P4 Stress and Strain

Dr. A.B. Zavatsky MT07

Lecture 1

Tension and Compression

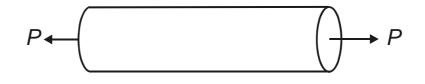
Normal stress and strain of a prismatic bar Mechanical properties of materials Elasticity and plasticity Hooke's law Strain energy and strain energy density Poisson's ratio

Normal stress

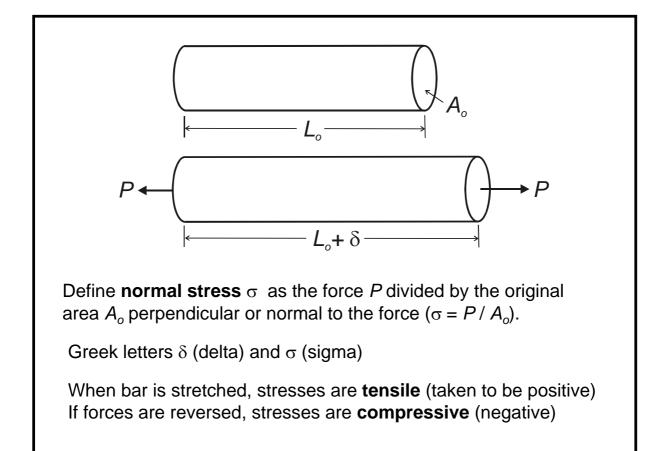
Prismatic bar: straight structural member having the same (arbitrary) cross-sectional area *A* throughout its length

Axial force: load P directed along the axis of the member

Free-body diagram disregarding weight of bar



Examples: members of bridge truss, spokes of bicycle wheels, columns in buildings, etc.



Example: Prismatic bar has a circular cross-section with diameter d = 50 mm and an axial tensile load P = 10 kN. Find the normal stress.

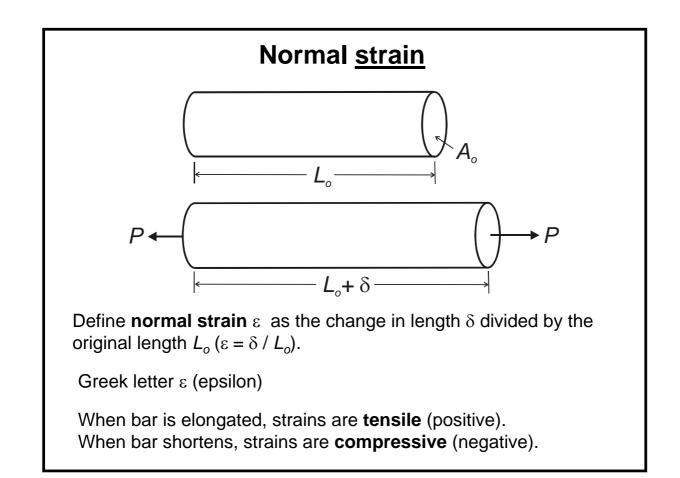
$$\sigma = \frac{P}{A_o} = \frac{P}{(\pi d^2 / 4)} = \frac{4(10 \times 10^3)}{\pi (50 \times 10^{-3})^2} \frac{N}{m^2} = 5.0929 \times 10^6 \frac{N}{m^2}$$

Units are force per unit area = N / m^2 = **Pa** (pascal). One Pa is very small, so we usually work in **MPa** (mega-pascal, Pa x 10⁶).

$$\sigma$$
 = 5.093 MPa

Note that N / $mm^2 = MPa$.

$$\frac{N}{mm^{2}} = \frac{N}{mm^{2}} \left(\frac{10^{3}mm}{m}\right)^{2} = \frac{N}{m^{2}} \times 10^{6} = Pa \times 10^{6} = MPa$$



Example: Prismatic bar has length $L_o = 2.0$ m. A tensile load is applied which causes the bar to extend by $\delta = 1.4$ mm. Find the normal strain.

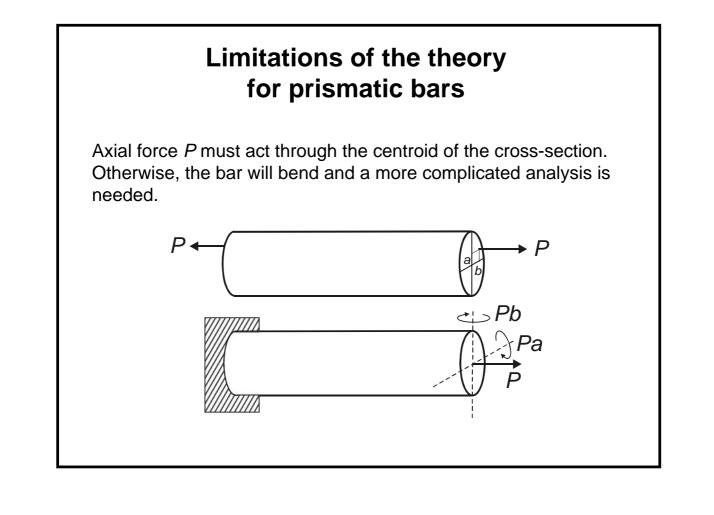
$$\varepsilon = \frac{\delta}{L_o} = \frac{1.4 \times 10^{-3}}{2.0} \frac{\text{m}}{\text{m}} = 0.0007$$

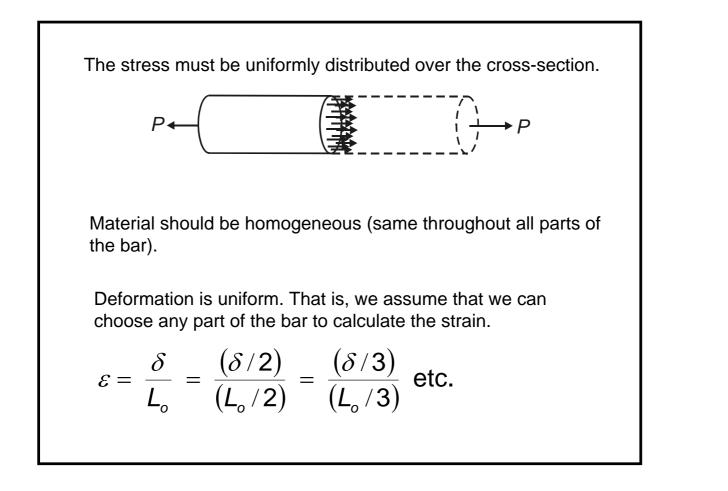
Units: none, although sometimes quoted as $\mu\epsilon$ (microstrain, $\epsilon \times 10^{-6}$) or % strain

$$\varepsilon = 0.0007 = 7 \times 10^{-4} = (7 \times 10^{2})(10^{-4} \times 10^{-2}) = 700 \times 10^{-6}$$

$$\varepsilon = 700 \ \mu\varepsilon$$

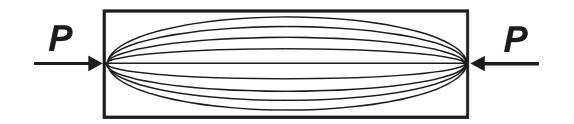
 $\varepsilon = 0.0007 = 0.07\%$ strain



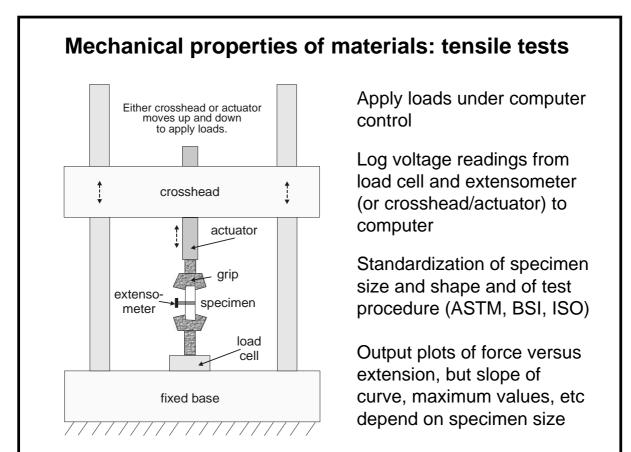


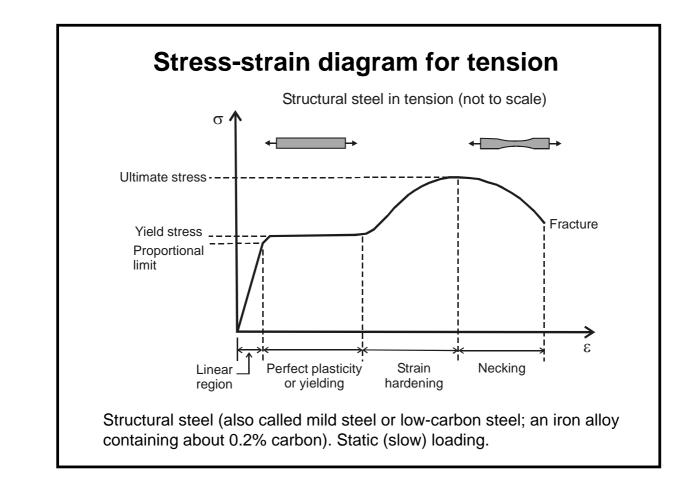
Stress Concentrations

If the stress is not uniform where the load is applied (say a point load or a force applied through a pin or bolt), then there will be a complicated stress distribution at the ends of the bar (known as a "stress concentration").



If we move away from the ends of the bar, the stresses become more uniform and $\sigma = P/A$ can be used (usually try to be **at least** as far away as the largest lateral dimension of the bar, say one diameter).





Linear elasticity & Hooke's law

When a material behaves elastically and also exhibits a linear relationship between stress and strain, it is said to be "linearly elastic".

Hooke's Law (one dimension) $\sigma = E \varepsilon$

where *E* = modulus of elasticity, units Pa

E is the slope of the stress-strain curve in the linear region.

For a prismatic bar made of linearly elastic material,

 $\sigma = E\varepsilon \qquad \left(\frac{P}{A_o}\right) = E\left(\frac{\delta}{L_o}\right) \qquad \delta = \frac{PL_o}{EA_o}$

Tables of mechanical properties (Howatson, Lund, Todd – HLT)

E Young modulus (GPa)

G Shear modulus (GPa)

K Bulk modulus (GPa)

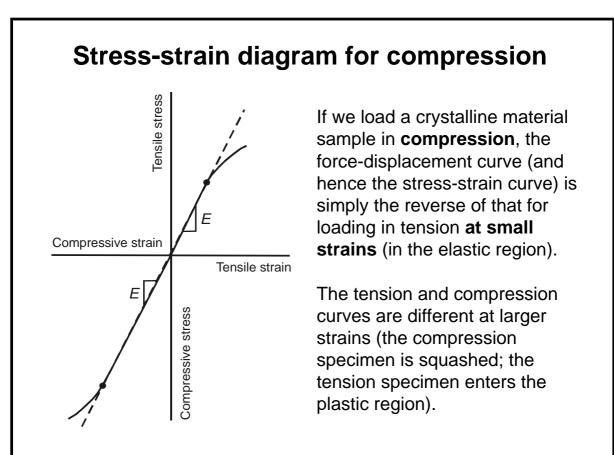
v Poisson ratio

 $\sigma_{\rm f}$ Ultimate (failure) stress or tensile strength (MPa)

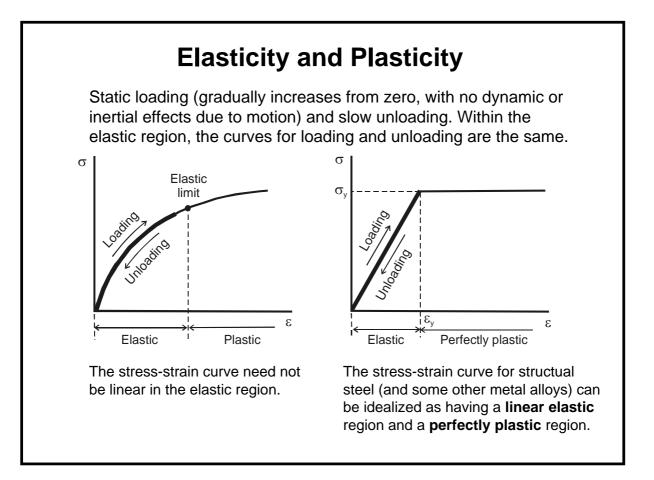
 $\epsilon_{\rm f}$ Tensile strain to failure (%)

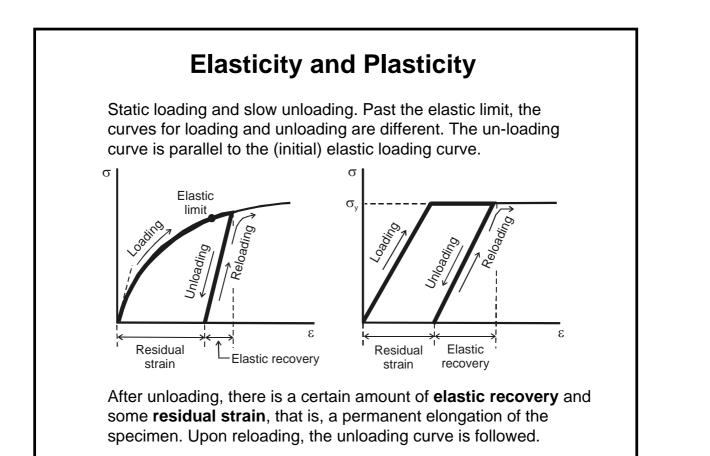
 $K_{\rm lc}$ Fracture toughness (MPa m^{1/2})

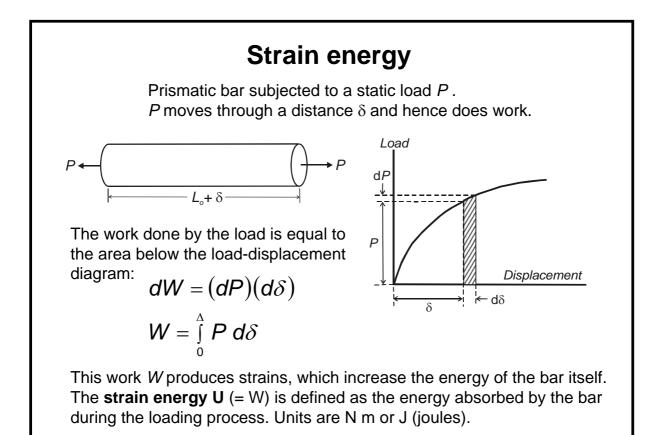
	E	G	K	ν	σy	$\sigma_{ m f}$	$\epsilon_{\rm f}$
Alloys		÷					
Aluminium 2024							
(age-hardened)	72	28	75	0.33	395	475	10
Brass (70/30) (annealed)	101	37	112	0.35	115	320	67
(rolled)	101	37	112	0.35	390	460	20
Cast iron (grey)	100-145	40-58		0.26	100-260	150-400	
(nodular)	169-172	66		0.28	230-460	370800	2-17
Constantan (60% Cu)	163	61	157	0.33	200-440	400-570	
Manganin (84% Cu)	124	47				465	
Mumetal (77% Ni)	220					500-900	
Nimonic 80A							
(superalloy)	214			0.35	800	1300	20
Nichrome (80/20)	186				100-400	170-900	
Phosphor-bronze (5% Sn)	100			0.38	110-670	330-750	2-50
Solder (soft) (50% Sn)	40				33	42	60
Steel: mild	210	81	160-170	0.27-0.30	240	400-500	10-20
Steel: high-yield structural	210	81	170	0.30	400	600	20
Steel: ultra high strength					1600	2000	10
Steel: austenitic stainless	190-200	74–86		0.25-0.29	255	660	45 [*] -
Titanium-6Al-4V	115				800-900	900-1000	10-20

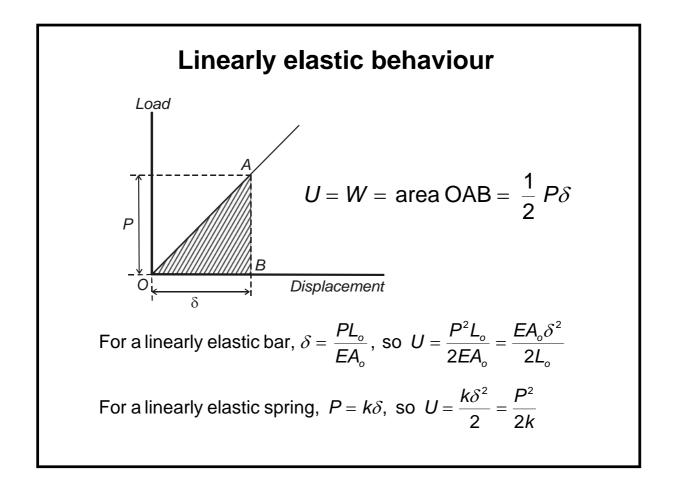


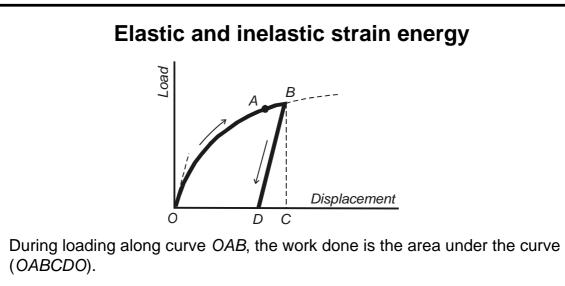
 $[\]sigma_y$ Proof or yield stress (MPa)











If loading is past the elastic limit *A*, the bar will unload along line *BD*, with permanent elongation *OD* remaining.

The **elastic strain energy** (area *BCD*) is recovered during unloading.

Inelastic strain energy (area *OABDO*) is lost in the process of permanently deforming the bar.

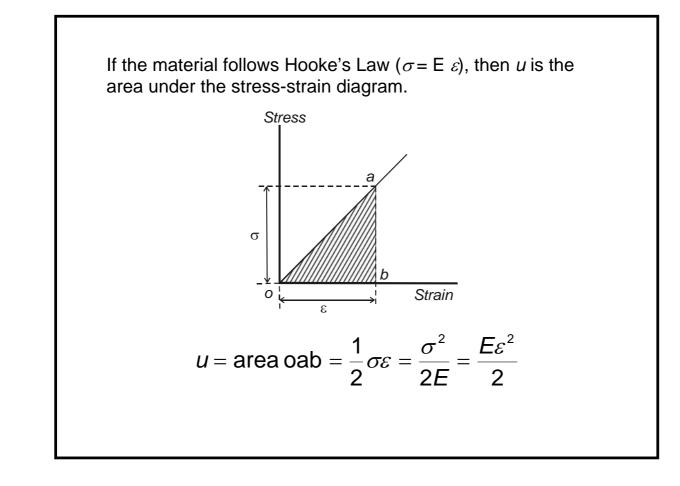
Strain energy density

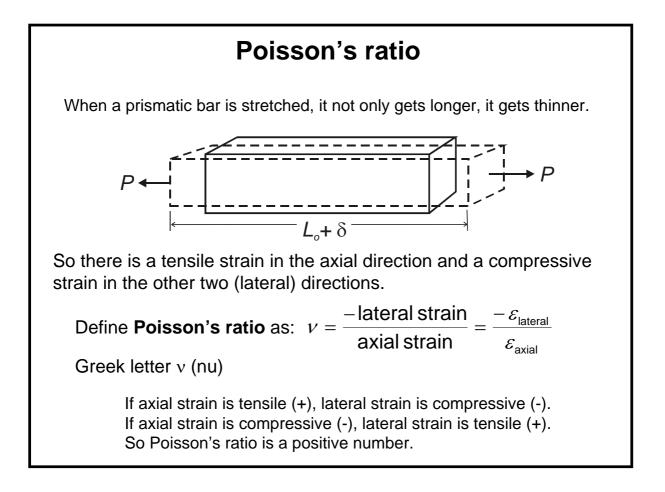
Strain energy density *u* is the strain energy per unit volume of material. The units are $J / m^3 = N m / m^3 = N / m^2 = Pa$

For a prismatic bar of initial length L_o and initial crosssectional area A_o :

$$u = \frac{U}{volume} = \frac{(P^{2}L_{o}/2EA_{o})}{(A_{o}L_{o})} = \frac{P^{2}}{2EA_{o}^{2}} = \frac{(EA_{o}\delta^{2}/2L_{o})}{(A_{o}L_{o})} = \frac{E\delta^{2}}{2L_{o}^{2}}$$

Using $\sigma = P / A_0$ and $\varepsilon = \delta / L_0$ gives: $u = \frac{\sigma^2}{2E} = \frac{E\varepsilon^2}{2}$





For most metals and many other materials, v ranges from 0.25 – 0.35. The theoretical upper limit is 0.5 (rubber comes close to this).

Poisson's ratio holds for the <u>linearly elastic range</u> in both tension and compression. When behaviour is non-linear, Poisson's ratio is not constant.

Limitations

For the lateral strains to be the same throughout the entire bar, the material must be homogeneous (same composition at every point).

The elastic properties must be the same in all directions perpendicular to the longitudinal axis (otherwise we need more than one Poisson's ratio).

