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P4 Stress and Strain                Dr. A.B. Zavatsky
MT07

Lecture 3

Statically Indeterminate Structures

Statically determinate structures. 
Statically indeterminate structures (equations of 

equilibrium, compatibility, and force-displacement;     
use of displacement diagrams) 

Bolts and turnbuckles. 
Temperature effects. 
Misfits and pre-strains. 
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Statically Determinate Structures

• Reactions and internal forces can be determined solely from    
free-body diagrams and equations of equilibrium.

• Results are independent of the material from which the structure 
has been made.

10 kN

5 kN Unknowns
= reaction forces + bar forces 
= (2 + 1) + 13 = 16

Independent equations
[equilibrium in x & y directions
at each joint]
= 2 (number of joints)
= 2 (8) = 16

Double-check structure for 
internal mechanisms, etc.
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• Reactions and internal forces cannot be found by statics alone 
(more unknown forces than independent equations of equilibrium).

• Results are dependent on the material from which the structure 
has been made.

Statically Indeterminate Structures

PP

RA

RB

2 unknown forces

Only 1 useful equation of 
equilibrium

RA – P + RB = 0

Need to find another 
equation

a

b

PP
A

B

C L
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“Flexibility” or “Force” Method

= +

A

C

B

PP

RA

RB

δA

PP a

b

δA1

1

RA

L

δA2

2

Equation of compatibility – expresses the fact that the change 
in length of the bar must be compatible with the conditions at 
the supports

021 =+= AAA δδδ

static 
redundant

“released” structure
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Write the force-displacement relations. These take the mechanical 
properties of the material into account.

    and     21 EA
LR

EA
Pb A

AA =
−

= δδ

L
PbR

EA
LR

EA
Pb

A

A
A

=

=+
−

= 0 δ

Substituting into the equation of compatibility gives:

L
PaRPR AB =−=

Substituting into the equilibrium equation gives:

*Note that we have solved for forces. 
Hence, this approach is also called the 
“force” method. 

*Note that flexibilities (b/EA) and (L/EA) 
appear in this equation. Hence, this 
approach is called the “flexibility” method.
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“Stiffness” or “Displacement” Method

Equation of equilibrium (forces at C must balance)
PRR BA =+

Equation of compatibility (at point C) 21 CCC δδδ ==

a

b

PP
A

B

C

PP

RA

RB

δC = +
RA

RA

RB

RB

δC2δC1
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Write the force-displacement relations and solve for the forces. 

b
EAR

a
EAR

EA
bR

EA
aR

C
B

C
A

B
C

A
C

21

21

    and   

    and     

δδ

δδ

==

==

Substituting into the equilibrium equation gives:

P
b
EA

a
EA CC =+ 21 δδ *Note that stiffnesses (EA/a) and (EA/b) 

appear in this equation. Hence, this 
approach is called the “stiffness” method.

Using the compatibility condition (displacements equal) gives:

( ) EAL
Pab

baEA
Pab

C =
+

=δ *Note that we have solved for displacement. 
Hence, this approach is also called the 
“displacement” method. 
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Finally, substituting into the expressions for forces gives:

L
Pa

b
AE

EAL
PabR

L
Pb

a
AE

EAL
PabR

B

A

=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

So, both the flexibility method and the stiffness method give the 
same result. 

The choice of approach will depend on the problem being solved.
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Use of Displacement Diagrams in 
Statically Indeterminate Problems

(based on Example 3, page 70, Gere & Timoshenko)

A

C

D B

P

L

L L

α1 α2

Bar ADB is supported by two wires, CD and CB. A load P is 
applied at B. The wires have axial rigidity EA. Disregarding 
the weight of the bar, find the forces in the wires.

5
1 sin

2
1 sin

2

1

=

=

α

α

5
2

LL
LL

CB

CD

=

=
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Equilibrium

Horizontal Direction

Vertical Direction

Moments about A (ccw +)

4 unknown forces, only 3 equations

RAy TCD TCB

P

RAx

L L

α2
α1

   0coscos 21∑ =−−= αα CBCDAxx TTRF

   0sin sin 21∑ =−++= PTTRF CBCDAyy αα

( ) ( ) ( )    022sinsin 21∑ =−+= LPLTLTM CBCDA αα
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Compatibility
We can relate the tensions in the two wires by considering the 
extensions of the wires.

δD δB

L L

DB δδ 2=

22

1

 sin 2 sin 
 sin

αδαδδ
αδδ

DBCB

DCD

==
=

δCDδD

δB

δCB

Displacement diagram
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Using the equilibrium moment equation, the compatibility equation,  
and the force-displacement relations, it is possible to solve for the 
forces in the wires. We find that

TCB = 1.125 P and       TCD = 1.406 P

Force-displacement relations

AE
LT

AE
LT CBCB

CB
CDCD

CD == δδ    and   
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Elasto-plastic Analysis of a Statically Indeterminate Structure
(based on Example 2-19 from Gere)

A

Bar 1

B

P

L

b b b

Bar 2

(a) Find the yield load PY and the corresponding yield displacement ΔBY at point 
B.

(b) Find the plastic load PP and the corresponding plastic displacement ΔBP at 
point B.

(c) Draw a load-displacement diagram relating the load P to the displacement ΔB
of point B.

Horizontal beam AB is rigid. Supporting bars 1 and 2 are made of an 
elastic perfectly plastic material with yield stress σY, yield strain εY, and 
Young’s modulus E = σY/ εY. Each bar has cross-sectional area A. 



14

F1

Pb b b

F2

RAx

RAy

Moment Equilibrium (ccw +)

( ) ( ) ( )
 32

  032

21

21

PFF
bPbFbFMA

=+
=−+=∑

Compatibility

12 2δδ =

Force-displacement

AE
LF

AE
LF 2

2
1

1    and   == δδ

5
6

 
5

3

2

1

PF

PF

=

=

Bar 2 will yield first, 
since F2 > F1.
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6
5

 
5

6
Y2

AP

APF

Y
Y

Y

σ

σ

=

==

E
L

E
L

A
F

AE
LF Yσδ =⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛== 22

2

The corresponding elongation of bar 2 is:

(a)

The downward displacement of the bar at point B is:

E
LY

BY 2
3

2
3 2 σδ

==Δ (a)

When the plastic load PP is reached, both bars will be stretched to 
the yield stress, and F1 = F2 = σYA. From equilibrium, 

AP
PFF

YP σ=
=+  32 21

(b)
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The corresponding elongation of bar 1 (which has just reached 
yield) is:

E
L

E
L

A
F

AE
LF Yσδ =⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛== 11

1

Note that PP/PY = 6/5 
and ΔBP/ΔBY = 2

The downward displacement of the bar at point B is:

E
LY

BP
σδ 33 1 ==Δ (b)

P

ΔB

PY

PP

ΔBY ΔBP
(c)

Bar 2 yields Bar 1 yields

Bar 2 plastic, bar 1 elastic

Both bars plastic
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Bolts and Turnbuckles

Nut and Bolt

Distance δ travelled by the nut = n p
n = number of turns (not necessarily an integer)
p = pitch of the screw (units mm / turn)

Turnbuckle

Distance δ travelled = 2 n p
Often used to tension cables

Right-hand 
screw

Left-hand 
screw

The simplest way to produce a change in length.
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Based on Gere, Example 2-9

The slack is removed from the cables by rotating the turnbuckles
until the assembly is snug but with no initial stresses (do not 
want to stretch the cables and compress the tube).

Find the forces in the tube and cables when the turnbuckles are 
tightened by n turns, and determine the shortening of the tube.

L

Copper tube

Steel cable Turnbuckle Rigid plate
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L
δ1

δ1

δ2 δ3

Ps

Ps

Pc

The tensile forces in the cables Ps and the compressive force in the 
tube Pc must be such that the final lengths of the cables and tube is the 
same.  

If the turnbuckles are rotated through n turns, the cables will shorten by a 
distance δ1 = 2 n p.
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Equilibrium (forces must balance) 02 =− cs PP

Compatibility (shortening of tube must equal shortening of cable)

213 δδδ −=

Force-displacement

cc

c

ss

s

AE
LP
AE
LP

np

=

=

=

3

2

1 2

δ

δ

δ

With these equations, we can solve for the forces in the tube and 
cables and for the shortening of the tube.
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Temperature Effects
Changes in temperature produce expansion or contraction of 
structural materials.

For most structural materials, εT = α (ΔT)

εT = thermal strain
α = coefficient of thermal expansion (HLT, units 1/K or 1/°C)
ΔT = change in temperature

The change in length of the block in ANY direction can be 
found using δT = εT L = α (ΔT) L, where L is one of the block’s 
dimensions. 

When heated, the block expands 
in all three directions: x, y, z.
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Expansion is positive; contraction is negative.

A relatively modest change in temperature produces about the 
same magnitude of strain as that caused by ordinary working 
stresses. This shows that temperature effects can be important 
in engineering design. 

Yield strain:
εY = σY / E = (240 x 106 Pa)/(210 x 109 Pa) = 0.00114 = 1140 με
Ordinary working stress might be 50% of the yield stress, giving
570 με

For mild steel, α = 11 x 10-6 K-1 (HLT, page 39)

Thermal strain:
εT = α (ΔT) = 11 x 10-6 K-1 (40 K) = 0.00044 = 440 με

Thermal strains are USUALLY reversible.
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Free expansion or contraction occurs when an object rests on a 
frictionless surface or hangs in open space. Then no stresses are 
produced by a uniform temperature change, but there are strains.

If only some bars are heated, thermal stresses will develop.

Since D can move horizontally, no stresses 
are developed when the entire structure is 
heated uniformly.

A

B C

D

In statically determinate structures, uniform temperature changes in 
the members produce thermal strains (and corresponding changes in 
length) without producing any corresponding stresses.

A statically indeterminate structure may or may not develop thermal 
stresses, depending on the character of the structure and the nature 
of the temperature changes. 
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Equilibrium: RA + RB = 0

Compatibility: δT + δR = 0    or    δT = - δR

Example: The temperature of the bar is raised by ΔT. Find the 
reactions at the supports.

= +

B

L

A

ΔT

RB

RA

RA δR
δT

ΔT
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Using temperature-displacement and force-displacement relations:

( )

AE
LR

LT

A
R

T

=

Δ=

δ

αδ

Substituting in to the compatibility condition gives:

( )

( ) on)(compressi      TEAR
AE

LRLT

A

A

Δ−=

−
=Δ

α

α

Substituting into the equilibrium equation gives:

( )      TEARR AB Δ=−= α
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Misfits and Pre-strains

When a member is manufactured with a length slightly different 
from its prescribed length, the member will not fit into the 
structure as planned and the geometry of the structure will be 
different from what was planned. Such situations are misfits.

Some misfits are created intentionally to introduce strains into
the structure at the time it is built. Because these strains exist 
before any loads are applied, they are called pre-strains. Along 
with the pre-strains are usually pre-stresses.

Examples: spokes in bicycle wheels, pre-tensioned faces of 
tennis racquets, shrink-fitted machine parts, pre-stressed 
concrete beams
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If a structure is statically determinate, small misfits in one or more 
members will not produce strains or stresses, although the initial 
configuration will depart from the theoretical.

In a statically indeterminate structure, misfits cannot be 
accommodated without pre-stresses.

A

C

D

B

Here, having CD longer than expected will not induce pre-strains 
or pre-stresses. AB can rotate to accommodate the length change.
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Assume that CD is slightly longer than prescribed. 

Then to assemble the structure, CD must be compressed by external forces 
(or EF must be stretched by external forces). 

The bars can then be fitted into place and the external loads released. As a 
result, the beam AB will deform and rotate.

P

When a load P is added, additional stresses and strains will result.

A

C

D
B

E

F

If CD is put into compression, EF will be in tension. So, pre-strains will exist 
and the structure will be pre-stressed, although no external loads are acting.


