides with a global period of tectonic quiescence – the Bor-
ing Billion (Roberts, 2013). Finally, brief discussion must be made on
mafic eclogite from the Kola Peninsula, Russia (Mints et al., 2010), and
Fennoscandian Shield (Dokukina et al., 2014), which are reported to
have equilibrated at P–T conditions of ~16 kbar and ~750 °C at c. 2.87
Ga, and ~24 kbar and ~700 °C at c. 2.82–2.72 Ga, respectively. While
these examples may be considered by some to be the oldest known
HP examples, there is much debate about the age of metamorphism
for these localities (Mints and Dokukina, 2020), with other researchers
arguing that they formed during later regional tectonic overprinting
during the Svecofennian (1.9–1.8 Ga) orogeny (e.g. Yu et al., 2017). Fur-
ther research on these rocks using new and high-resolution techniques
in petrochronology may help to resolve this issue.

Ophiolite complexes represent alternative petrological evidence for
subduction, as they represent fragments of oceanic lithosphere that
have been tectonically emplaced (obducted) onto continental crust dur-
ing plate convergence (Miyashiro, 1975; Dewey, 1976). Until recently,
the oldest certified ophiolite on Earth was the Purtuniq ophiolite, Cape
Smith belt (c. 2.0 Ga; Scott et al., 1991, 1992), which lies within the
Trans-Hudson orogen, Canada; a Proterozoic collisional orogen with
many temporal and spatial similarities to the Cenozoic Himalayan
orogen (St-Onge et al., 2006). However, Santosh et al. (2016) docu-
mented a Late Neoarchean ophiolite from the c. 2.5 Ga Yishui complex,
North China Craton, with its lithology, petrology, and geochemistry
confirming a suprasubduction zone genesis. Although Kusky et al.
(2001) proposed that the Dongwanzi greenstone belt (c. 2.51 Ga),
North China Craton, contains dismembered fragments of an Archean
ophiolite sequence, this interpretation has been disputed by many
other research groups (Zhai et al., 2002), as have sheeted dikes and as-
sociated pillow basalts in the Isua supracrustal sequence (c. 3.8 Ga),
Greenland, reported by Furnes et al. (2007) and Jenner et al. (2009). Re-
cent studies have also reported well-preserved ophiolite-like succes-
sions of Neoarchean age such as those from the Miyun Complex in the
North China Craton (e.g., Santosh et al., 2020). These ancient examples
are less readily accepted as obducted Archean oceanic lithosphere by
thebroader geoscience community due to their incompleteness, as indi-
vidual components of ophiolites – such as sheeted dikes and pillow ba-
salts – may form individually in non-subduction zone tectonic settings
(Moore et al., 1982; Vanko and Laverne, 1998). However, additional
petrological evidence in some localities supports the interpretation
that these greenstone belts do represent metamorphosed oceanic
crust (cf. Tang and Santosh, 2018). Arc-type andesite-bearing green-
stone belt volcano-sedimentary successions occur in the Superior,
Slave, and Yilgarn Archean cratons, among others (cf. Boily and Dion,
2002). These andesitic members are intercalated with graywacke and
other volcaniclastic strata that commonly occur alongmodern-day con-
tinental and island arcs, such as boninite, shoshonite, and high-Mg an-
desite (Condie, 1989; Parman et al., 2001). When considered together
as an entire volcano-sedimentary stratigraphic package, subduction-
zone processes represent the most likely explanation for their genesis.

6.2. Tectonic evidence

Tectonic evidence for plate tectonics indicates independent plate
motion or rotation, or else describes large-scale geological features
that were created by dominantly horizontal tectonic forces. Evidence
for the former is readily provided by paleomagnetism, although this
technique can be challenging to apply to rocks formed on the early
Earth (Van der Voo and Channell, 1980). Typically, paleomagnetic stud-
ies and the identification of apparent polar wander in Archean terranes
is complicated by the lack of suitable stratigraphic sections that are hor-
izontal, have remained undeformed, and have not been remagnetized
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since acquisition of their primary magnetism. Further issues arise with
providing geological constraints for different sedimentary or volcanic
formations, due to uncertainties associated with many isotopic dating
techniques increasing with absolute age (Schoene et al., 2013). None-
theless, several studies have managed to circumvent these issues. In
particular, a recent study by Brenner et al. (2020) presented new paleo-
magnetic data from tholeiitic metabasalts in the East Pilbara Craton,
western Australia, and demonstrated that the different paleolatitudes
of the terrane documented by sequential phases of volcanic activity re-
quired plate motion of at least 2.5 cm/yr between c. 3.35 and c. 3.18 Ga.
This is comparable to documented rates of continental drift on the
Phanerozoic Earth (~2–10 cm/yr) and exceeds those predicted for
stagnant- and sluggish-lid models (up to 2 cm/yr; Fuentes et al.,
2019), suggesting the operation of Wilson Cycle-like plate motion dur-
ing the Mesoarchean.

In parallel with paleomagnetism providing evidence ofmotion of in-
dividual continental blocks, larger-scale tectonic evidence of drift of
multiple blocks is readily provided by the supercontinent cycle. A super-
continent is a vast landmass formed by accretion of most (or all) conti-
nental fragments that exist on Earth at any point in time (Rogers and
Santosh, 2004). Due to the limited degree of horizontal motion associ-
ated with various forms of stagnant lid regime, evidence of superconti-
nent formation provides strong support for mobile lid tectonics. The
first undisputed supercontinent that formed on Earth assembled at c.
2.0–1.8 Ga, termed Columbia/Nuna (Rogers and Santosh, 2002; Meert
and Santosh, 2017), and was followed by Rodinia (1.2–1.1 Ga), Gond-
wana (0.54 Ga), and Pangea (0.30–0.25 Ga) (Rogers and Santosh,
2004). Two supercontinents are also suggested by some researchers to
have formed on the Archean Earth – Ur (3.0 Ga; Mahapatro et al.,
2012) and Kenorland (2.7–2.5 Ga: Aspler and Chiarenzelli, 1998) –
and if true would provide strong support for a globally established net-
work of subduction zones and operation of the Wilson Cycle at that
point in time. A diverse range of geodynamicmodels has been proposed
to account for this billion-year cyclical pattern of assembly and breakup
of supercontinents (cf. Nance et al., 2014). Double-sided subduction
(Maruyama et al., 2007) and/or multiple sets of subduction zones
within a single oceanic basin (Santosh et al., 2009) have been proposed
to promote the rapid assembly of continental fragments into supercon-
tinents. Supercontinent dispersal is thought to be driven by mantle
plumes associated with large igneous provinces and giant dike swarms,
which have been temporally linked to the demise of Columbia/Nuna
and Rodinia (Ernst et al., 2008).

Parallel and pseudo-linear belts that preserve low-temperature/
high-pressure (LT/HP) mineral assemblages in one terrane and high-
temperature/low-pressure (HT/LP) mineral assemblages in an adjacent
terrane are called paired metamorphic belts (Miyashiro, 1961, 1973).
These belts record convergent margin activity, where LT/HP
metamorphism occurs in the subducted slab, forming blueschist- and
eclogite-facies metamorphic rocks, and HT/LP metamorphism occurs
in the overlying island or continental arc, forming amphibolite-facies,
granulite-facies, or ultrahigh temperature (UHT) rocks (Iwamori,
2000). Such belts record the penecontemporaneous metamorphism
along contrasting apparent thermal gradients – one cold and one hot
– in discrete terranes that are later tectonically juxtaposed (Oxburgh
and Turcotte, 1971). The classical locality for paired metamorphism is
the Sanbagawa Belt, Japan (Banno and Nakajima, 1992), although simi-
lar belts have been documented in Precambrian terranes (e.g. Katz,
1974). Paired metamorphic belts therefore record many forms of arc-
related activity, such as subduction and crustal shortening and
thickening.

Whereas paired metamorphic belts record the tectonic and meta-
morphic processes that characterize ongoing subduction, the closing
phase of the Wilson Cycle is documented by terminal destruction of
an ocean basin leading to collision and amalgamation of multiple conti-
nental blocks and/or intervening arc systems (Wilson et al., 2019). Ac-
cretionary orogenesis typically occurs during ongoing subduction and
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evolves to collisional orogenesis during continental accretion (Cawood
et al., 2009; Santosh et al., 2009). Accretionary orogens exhibit accre-
tionary complexes containingMORB and deep-sea sediments belonging
to the subducting oceanic plate, and medium- to high-grade metamor-
phic rocks and calc-alkaline/I-type batholiths belonging to the overlying
continental plate (Bahlburg et al., 2009; Sepidbar et al., 2019), which are
separated by a forearc basin (Hall, 2009). By contrast, collisional orogens
are characterized by passive continental margin sequences (Gaetani
and Garzanti, 1991), with an orogenic core of medium- to high-grade
regional metamorphic rocks (Etheridge et al., 1983; Weller et al.,
2013; Palin et al., 2018; Treloar et al., 2019; Kang et al., 2020). A colli-
sional suture with remnants of oceanic components marks the zone of
ocean closure (Thakur and Misra, 1984; Robertson, 2000; Palin et al.,
2015; Parsons et al., 2020). Accretionary orogens often contain accre-
tionary prisms – accumulations of material scraped off subducting oce-
anic lithosphere that show a downward younging of successive strata
(Huang et al., 1997). The relative volume of individual units in accre-
tionary prisms also typically decreases with age, that some portion of
the accreted material is tectonically eroded and carried into the mantle
via subduction erosion (Isozaki et al., 2010). This process can lead to un-
derplating of overlying arc crustwith felsic sedimentarymaterial and al-
lows hydration of the mantle wedge (Platt et al., 1985; Hacker et al.,
2011). Accretionary prisms are sparse the geological record before c.
0.9 Ga (Hamilton, 1998), although severalmélanges in Archean terranes
have been interpreted as accretionary prisms, including the Schreiber-
Hemlo greenstone belt (c. 2.75–2.70 Ga), Superior Province, Canada
(Polat and Kerrich, 1999) and the Abitibi greenstone belt (c. 2.70 Ga),
Quebec (Mueller et al., 1996).

6.3. Geochemical and isotopic evidence

Many forms of geochemical and isotopic data can beused to infer the
operation of plate tectonics through geological time. The tectonic envi-
ronments in which igneous rocks formed are commonly constrained
using trace element ratios, particularly for mafic rocks, which can be
used to identify depleted mantle (DM), enriched mantle (EM), and hy-
drated mantle (HM) source regions (e.g. Workman and Hart, 2005;
Pearce and Stern, 2006). Basalts with these geochemical signatures are
often interpreted to have formed at mid-ocean ridges, on oceanic pla-
teaux above mantle plumes, and in arc/back-arc settings where partial
melting takes place within a hydrated mantle wedge, respectively
(Condie, 1985).Many researchers have applied these trace element dis-
crimination diagrams to Archean and Proterozoic basalts in greenstone
belts to determine whether these mantle reservoirs existed at various
points in time (e.g. Furnes et al., 2014); however, caution is advised,
as some studies have shown that these techniques are not always reli-
able at identifying tectonic settings on the young Earth where the
mode of basalt formation can be independently verified by other geo-
logical criteria (Snow, 2006; Vermeesch, 2006; Li et al., 2015).

Greenstone belts from Archean terranes worldwide are argued by
some researchers to represent obducted and metamorphosed compo-
nents of Precambrian oceanic crust; as such, application of trace ele-
ment discrimination techniques to their mafic components should be
able to verify the geodynamic setting of protolith (basalt) formation, as-
suming that no significantmodification of the elemental ratios involved
has taken place during subsequent heating and burial. Furnes et al.
(2014) used multiple incompatible element ratios (Th/Yb, Nb/Yb, V/
Ti) to interpret thatmost basalts from Archean greenstone belts formed
in convergent margin tectonic settings due to the preservation of geo-
chemical signatures similar to Phanerozoic MORB, boninite, and island
arc tholeiite. By contrast, Condie et al. (2016) suggested that modern-
day tectonic settings cannot be confidently identified in rocks older
than c. 2.5 Ga, as distinct EM and DM signatures only become resolvable
after that time. A critical limitation to applying these geochemical tech-
niques to define when plate tectonics began on Earth is the issue of de-
fining what major-, minor-, and trace-element signatures basalts
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generated in various types of stagnant lid regime should exhibit (e.g.
Hernández-Montenegro et al., 2019). Although mantle plume-related
magmatism occurs on Earth today, complicating factors such as pro-
gressive depletion of the upper mantle through time and the uncer-
tainty concerning the rate and degree of secular cooling (e.g. Ganne
and Feng, 2017) introduce uncertainty into forward models of partial
melt composition that depend on factors such as protolith composition,
pressure and temperature conditions of melting (Weller et al., 2019;
Hernández-Uribe et al., 2020a), and degree of fractional crystallization,
mixing, and assimilation during magma ascent through the crust
(Hastie et al., 2015). In particular, HM trace element ratios in basalt
are viewed as diagnostic signatures ofmagma genesis at oceanic or con-
tinental arcs during the Phanerozoic, but have recently been suggested
to alternatively represent intraplate mantle that has been
metasomatized by assimilation of dripped or delaminated hydrous
lower crust (e.g. Bédard, 2006; Fischer and Gerya, 2016; Piccolo et al.,
2019).

Alongside bulk-chemical compositions, important information
concerning changing geodynamics through time can be obtained from
the geochemistry and isotopic signatures of individual crystals within
metamorphic and igneous rocks. Diamond is of critical use for studying
secular change in global geodynamics, as it is physically and chemically
resistant to tectonothermal overprinting and stabilizes at pressures
equivalent to ~150–180 km depth below the Earth’s surface (Sung,
2000). Natural diamonds crystallize from carbon-rich solutions in the
mantle and can trap minerals, fluids, or melts that occur at equivalent
depths within the Earth’s interior (Harte, 2010). As such, they have
been used in many studies to examine how mantle ‘contaminants’
have evolved through time through studies of their inclusion suites
and their isotopic compositions. For example, mineralogical evidence
of the transition between stagnant lid and mobile lid geodynamic re-
gimes during the Mesoarchean was provided by Shirey and
Richardson (2011), who studied silicate and sulfide inclusions in dia-
monds from five major Archean terranes. While peridotite-like inclu-
sion suites (harzburgite and lherzolite) occur in diamonds of all ages,
eclogite-like inclusion suites (garnet plus omphacitic clinopyroxene)
became dominant after c. 3 Ga. These data were interpreted to record
the onset of global subduction on Earth that allowed eclogite – meta-
morphosed oceanic crust – and carbon-bearing fluids to be transported
to subcontinental mantle depths, with the diamonds subsequently ex-
humed via volcanism. In an analogous fashion, stable isotope ratios in
cratonic diamonds may constrain the onset and degree of crust–
mantle interaction though time. For example, carbon isotopes in dia-
mond from the Jagersfontein kimberlite, South Africa (Tappert et al.,
2005), and carbon and nitrogen isotopes in diamond from the c.
3.5–3.1 Ga Kaapvaal craton, South Africa, (Smart et al., 2016) were re-
ported to record evidence for the transport of oceanic crust and oxidized
carbon-rich sediments into the mantle, presumably facilitated by sub-
duction of oceanic lithosphere at a convergent plate margin. Oxygen
and strontium isotope signatures in Archean diamonds from eclogite
xenoliths exhumed from cratonic mantle in South Africa (MacGregor
andManton, 1986) are similarly thought to document subduction of hy-
drothermally altered oceanic crust into the mantle at c. 2.5 Ga.
6.4. Modeling

Both thermo-mechanical (numerical) and petrological (thermody-
namic) modeling can be used independently or in combination to
infer the likelihood of subduction at different times through Earth his-
tory (e.g. Palin et al., 2016b; Ge et al., 2018; Wiemer et al., 2018). This
is best achieved by correlating the surficial imprints of key tectonic pro-
cesses and/or the geochemistry andmetamorphic/magmatic P–T evolu-
tion of rock types that are predicted to form in both stagnant lid and
mobile lid environments with those documented in the geological
record.
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Thermo-mechanical modeling can be used to test how different
physical variables affect evolution of the crust and mantle, and remains
a highly effective method to examine the geodynamic effects of secular
cooling of the Earth’s mantle through time (cf. Gerya, 2014). Examina-
tion of the thermal stability of thick, mafic Archean crust has shown
that eclogitization andmelt-loss from its roots would have caused drip-
ping and/or delamination of this high-densitymaterial into the underly-
ing mantle (Fischer and Gerya, 2016; Piccolo et al., 2020; Nebel et al.,
2018). It is primarily the results of such simulations that have allowed
definition of the secular evolution of different forms of stagnant lid re-
gime, as shown in Fig. 1. Such geodynamic simulations also demonstrate
which petrophysical factors are necessary to initiate and sustain plate
tectonics on Earth. Parameterizations have been employed that con-
sider variations in oceanic lithospheric thickness, composition, and hy-
dration state, and mantle TP values for Archean, Proterozoic, and
modern-day convergent margins (e.g. Gerya et al., 2008). In general,
hot, thick, and highly mafic Archean oceanic slabs are not strong or
dense enough to undergo steep subduction (van Hunen and Moyen,
2012), and commonly break apart when the leading-edge transforms
to high-density eclogite. The well-documented importance of slab-pull
forces for driving plate motion at the surface of the Earth (Conrad and
Lithgow-Bertelloni, 2002) indicates that subduction likely only became
self-sustainable at a point in geological time when descending slabs
were strong (and cold) enough to maintain down-dip coherency, argu-
ing against modern-day like subduction having operated on the much
hotter early Earth (Foley et al., 2003; Palin et al., 2020).

By contrast with thermo-mechanical modeling, petrological model-
ing may be used to independently assess whether rocks exposed at the
Earth’s surface in Archean, Proterozoic, and modern-day terranes
formed via subduction (e.g. Ge et al., 2018). This form of modeling
uses equilibrium thermodynamics to predict which minerals, melts,
and aqueous fluids would stabilize at various depths and temperatures
within the Earth (Powell et al., 1998; White et al., 2000, 2007; Green
et al., 2016; Holland et al., 2018). If geochemical mass-balance con-
straints can be applied, in-depth analysis of the major, minor, and
trace element contents of metamorphic rocks and anatectic melts can
be obtained (Spear, 1988), which can then be compared to natural li-
thologies preserved in different terranes worldwide (Palin et al.,
2016c). Focused petrological study of Archean geodynamics has re-
cently been facilitated by new thermodynamic descriptions of minerals
andmelts thatmay form inmetabasalts (e.g.MORB, calc-alkaline basalt,
ocean-island basalt), which are thought to have been precursor litholo-
gies for generation of TTG magmas. Natural Archean TTGs and equiva-
lent gray gneisses have historically been divided into low-pressure,
medium-pressure, and high-pressure variants based on geochemical
signatures that imply magma genesis in the presence or absence of pla-
gioclase, amphibole, garnet, and/or rutile (see Moyen and Martin, 2012
for a comprehensive review). Low-pressure TTGs are thus expected to
have formed from partial melting of amphibolite, medium-pressure
TTGs from garnet granulite, and high-pressure TTGs from eclogite (e.g.
Foley et al., 2003). Such application of petrological modeling has almost
universally demonstrated that Earth’s first continents did not form via
subduction, as all forms of TTG melts matching natural examples may
be generated in normal crustal environments (Nagel et al., 2012; Palin
et al., 2016b; White et al., 2017; Ge et al., 2018; Wiemer et al., 2018;
Kendrick and Yakymchuk, 2020; Laurent et al., 2020; Liu and Wei,
2020; Yakymchuk et al., 2020 and others), and calculations performed
at mantle P–T conditions representative of subduction zone metamor-
phism shows that eclogite is highly infertile (Hernández-Uribe et al.,
2020b). Whilst TTGs with appropriate major-element compositions
and trace-element signatures may be generated at these high-
pressure conditions (e.g. Rapp et al., 1991), the volumes produced can-
not account for the proportions observed in Archean cratons. For more
information about application of this petrological modeling to Archean
metamorphism and TTG genesis, the reader is referred to Palin et al.
(2016b) and Kendrick and Yakymchuk (2020).
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7. Earth’s oldest crystals and Earth’s oldest crust

The geological record becomes increasingly incomplete further back
in time,which is expected due to older terranes havinghadmore oppor-
tunity to be reworked via later episodes of tectonic deformation,
overprinted by thermal or regional metamorphism, or eroded away
into their constituent grains. This presents many problems for geolo-
gists using the distribution of rock types through time as a tool to inter-
pret secular changes in geodynamic processes; for example, arguments
can bemade about the absence of key petrological indicators of subduc-
tion, such as blueschist, prior to c. 0.8 Ga being due to lack of preserva-
tion rather than lack of formation, as they are easily retrogressed.
Analogous problems arise when making interpretations from data ob-
tained from individual outcrops of Archean age, which may not be rep-
resentative of global conditions at the time of their formation.
Unfortunately, this is a limitation that will likely never be circumvented
unless there is an important discovery of new Archean crust in regions
of the world that are currently not fully explored.

The search for Earth’s oldest rocks is of critical importance for an-
swering a wide range of questions related to our planet’s evolution, in-
cluding the nature and style of its initial tectonic regime. However, as
with many aspects of such studies, fervent dispute exists with respect
interpretation of data reported from different localities. Today, the
oldest-known rocks on Earth are commonly accepted to occur within
the Acasta Gneiss Complex, the westernmost exposure of the basement
of the Slave Craton, northwest Canada (Bowring et al., 1989). This Com-
plex contains a petrologically diverse suite of rocks ranging from
metagabbro to granitic orthogneiss that mostly have metamorphic
ages of c. 4.02–3.6 Ga (e.g. Stern and Bleeker, 1998; Bowring and
Williams, 1999). The timing of metamorphism and melting in these
rocks has been tightly constrained by U–Pb zircon geochronology (e.g.
Reimink et al., 2014, 2016), which is generally considered a reliable
petrochronological technique for producing high-precision ages in an-
cient rocks (e.g. Montgomery, 1979; Kohn et al., 2015). Further, the
changing chemical systematics of zircon during metamorphism and
partial melting are well studied and well understood (Lee et al., 1997;
Rubatto and Hermann, 2007), such that it is straightforward to discrim-
inate the timing of different thermal or tectonic events based on ratios
of trace elements and/or REEs in different microstructural domains,
such as extraction of a primitive melt from the mantle and subsequent
metamorphism in an orogenic environment. However, zircon is rare in
mafic and ultramafic rocks, meaning that other minerals and isotope
systems are often required to date them. In a landmark study, O’Neil
et al. (2008) reported a 146Sm–142Nd isochron age of c. 4.28 Ga from
amphibolite-like mafic schist from the Nuvvuagittuq greenstone belt,
Québec, Canada, making them contenders for being named as Earth’s
oldest crust; however, these data have proven contentious (Andreasen
and Sharma, 2009), given assumptions of the initial concentration of
the 146Sm parent isotope on the early Earth, which is now extinct. Key
aspects of the geology and tectonic interpretations for both localities
are briefly summarized below, although for a more comprehensive re-
view of the nature of Earth’s first crust that encompasses many recent
discoveries and tectonic models, the reader is referred to Carlson et al.
(2019).

The Acasta Gneiss Complex contains a wide spectrum of lithologies,
which Reimink et al. (2016) divided into four main types based on age,
structure, and petrology: a layered gneiss unit composed of meter-scale
tonalitic and granodioritic members; foliated, garnet-bearing amphibo-
lite; weakly deformed metagabbro that preserves some relic igneous
textures; and a dominant, massive orthogneiss with granodioritic to
granitic compositions. The oldest lithological components of this suite
are low-strain, mafic tonalitic gneisses of the Idiwhaa unit, which con-
tain igneous zircons with U–Pb crystallization ages of c. 4.02 Ga
(Reimink et al., 2014). These felsic gneisses were reported by Reimink
et al. (2014) to be unusually Fe-rich (~9–15 wt. % FeO) and so have
lower Mg-numbers (~13–18) than typical Archean gray gneisses
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(~25–60, with a median of ~43; Moyen, 2011), which in turn was
interpreted to record shallow-level fractional crystallization of a low-
H2O basaltic parent magma. Oxygen isotope analyses indicated the as-
similation of rocks previously altered by surface water. The most likely
tectonic scenario for generating such melts is an Iceland-like environ-
ment where mantle upwelling generated a thick oceanic plateau that
experienced intracrustalmelting, differentiation, andmagmahybridiza-
tion (Kröner, 1985; Reimink et al., 2014), which alignswith suggestions
that the very early Earth experienced more intense plume-related
magmatism than during the Proterozoic and Phanerozoic (Bédard,
2018) and that a wide variety of magmas may be produced in such in-
traplate environments (e.g. Hastie et al., 2010, 2016).

The Nuvvuagittuq greenstone belt, Superior Craton, is a relatively
small (6 km2) terrane, but exposes a wide variety of rock types, includ-
ing felsic to intermediate orthogneiss, ultramafic and mafic sills, and
metasediments (e.g. O’Neil et al., 2007). Much focus has been given in
recent years to the petrology of mafic supracrustals – amphibolite-like
rocks, termed the Ujaraaluk unit – that were reported by O’Neil et al.
(2008) to have a 146Sm–142Nd whole-rock isochron Hadean age of c.
4.28 Ga (Fig. 3). Many of these mafic units show major minor, and
trace element compositional similarity to metabasalt from several
Early Archean terranes worldwide (Carlson et al., 2019), although
those in the Ujaraaluk unit typically contain cummingtonite instead of
hornblende (O’Neil et al., 2008). Based on compatible and incompatible
trace element ratios, these faux-amphibolites have been interpreted to
have formed from basalt derived directly from a peridotite mantle
(O’Neil and Carlson, 2017) and thus may represent subsequently de-
formed and metamorphosed relics of Earth’s oldest secondary crust.

Despite the ancient heritage of these rocks from the Nuvvuagittuq
greenstone belt and Acasta Gneiss Complex, even older terrestrialmate-
rials occur in the form of detrital zircon grains within clastic
metasediments in the Jack Hills area of the Archean Narryer Terrane,
Western Australia (e.g. Hoskin, 2005). Early investigation of a
greenschist-facies meta-conglomerate from this region by Compston
and Pidgeon (1986) revealed two zircon grains with ages of 4276 ±
12 Ma, and further investigation of grains from the same locality by
Wilde et al. (2001) revealed a single grain with a 207Pb/206Pb age of
4404 ± 8 Ma, the oldest ever obtained from a mineral formed on
Earth. Subsequent analyses have shown that Jack Hills detrital zircons
show a characteristic bimodal distribution with peaks at c. 3.3 and c.
4.1 Ga (cf. Harrison, 2009).Textural characteristics of the Jack Hills zir-
cons, such asmorphology and internal growth zoning, indicate that vir-
tually all are derived from igneous sources (e.g. Cavosie et al., 2004);
thus, the older (Hadean) age peak may be considered as a magmatic
crystallization age, and the younger (Archean) age peak likely records
metamorphic recrystallization and/or isotopic resetting. Although
other suites of Hadean zircons exist elsewhere on Earth, including
Greenland (Mojzsis and Harrison, 2002), China (Cui et al., 2013), and
South America (Paquette et al., 2015), most study has concentrated on
the Jack Hills materials and discussion of the information gleaned
about the Hadean Earth, below, focuses on studies of this set.

Hadean zircons provide critical information about the geochemical
conditions and petrology of the rocks in which they formed, and so
the geodynamics of the Earth at that time. This information primarily
comes in two forms: chemical and isotopic properties of the zircons
themselves, and themineralogy of inclusionswithin them. Several inde-
pendent studies of Jack Hills zircon have reported a heavy oxygen iso-
tope signature (Mojzsis et al., 2001; Wilde et al., 2001) that may be
explained by the melt from which these grains crystallized having
formed from 18O-rich clay minerals. In turn, this implies that liquid
water was present at the Earth’s surface at c. 4.4–4.3 Ga. This conclusion
is further supported by highly negative values of δ7Li from Jack Hills zir-
cons that reflect crystallization from a source rock that was strongly
weathered (Ushikubo et al., 2008; Tang et al., 2017). Both sets of isotope
datamay be satisfactorily explained by weathering of pre-existing crust
and formation of a clay-rich sediment at the Earth’s surface, which was
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buried – perhaps via subduction – heated, melted, and crystallized
zircon.

The existence of a primary Hadean crust that may be subject to
weathering and erosion has been inferred from initial 176Hf/177Hf ratios
in Jack Hills zircons, which exhibit large deviations in εHf(T) from the
bulk silicate Earth (Kinny et al., 1991; Harrison et al., 2005) ranging
mostly between −10 and +4 (Harrison, 2009). This has been
interpreted to reflect early major differentiation of the silicate Earth
(Blichert-Toft and Albarède, 2008) and primary crust formation since
c. 4.5 Ga. Critically, many of these analyzed ratios cluster along a trend
corresponding to a Lu–Hf value of ~0.1, which is characteristic of conti-
nental crust, and has led to manymodels of continental crust formation
through time incorporating substantial growth immediately after the
Earth’s formation. The absence of this crust from the geological record
is commonly attributed to destruction and re-working due to a pur-
ported intense bolide impact flux at c. 3.9 Ga, often termed the late
heavy bombardment (c. 3.9 Ga; Wetherill, 1975; Gomes et al., 2005;
Chapman et al., 2007). The effects of high-velocity meteorite impacts
on the Earth’s primitive crust have been speculated upon by many re-
searchers, with some suggesting that impacts may have triggered sub-
duction initiation (O’Neill et al., 2017, 2020) and induced significant
fracturing, weakening, and high-temperature/short-durationmetamor-
phism at impact sites (Byerly and Lowe, 1994; Gibson, 2002; French,
2004; Sleep and Lowe, 2014). As with many other aspects of Earth’s
early history, study of similar processes on our neighboring rocky
planets Mars and Venus – and the Moon – may shed new light on the
evolution of the Hadean Earth.

Many workers have reported the mineralogy and crystal-chemistry
of inclusion suites within Jack Hills zircons (e.g., Bell et al., 2015a,
2015b, Bell et al., 2017; Cavosie et al., 2004; Caro et al., 2008;
Menneken et al., 2007; Nemchin et al., 2008; Rasmussen et al., 2011),
which have provided profound insight into the tectonic processes that
operated at this point in Earth history. These observations have been
used to support and complement suppositions made by some workers
from isotope analysis that surficial crustal material was transported to
pressure and temperature conditions within the Earth that allowed
anatexis to take place, specifically in a subduction zone environment
due to the cold P/T gradients involved (see below). Primary inclusions
documented within Hadean zircons worldwide include (but are not
limited to) quartz, muscovite and biotite mica, chlorite, K-feldspar and
albitic plagioclase, rutile, monazite, xenotime, and even diamond
(Maas et al., 1992; Trail et al., 2007; Menneken et al., 2007). A
campaign-style analysis of zircons from Jack Hills by Hopkins et al.
(2008) showed that quartz and muscovite comprise nearly two-thirds
of all inclusions, and that these minerals often occur in close spatial as-
sociationwithmutual grain boundaries, implying chemical and textural
equilibrium.

The common occurrence of hydratedmineral inclusions (muscovite,
biotite, chlorite, and apatite) that are characteristic of peraluminous ig-
neous rocks can be attributed on the modern-day Earth to either melt-
ing of clay-rich metasediments during regional metamorphism – as
shown by syn- and post-orogenic Himalayan-type leucogranites that
form in the cores of collisional mountain belts – or by production of
andesite-like magmas in an island or continental arc setting (Chappell,
1999; Collins andRichards, 2008). Felsicmeltsmay alternatively be pro-
duced as highly fractionated differentiates of originally mafic magmas,
such as occur in trondhjemitic dikes that formed by hydrous partial
melting of gabbro in the roof-zone of an axial magma chamber in the
Semail ophiolite, Oman (e.g. Rollinson, 2008), although these occur-
rences are much less common than orogenic S-type magmas. Nonethe-
less, all these scenarios are characteristic of mobile lid geodynamic
regimes with magma genesis at sites of plate convergence.

Support for the Jack Hills zircons and inclusion suites forming in a
subduction zone environment has been put forward due to the results
of thermobarometry performed on each. The Ti-in-zircon thermometer
(Watson and Harrison, 2005) applied to zircon grains with ages c.



R.M. Palin and M. Santosh Gondwana Research xxx (xxxx) xxx
4.4–3.9 Ga produced a mean crystallization temperature of ~680–690
°C, which lies close to the wet melting curve for pelite and granite at P
> 4 kbar. In addition, the Si contents of muscovite inclusions were
used in combination with phase diagram-based modeling of granitic
magma genesis by Hopkins et al. (2008) to constrain amean crystalliza-
tion pressure of ~6.9 kbar (at ~680–690 °C), and thus a static and linear-
ized geothermal gradient of ~980 °C/GPa. Interpretation of what these
P–T conditions mean for the geodynamics of the Hadean Earth is com-
plex. As noted in Section 6.1, most rocks diagnostic of subduction on
the Phanerozoic Earth, such as blueschist and lawsonite-bearing
eclogite, form at P/T gradients <440 °C/GPa (Penniston-Dorland et al.,
2015; Palin et al., 2020). Thus, while Hopkins et al. (2008) and others
have interpreted that these zircons formed from melts generated in an
underthrust environment – perhaps similar to a modern-day subduc-
tion zone – the P/T gradient calculated from these inclusion suites is
over twice as hot as this ‘upper’ limit for warm subduction, at least on
the Phanerozoic Earth. These data therefore may provide primary
Fig. 5.Conceptualmodel for localized subduction initiation at thehead of amantle plume in a glo
lid interaction showing penetration and localized partialmelting and destabilization of the prim
a semi-continuous perimeter around themicrocell (modified after Piccolo et al., 2020). (b) Ove
outwards and the microcell grows (S1, S2) (c–d) Schematic plan view of plate tectonic-like f
microcells interact (modified after Palin et al., 2020).
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constraints on the thermal structure of Archean subduction, which is
otherwise difficult to constrain in the absence of (U)HP rocks older
than c. 2.8 Ga (Fig. 4).

A final note to be made when discussing zircons from the Jack Hills
region is the occurrence and carbon isotopic signature of graphite and
diamond inclusions. Ionmicroprobe analyses of individual and compos-
ite inclusions in zircon grains as old as c. 4.2 Ga byNemchin et al. (2008)
revealed strongly negative δ13C isotope values between −5‰ and
−58‰, with a median value of −31‰. These data were supported by
similar analyses of graphite flakes included in c. 4.1-Ga zircon from
the region by Bell et al. (2015a, 2015b), who produced δ13C isotope
values of −24 ± 5‰. The interpretation of these strongly negative
values is contentious, as they are consistent with a biogenic origin, al-
though not diagnostic of it. Abiotic processes that may account for
light δ13C signatures, such as incorporation of meteoritic materials
(δ13C values from +68‰ to −60‰) or carbon isotopic fractionation
by diffusion are considered unlikely to produce consistently low δ13C
bal stagnant lid environment. (a) Two- and three-dimensional numericalmodel of plume–
arymafic crust. Incipient subduction initiates at the plume headmargin (S1) andmay form
r time, lithospheric delamination and rollback allows the proto-subduction zone to expand
eatures within a microcell that generate convergent plate margin interactions if several
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values over the range of ages of host grains analyzed in these studies (cf.
Clayton, 1963; Robert and Epstein, 1982; Engel et al., 1990), giving
weight to the hypothesis that primitive biological activity was taking
place at the Earth’s surface at this time. Nonetheless, an abiotic origin
for graphite formation has recently been favored by Menneken et al.
(2017), who documented CO2 inclusions in Jack Hills zircons that also
exhibited thin carbon films on the inside of inclusion walls. This close
spatial relationship between graphite and CO2was suggested by to indi-
cate precipitation of carbon during thermal metamorphism, and not as
evidence for a terrestrial biosphere at c. 4 Ga. Regardless of the origin
of the isotopically light carbon, undersaturation of carbon in the Earth’s
mantle requires that surficial sediments or crustal materials were
transported into the interior at this time (Dasgupta and Walker,
2008). Unfortunately, these isotope data cannot directly determine
whether subduction or other tectonic processes were responsible,
such as dripping or delamination (Fig. 1), and thus other lines of evi-
dence are needed to identify whether plate tectonics had begun to op-
erate during the Hadean.

8. Summary remarks and future directions

Study of the Archean Earth has become amajor sub-category of geo-
science, as demonstrated by the vast number of research articles that
are published on the topic each year and the frequency with which re-
view papers are required to keep up with new developments. In many
cases, the major aim of these studies is to constrain the timing of
onset of plate tectonics on Earth, and historical estimates in the litera-
ture span billions of years (Fig. 3). Some workers have used mineral in-
clusions in Jack Hills zircon and isotopic data for felsic crust present at
the Earth’s surface soon after planetary formation to propose subduc-
tion having begun during the Hadean (c. 4.2–4.0 Ga: Hopkins et al.,
2008), whereas most interpretations cluster around the Mesoarchean
(c. 3.2–2.8 Ga: Cawood et al., 2006; van Kranendonk et al., 2007;
Condie and Kröner, 2008; Tang et al., 2016; Palin et al., 2020) based
on the appearance of tectonic features resembling those that character-
ize Phanerozoic collisional orogens, geochemical evidence for a rapid in-
crease in primary continental crust thickness (Dhuime et al., 2015),
paleomagnetic evidence for continental drift (Brenner et al., 2020),
and evidence for operation of the Wilson Cycle (Shirey and
Richardson, 2011). A striking gap exists between c. 2.9 Ga and c. 1 Ga,
overlapping with the Boring Billion (c. 1.8–0.8 Ga), and is terminated
by a separate cluster of researchers who argue for a Neoproterozoic
onset (c. 1.0–0.8 Ga; Stern, 2005; Hamilton, 2011; Stern et al., 2016).

A holistic model of changing geodynamics through time should
take into account many of the strong arguments for subduction having
Fig. 6. Summary diagram showing the evolution of global tectonics through time as constrained
is fromVermeesch (2012) and brown boxes denote supercontinent events: P=Pangea; G=Go
(2020).
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begun to operate in the deep geological past – very likely in isolated
microcells that were located at the head of mantle plumes (Fig. 5a–
b). The occurrence of multiple mantle plumes on the early Earth infers
the existence of multiple microcells, and it is conceivable that interac-
tions between these cells could produce plate margin-like features,
such as collisional orogenesis (Fig. 5c–d), although in the absence of
a global network of subduction zones. For more detailed discussion
of this model, the reader is directed to Palin et al. (2020). This regime
of isolated microcells with localized subduction zones eventually
transitioned into a global-scale phenomenon as secular cooling of
Earth’s mantle allowed oceanic lithosphere to become stronger and
less buoyant. The character of subduction has undoubtedly changed
through time in many other ways and has impacted the diversity of
its tectonic, petrological, and geochemical products preserved in the
geological record. Several lines of evidence support the hypothesis
that cold, deep, and steep slab subduction is a recent (<0.9 Ga) phe-
nomenon, which is exemplified by the abrupt emergence of key rock
types, such as blueschist and UHP eclogite, of that age (e.g. Fig. 4). Ev-
idence for plate motion and continental and island arc-related activity
before this point in time, such as the supercontinent cycle, can be
readily accounted for by shallow subduction/underthrusting that is
also documented on Earth today. A reduction in the average tempera-
ture of such shallow subduction zones accounts for secular changes in
TTG composition (Martin and Moyen, 2002) – of which many require
formation at pressures only achievable via subduction – and the in-
creasing number of non-UHP eclogite with MORB-like affinity in the
Proterozoic.

As the geological record becomes more fragmented with age, var-
ious forms of modeling begin to provide more in-depth insight into
the likely geodynamics of the Archean (and Hadean?) Earth.
Thermo-mechanical modeling argues strongly for one of many forms
of stagnant lid tectonics before c. 3 Ga (Fig. 6) where the Earth was
dominated by vertical plate motion and intracrustal differentiation,
producing the bimodal TTG and greenstone lithological associations
that are typical of Archean cratons (e.g. Piccolo et al., 2020). Poor con-
straints on key petrophysical properties, such asmantle TP, obviate de-
finitive statements concerning the style of stagnant lid regime that
occurred at any point in time, although observations and interpreta-
tions made from extraterrestrial bodies in our solar system can be
used to supplement the results of numerical simulations. These
suggest that the Archean Earth transitioned from an environment
characterized by extensive volcanism (heat-pipe world) to one char-
acterized by intrusive magmatic activity (plutonic squishy lid), thus
thickening the crust with time. Little is known about the Hadean envi-
ronment, as samples are restricted to mafic supracrustal rocks in the
by the various lines of evidence discussed in this review. Global archive of zirconU–Pb ages
ndwana; Rod=Rodinia; C/N=Columbia/Nuna; K=Kenorland.Modified after Palin et al.
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Nuvvuagittuq greenstone belt (c. 4.28 Ga) and xenocrystic zircons
within younger (Archean) metasedimentary rocks, such as quartzite
from the Jack Hills region of western Australia (see Section 7). None-
theless, this small suite of zircon grains has provided awealth of infor-
mation about the likely geochemical, mineralogical, and isotopic
character of the crust and mantle at this enigmatic time in Earth his-
tory, as well as potentially providing evidence for an emerging bio-
sphere less than 300 Myr after planetary accretion.

While most of the geoscience community is arriving at a consensus
about these secular changes, there are several key areas of research
that may yet make substantive impact on our current understanding.
Firstly, continued debate concerning the magnitude of secular cooling
and absolute temperatures of the Archeanmantle has stymied advances
in petrological and geodynamical interpretations of early Earth terranes.
Manymodels are predicated on the supposition of a ‘hot’ Archeanman-
tle, as indicated by primary magma solutions determined from non-arc
basalts by Herzberg et al. (2010). However, subsequent studies have ar-
gued for a cooler mantle TP, albeit still hotter than the present day
(Fig. 4). While these differences in magnitude are somewhat small
(ΔT ~ 100–300 °C), thermo-mechanical simulations suggest that they
are significant enough to have dramatic consequences for the predicted
forms of geodynamics and timing of onset of subduction (e.g. Piccolo
et al., 2019). Developing new techniques to constrain mantle TP and/or
extracting higher-precision information from current datasets should
ideally be an area of targeted research in the future. In addition, given
the sensitivity of models of mantle convection to intrinsic and extrinsic
parameters, the water content and so rheological properties of its min-
eralogical constituentsmust bewell constrained if reliable data are to be
produced. Continual advances in the ability of analytical techniques to
measure smaller and smaller concentrations of trace elements and im-
purities in so-called nominally anhydrous minerals (NAMs) – such as
hydrogen – show thatmantle peridotitemay in fact be a substantial res-
ervoir of water and other volatiles within the Earth (Bell and Rossman,
1992). The physical properties of olivine, for example, are strongly influ-
enced by its hydrogen content (Karato et al., 1986; Katayama and
Karato, 2008) and uncertainty regarding the absolute concentration of
H and how this varies with pressure and temperature within the Earth
are yet to fully parameterized. Advances in this field have far-reaching
implications for assessments of the mechanisms of heat loss within
the Earth and feedbacks between mantle dynamics and surface
processes.

Finally, it should always be recognized and accepted that many lines
of evidence that are compatible with subduction do not exclude other
geological processes that may transport crustal materials into the man-
tle, and even if subduction is accepted as the only viable mechanism re-
sponsible for forming a given geological feature of a certain age, this
does not require that plate tectonics was operating at a global scale at
that time. The quest for improved knowledge on thesematters will con-
tinue for many decades to come; if we have learned so much over the
past 50 years since the landmark Penrose conference in 1969 where
plate tectonic theory was formalized, what more will we know in 50
years from now?
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