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P4 Stress and Strain                Dr. A.B. Zavatsky
HT08

Lecture 7

Further Development of Theory 
and Applications  

Hooke’s law for plane stress. 
Relationship between the elastic constants.
Volume change and bulk modulus. 
Spherical and cylindrical pressure vessels. 
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Generalized Hooke’s Law
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Apply σx, get εx, εy = -νεx, εz = -νεx
Apply σy, get εy, εx = -νεy, εz = -νεy
Apply σz, get εz, εx = -νεz, εy = -νεz

For an isotropic linearly elastic material, 
ε  = σ / E  in the x, y, and z directions.
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The resulting equations are:Use superposition to get εx :
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Hooke’s Law for Plane Stress

For plane stress, substitute σz = 0 into the generalized Hooke’s Law 
equations to get:
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HLT, page 108
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These equations can be re-written in terms of stresses:
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HLT, page 108

These equations contain three material constants: E, G, and ν.
We can show that these constants are related by the equation:
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EG HLT, page 110
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τ = Gγ

Consider a plane stress element in “pure shear” and relate the 
shear strains and stresses to the strains and stresses along the 
θ = 45° direction.  

Start with strains.

a b

d c

Element before shear is applied.

a
b

d
c

Element after shear applied.
bd lengthens, ac shortens
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Using geometry, the normal strain εbd can be related to the shear 
strain γ.
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Now use Mohr’s circle and Hooke’s law to relate strains to stresses. 
Find the stress along the θ = 45° direction :
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θ1 = 45°
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σ2 = - τ

σ2 = - τ

σ1 = + τ

θ = 45°

The strain in the σ1 direction is:
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Data from HLT, page 41

Mild Steel: E = 210 GPa,ν = 0.27-0.30, G = 81 GPa
Aluminium 2024: E = 72 GPa,ν = 0.33, G = 28 GPa

Mild Steel: G = 210 / [2(1+0.27)] = 83 GPa
G = 210 / [2(1+0.30)] = 81 GPa

Aluminium 2024: G = 72 / [2(1+0.33)] = 27 GPa

Using the equation just derived:
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This equation is valid for both large and small strains. 
If strains are assumed to be small, the product terms all tend to 0.

Volume Change and Bulk Modulus
Normal stresses produce changes in volume, whereas shear
stresses produce changes in shape.
Normal stress causes a change in length dL of each face. 
Since ε = dL / L, each dL = εL.

a

x

y

z

c

b

aεx

bεy

cεz

)1(

)1)(1)(1(

)1)(1)(1(

))()((

1

1

1

1

zyxzxzyyxzyxo

zyxo

zyx

zyx

o

VV

VV

abcV

ccbbaaV

abcV

εεεεεεεεεεεε

εεε

εεε

εεε

+++++++=

+++=

+++=

+++=

= Original volume Vo
New volume V1



10

The unit volume change (“dilatation”,“volumetric strain”) is defined as:
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Spherical stress is defined as σx = σy = σz = σo. 
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Define the bulk modulus of elasticity:
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These equations also hold for hydrostatic stress (σx = σy = σz = - σo)
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Data from HLT, page 41

Mild Steel: E = 210 GPa,ν = 0.27-0.30, K = 160-170 GPa
Aluminium 2024: E = 72 GPa,ν = 0.33, K = 75 GPa

Mild Steel: K = 210 / { 3 [1-2(0.27)] } = 152 GPa
K = 210 / { 3 [1-2(0.30)] } = 175 GPa

Aluminium: K = 72 / { 3 [1-2(0.33)] } = 71 GPa

Using the equation for K just derived:

If ν = 1/2, K → ∞.
This corresponds to a rigid material having no change in volume 
(that is, the material is incompressible).

If ν = 1/3, K = E.
If ν = 0, K = E / 3.

)21(3 ν−
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Next, consider the unit volume change for uniaxial stress, 
σy = σz = 0.
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Substituting σy = σz = 0 into Hooke’s Law gives:
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The volumetric strain is then:

Note here that the maximum possible value of Poisson’s ratio for 
common materials is 0.5, because a larger value means that the 
volume would decrease when the material is in tension, which is 
contrary to ordinary physical behaviour.
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Example (based on Gere, 6th ed, p 537, 7.6-10)

A solid steel sphere (E = 210 GPa, ν = 0.3) is subjected to 
hydrostatic pressure p such that its volume is reduced by 0.4%. 

Calculate: 
(a) the bulk modulus of elasticity K for the steel 
(b) the pressure p
(c) the strain energy stored in the sphere if its diameter d = 150 

mm. 

Solution:

(a) The bulk modulus of elasticity is found using the equation for K 
derived earlier. 
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(b)
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σο is the same as the pressure p.

(c)  The strain energy density u (strain energy per unit volume) is       
given by the area under the σο = K e curve (which is linear).  
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Pressure Vessels

• Closed structures containing liquids or gases under pressure.  
Examples are tanks, pipes, pressurized cabins in aircraft, etc.

• Pressure vessels are considered to be thin-walled when the 
ratio of radius r to wall thickness t is greater than 10.

• Assume that the internal pressure pin exceeds the pressure pout
acting on the outside of the vessel (usually atmospheric pressure). 
If pout > pin, the vessel could collapse inward due to buckling.

• We will derive equations based on the “net” or “gauge” pressure p, 
where p = pin – pout. 

• We are interested in the stresses and strains that develop in the 
walls of pressure vessels. 
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Spherical Pressure Vessels
To determine the stresses in the (thin) walls of a spherical 
pressure vessel with inner radius r and wall thickness t, first 
cut through the sphere on a vertical diametral plane.

fluid pressure p

tensile stress σ
in the walls

Fluid force in horizontal direction
P = p (πr 2)

Tensile force in horizontal direction
T = σ (2πrmt) where rm= r + t/2

Next, isolate half of the sphere and its fluid contents as a 
single free body.

r

t

p



18

For equilibrium, forces in the horizontal direction must balance. 
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For thin-walled vessels, r ≅ rm and the equation becomes

t
rp

2
=σ * Note that using r instead of rm actually gives a result 

closer to the theoretically “exact” result. 

Since the same equation for tensile 
stresses would result from any slice 
through the centre of the sphere, we 
conclude that the wall of a spherical 
pressure vessel is subjected to uniform 
tensile stress in all directions.

σ

σ

Sometimes called “membrane stresses”
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Stresses at the Outer Surface

σx

σy= σ

σx= σ

σy

σx = σy = σ = pr / 2t
σz = 0
τxy = 0

When new stress elements on the sphere are obtained from rotating this 
element about the z axis, the normal stresses remain the same and there 
are no shear stresses. So, every plane tangent to the sphere is a principal 
plane, and every direction a principal direction.

The principal stresses are σ1 = σ2 = pr / 2t, σ3 = 0.

The maximum (out-of-plane) shear stress is τmax = (σ1 – σ3) / 2 = pr / 4t

Draw the three Mohr’s circles to convince yourself of this.
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Comments on the theory

1. The wall thickness must be small in comparison to the other 
dimensions. The ratio r/t should be 10 or more.

2. The internal pressure must exceed the external pressure to 
avoid inward buckling.

3. The analysis is based only on the effects of (net) internal 
pressure. The effects of external loads, reactions, the weight 
of the contents, and the weight of the structure are not 
included.

4. The formulae derived are valid throughout the (thin) wall of 
the vessel, except near points of stress concentration.
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Cylindrical Pressure Vessels

The thin-walled cylindrical 
tank is subjected to a net 
internal pressure p.

A Bm

n

p

q

b
σx

σy

A m

n

Longitudinal Stress

fluid pressure p

tensile stress σL
in the walls

Fluid force in horizontal direction
P = p (πr 2)

Tensile force in horizontal direction
T = σL (2πr t)
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For equilibrium, forces in the horizontal direction must balance.
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Circumferential (or Hoop) Stress

The longitudinal stress is then:
t
rp

L 2
=σ

fluid pressure p Fluid force
P = p (2br)

tensile stress 
in the walls σh

Tensile force
T = σh (2bt)

For equilibrium, forces in the horizontal direction must balance.

The circumferential (or hoop) stress is then:
t
rp

h =σ
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The normal stresses σx and σy are principal stresses since no 
shear stresses are acting.
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Circumferential (Hoop) Direction

t
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hy === σσσ 1

Longitudinal Direction

t
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Lx 22 === σσσ

An obvious discontinuity exists at the ends of the cylinder, where the ends 
(usually plates or hemispheres) are attached, because the geometry of the 
structure changes abruptly.
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Stresses at the Outer Surface

σx

σy= σ1

σx= σ2

σy

σx = σ2 = pr / 2t
σy = σ1 = pr / t
σz = σ3 = 0
τxy = 0

The maximum (out-of-plane) shear stresses are 

The maximum (in-plane) shear stress is
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Example
A spherical pressure vessel having 450 mm inside diameter and 6 mm 
wall thickness is to be constructed by welding together two aluminium 
hemispheres. From tests, it is found that the ultimate and yield stresses in 
tension at the weld are 165 MPa and 110 MPa, respectively. The tank 
must have a factor of safety of 2.1 with respect to the ultimate stress and 
1.5 with respect to the yield stress. What is the maximum permissible 
pressure in the tank? (Gere and Timoshenko, 3rd ed, p 413)

r = d/2 = 0.450/2 = 0.225 m t = 0.006 m
r / t =  37.5 (>10, so thin-walled assumption okay)

The allowable stress based on the ultimate stress is:
σallow = σult / n = 165/2.1 = 78.6 MPa

The allowable stress based on the yield stress is:
σallow = σy / n = 110/1.5 = 73.3 MPa

The latter is lower, so it is the most critical and governs the design.
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Tension at the weld for the spherical vessel is σ = pr / 2t

p = 2 t σallow / r = 2 (0.006)(73.3 x 106) / 0.225
p = 3.91 x 106 Pa = 3.91 MPa

So, the maximum allowable pressure is 3.9 MPa.
(Note that for safety reasons we have rounded down here, not up.)



27

Example
A cylindrical pressure vessel is constructed with a helical weld that makes an 
angle of 55° with the longitudinal axis. The tank has inside radius 1.8 m and 
wall thickness 8 mm. The maximum internal pressure is 600 kPa.

Find the circumferential and longitundal stresses, the absolute maximum 
shear stress, and the normal and shear stresses acting perpendicular and 
parallel to the weld. (Gere and Timoshenko, 3rd ed, p 414)

r / t = 1.8/0.008 = 225 > 10 
(so thin-walled assumption okay)

55°

Circumferential and longitudinal stresses
σx = σL = pr / 2t = (600 x 103)(1.8)/2(0.008) = 67.5 MPa
σy = σh = pr / t = 135 MPa
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Absolute maximum shear stress
σ1 = σh, σ2 = σL, σ3 = 0 (at the outer surface)
τmax = (σ1 - σ3 )/2 = 67.5 MPa

135

67.5

Need stresses perpendicular and parallel to the weld. 
Consider the stress element below and use either the 
transformation equations or Mohr’s circle with θ = 35°
(why not 55°?) to find σx1 = 89.7 MPa, σy1 = 112.8 MPa, 
τx1y1 = 31.7 MPa.


