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P4 Stress and Strain                Dr. A.B. Zavatsky
MT07

Lecture 4

Stresses on Inclined Sections

Shear stress and shear strain. 
Equality of shear stresses on perpendicular planes. 
Hooke’s law in shear. 
Normal and shear stresses on inclined sections. 
Maximum stresses on a bar in tension. 
Introduction to stress elements. 
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Shear stress
Shear stress acts tangential to the surface of a material.

Top view

Side view

Greek letter τ (tau)
V = shear force
A = area on which it acts

Average shear stress τ = V / A

(Disregard friction in the calculations to err on the conservative side.)
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Bolts in “Single shear”

P

P
Average (normal) bearing stress σB

)( surface bearing curved of area projected
)(forcebearingtotal

A
P

b =σ

t

A = plate thickness t x bolt diameter d

t
d

d



4

Forces applied to the bolt by the plates

P

These forces must be balanced by a shear force in the bolt.

τ

This results in a shear stress τ.
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Bolts in “Double shear”

P

P

P/2 P/2



6

Example of bearing stress and shear stress
(based on Example 1-5, page 36, Gere, 6th ed. 2004)

A steel strut S is used as a brace for a boat hoist. It transmits a force 
P to the deck of a pier. The strut has a hollow square cross-section 
with wall thickness t. A pin through the strut transmits the compress-
ive force from the strut to two gussets G that are welded to the base 
plate B.

Calculate:
(a) the bearing stress between    

the strut and the pin
(b) the shear stress in the pin
(c) the bearing stress between 

the pin and the gussets
(d) the bearing stress between 

the anchor bolts and the 
base plate

(e) the shear stress in the 
anchor bolts(Gere 2004)
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P = 50 kN,  t = 10 mm
diameter of pin, dpin = 20 mm
thickness of gussets, tG = 15 mm
diameter of anchor bolts dbolt = 12 mm
thickness of base plate tB = 10 mm

(Gere 2004)

(Gere 2004)

(a) bearing stress between strut and pin
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(Gere 2004)

(Gere 2004)

(c) bearing stress between pin and gussets
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(d) bearing stress between anchor bolts 
and base plate
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(e) shear stress in anchor bolts

MPa7.84
)4/(
)4/cos(

2 ==
boltd

P
π

θτ



9

These are examples of “direct shear” -- the shear stresses 
are a result of the direct action of a shear force trying to cut
through the material. 

V

M

Shear force diagram
τmax = 3V / 2A

X-section τ

Shear stresses can also arise in an “indirect” manner – during 
tension, torsion, and bending.
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Equality of shear stresses on perpendicular planes

τ1

τ2

τ3

τ4

a
c

b

Forces      Vertical direction:        τ1 (bc) = τ3 (bc)
Horizontal direction:    τ2 (ac) = τ4 (ac)

So τ1 = τ3 and τ2 = τ4
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Combining this with the previous result gives τ1 = τ2 = τ3 = τ4 = τ ,  
which called “pure shear”.

τ1 (bc)

a

bτ3 (bc)

τ4 (ac)

τ2 (ac)

So τ1 = τ2 and τ3 = τ4

about       [ τ3 (bc) ] (a) = [ τ4 (ac) ] (b)
Moments     about       [ τ1 (bc) ] (a) = [ τ2 (ac) ] (b)                     
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Shear strain
Shear stresses have no tendency to elongate or shorten; 

instead they produce a change in shape.

This change in shape is quantified by the angle γ, the shear strain.
The angle is measured in radians, not degrees.

Greek letter γ (gamma)

γ γ

τ
γ/2

γ/2
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Hooke’s Law in shear

τ = G γ
G is the shear modulus of elasticity (or “modulus of rigidity”).
Units are N / m2 = Pa.

For mild steel, E = 210 GPa and G = 81 GPa. 
For aluminium alloy, E = 72 GPa and G = 28 GPa.

Since 0 <  ν < 0.5 for most materials, G is typically one-third 
to one-half E.

( )    12 ν+
=

EG

It can be shown that the elastic constants E and G are related by:
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Normal and shear stresses on inclined sections

To obtain a complete picture of the stresses in a bar, we must 
consider the stresses acting on an “inclined” (as opposed to a 
“normal”) section through the bar.

PP

Normal sectionInclined section

Because the stresses are the same throughout the entire bar, the
stresses on the sections are uniformly distributed. 

P Inclined 
section P Normal 

section
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P P

2D view of the inclined section 

P σx = AP / x

y

Area A

2D view of the normal section
(but don’t forget the thickness perpendicular to the page)
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Specify the orientation of the inclined section pq by the angle θ
between the x axis and the normal to the plane.

“Normal section” θ = 0°
Top face θ = 90°

Left face θ = 180°
Bottom face θ = 270° or  -90°

P
V

N

P

θ

x

y

The force P can be resolved into components:
Normal force N perpendicular to the inclined plane, N = P cos θ
Shear force V tangential to the inclined plane V = P sin θ
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If we know the areas on which the forces act, we can calculate 
the associated stresses.

x

y

area
A

area A(  / cos )θ

σθ

( )  2 cos1
2

 cos 

cos 
 cos
 cos 

2
x

2

θσθσσ

θ
θ
θσ

θ

θ

+==

====

x

A
P

A
P

Area
N

Area
Force

/

x

y

τθ

area
A

area A(  / cos )θ

( )  2 sin
2

  cos sin 

 cos sin 
 cos
 sin 

x θσθθστ

θθ
θ
θτ

θ

θ

x

A
P

A
P

Area
V

Area
Force

−=−=

−=
−

=
−

==
/



18

Sign convention 

x

y
τθ

σθ

θ

Normal stresses σθ positive for tension.

Shear stresses τθ positive when they 
tend to produce counterclockwise
rotation of the material.

Note that these equations are derived from statics only
and are therefore independent of the material (linear or 
non-linear, elastic or inelastic).
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Plot σθ and τθ versus θ.

σθ = σx at θ = 0° This is σmax.
σθ = σx/2 at θ = ± 45°
σθ = 0  at θ = ± 90° No normal stresses on sections cut 

parallel to the longitudinal axis.

τθ = 0 at θ = 0°, 90°
τθ = τmax = ± σx/2 at θ = -/+ 45° |τmax| = |σx/2| 
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Example of stresses on inclined sections
(based on Example 2-11, page 114, Gere, 6th ed. 2004)

A compression bar with a square cross section of width b must 
support a load P = 36 kN. The bar is constructed from two pieces of 
material that are connected by a glued joint (known as a scarf joint) 
along plane pq which is at an angle α = 40º to the vertical.

The material is a structural plastic with 
σallow (compression) = 7.6 MPa
τallow = 4.1 MPa

The glued joint has
σallow (compression) = 5.2 MPa
τallow = 3.4 MPa

Determine the minimum width b of 
the bar.

(Gere 2004)
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Values of σx based on allowable stresses in the plastic:

Maximum compressive stress is -7.6 MPa = σx

Maximum shear stress is 4.1 MPa = |τmax| = |σx/2| at θ = ±45º
This gives σx = -2τmax = -8.2 MPa
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x

Smallest σx governs the design.
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Values of σx based on allowable stresses in the glued joint:
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Smallest σx = -6.9 MPa (shearing of glue joint)

(Gere 2004)
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Introduction to stress elements
Stress elements are a useful way to represent stresses acting at some 
point on a body. Isolate a small element and show stresses acting on all 
faces. Dimensions are “infinitesimal”, but are drawn to a large scale.

x

y

z

σ = x P A/σx

x

y

σx σ = x P A/

P σx = AP / x

y

Area A
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Maximum stresses on a bar in tension

PP
a b

σx = σmax = P / Aσx

a
No shear stresses
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b
σx/2

σx/2

τmax = σx/2

θ = 45°

In case b (θ = 45°), the normal stresses on all four faces are the 
same, and all four shear stresses have equal and maximum
magnitude.

Angle σθ τθ
θ = 45° σx/2 -σx/2
θ = 135° σx/2 σx/2
θ = -45° σx/2 σx/2
θ = 225° σx/2 -σx/2

PP
a b
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If the bar is loaded in compression, σx will have a negative value 
and stresses will be in the opposite directions.

b
−σx/2

−σx/2

|τmax| = |σx/2|
−σx = -P / A−σx

a

Even though the maximum shear stress in an axially loaded bar 
is only half the maximum normal stress, the shear stress may 
cause failure if the material is much weaker in shear than in 
tension.
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Examples

Wood block in compression fails by shearing on 45°planes

Mild steel loaded in tension. Visible “slip bands” (Lüders bands) appear 
on the sides of the bar at approximately 45° to the axis of loading when 
the yield stress is reached. These indicate that the material is failing in 
shear along planes of maximum shear stress (cup-and-cone failure). 

Note that uniaxial stress (simple tension or compression in one 
direction) is just a special case of a more general stress state
known as “plane stress”. 


