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Lecture 1

Tension and Compression

Normal stress and strain of a prismatic bar
Mechanical properties of materials
Elasticity and plasticity
Hooke’s law
Strain energy and strain energy density
Poisson’s ratio

Normal stress

Prismatic bar: straight structural member having the same 
(arbitrary) cross-sectional area A throughout its length

Axial force: load P directed along the axis of the member

Free-body diagram disregarding weight of bar

Examples: members of bridge truss, spokes of bicycle wheels, 
columns in buildings, etc.
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Define normal stress σ as the force P divided by the original 
area Ao perpendicular or normal to the force (σ = P / Ao).

Greek letters δ (delta) and σ (sigma)

When bar is stretched, stresses are tensile (taken to be positive)
If forces are reversed, stresses are compressive (negative)
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Example:  Prismatic bar has a circular cross-section with diameter 
d = 50 mm and an axial tensile load P = 10 kN. Find the normal 
stress.

Units are force per unit area = N / m2 = Pa (pascal). One Pa is 
very small, so we usually work in MPa (mega-pascal, Pa x 106).
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Note that N / mm2 = MPa.
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Normal strain

Greek letter ε (epsilon)

When bar is elongated, strains are tensile (positive).
When bar shortens, strains are compressive (negative).

Define normal strain ε as the change in length δ divided by the 
original length Lo (ε = δ / Lo).
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Example:  Prismatic bar has length Lo = 2.0 m. A tensile load is 
applied which causes the bar to extend by δ = 1.4 mm. Find the 
normal strain. 
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Units: none, although sometimes quoted as με (microstrain, 
ε x 10-6) or % strain
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Limitations of the theory
for prismatic bars

Axial force P must act through the centroid of the cross-section. 
Otherwise, the bar will bend and a more complicated analysis is 
needed. 
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Material should be homogeneous (same throughout all parts of 
the bar).

The stress must be uniformly distributed over the cross-section.
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Deformation is uniform. That is, we assume that we can 
choose any part of the bar to calculate the strain.



Stress Concentrations

If the stress is not uniform where the load is applied (say a 
point load or a force applied through a pin or bolt), then there
will be a complicated stress distribution at the ends of the bar
(known as a “stress concentration”).

If we move away from the ends of the bar, the stresses become 
more uniform and σ = P/A can be used (usually try to be at 
least as far away as the largest lateral dimension of the bar, say 
one diameter).
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Mechanical properties of materials: tensile tests 

fixed base

load 
cell

specimen

grip

extenso-
meter

Either crosshead or actuator 
moves up and down 

to apply loads.

actuator

crosshead

Apply loads under computer 
control

Standardization of specimen 
size and shape and of test 
procedure (ASTM, BSI, ISO)

Log voltage readings from 
load cell and extensometer 
(or crosshead/actuator) to 
computer

Output plots of force versus 
extension, but slope of 
curve, maximum values, etc 
depend on specimen size



Stress-strain diagram for tension
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Linear 
region

Perfect plasticity
or yielding

Strain 
hardening

Necking

Fracture

Ultimate stress

Yield stress

Proportional
limit

Structural steel in tension (not to scale)

Structural steel (also called mild steel or low-carbon steel; an iron alloy 
containing about 0.2% carbon). Static (slow) loading.

Linear elasticity & Hooke’s law

When a material behaves elastically and also exhibits a linear 
relationship between stress and strain, it is said to be “linearly 
elastic”.

Hooke’s Law (one dimension)  σ = E ε

where E = modulus of elasticity, units Pa

E is the slope of the stress-strain curve in the linear region. 

For a prismatic bar made of linearly elastic material, 
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Tables of mechanical properties
(Howatson, Lund, Todd – HLT)

Stress-strain diagram for compression

If we load a crystalline material 
sample in compression, the 
force-displacement curve (and 
hence the stress-strain curve) is 
simply the reverse of that for 
loading in tension at small 
strains (in the elastic region). 

The tension and compression 
curves are different at larger 
strains (the compression 
specimen is squashed; the 
tension specimen enters the 
plastic region).

Tensile strain

Compressive strain
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Elasticity and Plasticity 

Static loading (gradually increases from zero, with no dynamic or 
inertial effects due to motion) and slow unloading. Within the 
elastic region, the curves for loading and unloading are the same. 

The stress-strain curve need not 
be linear in the elastic region.

ε

σ
Lo

ad
in

g
Unl

oa
di

ng

Elastic Plastic
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The stress-strain curve for structual
steel (and some other metal alloys) can 
be idealized as having a linear elastic
region and a perfectly plastic region.
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Elasticity and Plasticity

Static loading and slow unloading. Past the elastic limit, the 
curves for loading and unloading are different. The un-loading 
curve is parallel to the (initial) elastic loading curve.

After unloading, there is a certain amount of elastic recovery and 
some residual strain, that is, a permanent elongation of the 
specimen. Upon reloading, the unloading curve is followed.
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Strain energy
Prismatic bar subjected to a static load P .
P moves through a distance δ and hence does work.
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δ

Load

P

dP

dδ

Displacement

This work W produces strains, which increase the energy of the bar itself. 
The strain energy U (= W) is defined as the energy absorbed by the bar 
during the loading process. Units are N m or J (joules).

The work done by the load is equal to 
the area below the load-displacement 
diagram: ( )( )
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Elastic and inelastic strain energy

During loading along curve OAB, the work done is the area under the curve 
(OABCDO).

If loading is past the elastic limit A, the bar will unload along line BD, with 
permanent elongation OD remaining.
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The elastic strain energy (area BCD) is recovered during unloading.

Inelastic strain energy (area OABDO) is lost in the process of permanently 
deforming the bar.

Strain energy density

Strain energy density u is the strain energy per unit volume 
of material. The units are J / m3 =  N m / m3 =  N / m2 = Pa

For a prismatic bar of initial length Lo and initial cross-
sectional area Ao:
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Using σ = P / Ao and ε = δ / Lo gives:
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ε

Stress

σ

Straino

a

b

If the material follows Hooke’s Law (σ = E ε), then u is the 
area under the stress-strain diagram.
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Poisson’s ratio

Greek letter ν (nu)

When a prismatic bar is stretched, it not only gets longer, it gets thinner.
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So there is a tensile strain in the axial direction and a compressive 
strain in the other two (lateral) directions. 

If axial strain is tensile (+), lateral strain is compressive (-).
If axial strain is compressive (-), lateral strain is tensile (+).
So Poisson’s ratio is a positive number.

Define Poisson’s ratio as:
axial

lateral

strain axial
strain lateral
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Limitations

For the lateral strains to be the same throughout the entire bar,
the material must be homogeneous (same composition at every 
point).

The elastic properties must be the same in all directions perpen-
dicular to the longitudinal axis (otherwise we need more than one 
Poisson’s ratio).

For most metals and many other materials, ν ranges from 
0.25 – 0.35. The theoretical upper limit is 0.5 (rubber comes 
close to this). 

Poisson’s ratio holds for the linearly elastic range in both 
tension and compression. When behaviour is non-linear, 
Poisson’s ratio is not constant.

Generalized Hooke’s Law
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Apply σx, get εx, εy = -νεx, εz = -νεx

For an isotropic linearly elastic material, 
ε  = σ / E  in the x, y, and z directions.

… and similarly for εy and εz.

Use superposition to get the overall strains:
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Apply σz, get εz, εx = -νεz, εy = -ν εz

Apply σy, get εy, εx = -νεy, εz = -νεy


