Definitions from *The Logic Manual*

AJ Gilbert

<table>
<thead>
<tr>
<th>Definition</th>
<th>No idea</th>
<th>Meh</th>
<th>Got it!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary relation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types of binary relation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary relations simpliciter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalence relation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain, range, into</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-ary relation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argument</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical validity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical truth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contradiction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical equivalence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentence letters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentence of \mathcal{L}_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracketing convention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{L}_1-structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truth in an \mathcal{L}_1-structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truth tables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical truth etc. (\mathcal{L}_1 version)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validity (\mathcal{L}_1 version)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterexamples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semantic consistency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truth-functionality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope of a connective in \mathcal{L}_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical truth etc. (propositional version)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propositional validity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicate letters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic formulae of \mathcal{L}_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantifiers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formulae of \mathcal{L}_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Free occurrence of a variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentence of \mathcal{L}_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{L}_2-structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable assignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satisfaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical truth etc. (\mathcal{L}_2 version)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validity (\mathcal{L}_2 version)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propositional logic natural deduction rules ($\times 13$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicate logic natural deduction rules ($\times 4$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identity natural deduction rules ($\times 3$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syntactic consistency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope of a quantifier or connective in \mathcal{L}_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical truth etc. (predicate version)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validity (predicate version)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic formulae of $\mathcal{L}_=$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formulae of $\mathcal{L}_=$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satisfaction in $\mathcal{L}_=$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 Sets, Relations and Arguments

Binary relation: A set is a binary relation iff it contains only ordered pairs.

Types of binary relation: A binary relation \(R \) is

(i) **reflective** on a set \(S \) iff for all elements \(d \) of \(S \) the pair \(\langle d, d \rangle \) is an element of \(R \);
(ii) **symmetric** on a set \(S \) iff for all elements \(d, e \) of \(S \): if \(\langle d, e \rangle \in R \) then \(\langle e, d \rangle \in R \);
(iii) **asymmetric** on a set \(S \) iff for no elements \(d, e \) of \(S \): \(\langle d, e \rangle \in R \) and \(\langle e, d \rangle \in R \);
(iv) **antisymmetric** on a set \(S \) iff for no two distinct elements \(d, e \) of \(S \): \(\langle d, e \rangle \in R \) and \(\langle e, f \rangle \in R \), then \(\langle d, f \rangle \in R \).

Binary relations simpliciter: A binary relation \(R \) is

(i) **symmetric** iff it is symmetric on all sets;
(ii) **asymmetric** iff it is asymmetric on all sets;
(iii) **antisymmetric** iff it is antisymmetric on all sets;
(iv) **transitive** iff it is transitive on all sets.

Equivalence relation: A binary relation \(R \) is an equivalence relation on \(S \) iff \(R \) is reflexive on \(S \), symmetric on \(S \) and transitive on \(S \).

Function: A binary relation \(R \) is a function iff for all \(d, e, f \): if \(\langle d, e \rangle \in R \) and \(\langle d, f \rangle \in R \) then \(e = f \).

Domain, range, into:

(i) The **domain** of a function \(R \) is the set \(\{ d : \text{there is an } e \text{ such that } \langle d, e \rangle \in R \} \).
(ii) The **range** of a function \(R \) is the set \(\{ e : \text{there is a } d \text{ such that } \langle d, e \rangle \in R \} \).
(iii) \(R \) is a function into the set \(M \) iff all elements of the range of the function are in \(M \).

Function notation: If \(d \) is in the domain of a function \(R \) one writes \(R(d) \) for the unique object \(e \) such that \(\langle d, e \rangle \) is in \(R \).

\(n \)-ary relation: An \(n \)-place relation is a set containing only \(n \)-tuples. An \(n \)-place relation is called a relation of arity \(n \).

Argument: An argument consists of a set of declarative sentences (the premises) and a declarative sentence (the conclusion) marked as the concluded sentence.

Logical validity: An argument is logically valid iff there is no interpretation under which the premises are all true and the conclusion false.

Consistency: A set of sentences is logically consistent iff there is at least one interpretation under which all sentences of the set are true.

Logical truth: A sentence is logically true iff it is true under any interpretation.

Contradiction: A sentence is a contradiction iff it is false under all interpretations.

Logical equivalence: Sentences are logically equivalent iff they are true under exactly the same interpretations.
2 Syntax and Semantics of Propositional Logic

Sentence letters: P, Q, R, P₁, Q₁, R₁, P₂, Q₂, R₂ and so on are sentence letters.

Sentence of L₁:
(i) All sentence letters are sentences of L₁.
(ii) If φ and ψ are sentences of L₁, then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ → ψ) and (φ ↔ ψ) are sentences of L₁.
(iii) Nothing else is a sentence of L₁.

Bracketing Convention:
1 The outer brackets may be omitted from a sentence that is not part of another sentence.
2 The inner set of brackets may be omitted from a sentence of the form ((φ ∧ ψ) ∧ χ) and analogously for ∨.
3 Suppose ⋄∈{∧, ∨} and ◦∈{→, ↔}. Then if (φ ◦ (ψ ⋄ χ)) or ((φ ⋄ ψ) ◦ χ) occurs as part of the sentence that is to be abbreviated, the inner set of brackets may be omitted.

L₁-structure: An L₁-structure is an assignment of exactly one truth-value (T or F) to every sentence letter of L₁.

Truth in an L₁-structure: Let A be some L₁-structure. Then |...|_A assigns either T or F to every sentence of L₁ in the following way.
(i) If φ is a sentence letter, |φ|_A is the truth-value assigned to φ by the L₁-structure A
(ii) |¬φ|_A = T iff |φ|_A = F
(iii) |φ ∧ ψ|_A = T iff |φ|_A = T and |ψ|_A = T
(iv) |φ ∨ ψ|_A = T iff |φ|_A = T or |ψ|_A = T
(v) |φ → ψ|_A = T iff |φ|_A = F or |ψ|_A = T
(vi) |φ ↔ ψ|_A = T iff |φ|_A = |ψ|_A

Truth tables:

<table>
<thead>
<tr>
<th>φ</th>
<th>¬φ</th>
<th>ψ</th>
<th>(φ ∧ ψ)</th>
<th>(φ ∨ ψ)</th>
<th>(φ → ψ)</th>
<th>(φ ↔ ψ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Logical truth etc. (L₁ version):
(i) A sentence φ of L₁ is logically true iff φ is true in all L₁-structures.
(ii) A sentence φ of L₁ is a contradiction iff φ is not true in any L₁-structures.
(iii) A sentence φ and a sentence ψ of L₁ are logically equivalent iff φ and ψ are true in exactly the same L₁-structures.

Validity (L₁ version): Let Γ be a set of sentences of L₁ and φ a sentence of L₁. The argument with all sentences in Γ as premisses and φ as conclusion is valid iff there is no L₁-structure in which all sentences in Γ are true and φ is false.
Counterexamples: An L_1-structure is a counterexample to the argument with Γ as the set of premisses and ϕ as the conclusion iff for all $\gamma \in \Gamma$ we have $|\gamma|_A = T$ but $|\phi|_A = F$.

Semantic Consistency: A set Γ of L_1-sentences is semantically consistent iff there is an L_1-structure A such that for all sentence $\gamma \in \Gamma$ we have $|\gamma|_A = T$. A set Γ of L_1-sentences is semantically inconsistent iff Γ is not semantically consistent.

3 Formalization in Propositional Logic

Truth-functionality: A connective is truth-functional iff the truth-value of the compound sentence cannot be changed by replacing a direct subsentence with another sentence having the same truth-value.

Scope of a connective in L_1: The scope of an occurrence of a connective in a sentence ϕ of L_1 is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Logical truth etc. (propositional version):
(i) An English sentence is a tautology iff its formalization in propositional logic is logically true.
(ii) An English sentence is a contradiction iff its formalization in propositional logic is a contradiction.
(iii) An set of English sentences is propositionally consistent iff the set of all their formalizations in propositional logic is semantically consistent.

Propositional validity: An argument in English is propositionally valid iff its formalization in L_1 is valid.

4 The Syntax of Predicate Logic

Predicate letters: All expressions of the form P_k^k, Q_k^k, R_n^k are predicate letters where k and n are either missing or a numeral ‘1’, ‘2’

Arity: The value of the upper index of a predicate letter is called its arity. If a predicate letter does not have an upper index its arity is 0.

Constants: a, b, c, a_1, b_1, c_1, a_2, b_2, c_2, ... are constants.

Variables: x, y, z, x_1, y_1, z_1, x_2, y_2, z_2, ... are variables.

Atomic formulae of L_2: If Z is a predicate letter of arity n and each of t_1, ..., t_n is a variable or constant, then $Zt_1\ldots t_n$ is an atomic formula of L_2.

Quantifier: A quantifier is an expression $\forall v$ or $\exists v$ where v is a variable.

Formulae of L_2:
(i) All atomic formulae of L_2 are formulae of L_2.
(ii) If ϕ and ψ are formulae of L_2 then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$ and $(\phi \leftrightarrow \psi)$ are formulae of L_2.

5
(iii) If v is a variable and ϕ is a formula then $\forall v \phi$ and $\exists v \phi$ are formulae of L_2.
(iv) Nothing else is a formula of L_2.

Free occurrence of a variable:
(i) All occurrences of variables in atomic formulae are free.
(ii) The occurrences of a variable that are free in ϕ and ψ are also free in $\neg \phi$, $\phi \land \psi$, $\phi \lor \psi$, $\phi \to \psi$, and $\phi \leftrightarrow \psi$.
(iii) In a formula $\forall v \phi$ or $\exists v \phi$ no occurrence of the variable v is free; all occurrences of variables other than v that are free in ϕ are also free in $\forall v \phi$ and $\exists v \phi$.

An occurrence of a variable is bound in a formula iff it is not free.
A variable occurs freely in a formula iff there is at least one free occurrence of the variable in the formula.

Sentence of L_2: A formula of L_2 is a sentence of L_2 iff no variable occurs freely in the formula.

5 The Semantics of Predicate Logic

L_2-structure: An L_2-structure is an ordered pair $\langle D, I \rangle$ where D is some non-empty set and I is a function from the set of all constants, sentence letters, and predicate letters such that
- the value of every constant is an element of D
- the value of every sentence letter is a truth-value T or F
- the value of every n-ary predicate letter is an n-ary relation.

Variable assignment: A variable assignment over an L_2-structure A assigns an element of the domain D_A of A to each variable.

Satisfaction: Assume A is an L_2-structure, α is a variable assignment over A, ϕ and ψ are formulae of L_2, and v is a variable. For a sentence letter ϕ either $|\phi|_A^\alpha = T$ or $|\phi|_A^\alpha = F$ obtains. Formulae other than sentence letters receive the following semantic values.
(i) $|\Phi t_1 \ldots t_n|_A^\alpha = T$ iff $\langle |t_1|_A^\alpha, \ldots, |t_n|_A^\alpha \rangle \in |\Phi|_A^\alpha$, where Φ is an n-ary predicate letter for $n \geq 1$ and each of t_1, \ldots, t_n is either a variable or a constant
(ii) $|\neg \phi|_A^\alpha = T$ iff $|\phi|_A^\alpha = F$
(iii) $|\phi \land \psi|_A^\alpha = T$ iff $|\phi|_A^\alpha = T$ and $|\psi|_A^\alpha = T$
(iv) $|\phi \lor \psi|_A^\alpha = T$ iff $|\phi|_A^\alpha = T$ or $|\psi|_A^\alpha = T$
(v) $|\phi \to \psi|_A^\alpha = T$ iff $|\phi|_A^\alpha = F$ or $|\psi|_A^\alpha = T$
(vi) $|\phi \leftrightarrow \psi|_A^\alpha = T$ iff $|\phi|_A^\alpha = |\psi|_A^\alpha$
(vii) $|\forall v \phi|_A^\alpha = T$ iff $|\phi|_A^\beta = T$ for all variable assignments β over A differing from α in v at most
(viii) $|\exists v \phi|_A^\alpha = T$ iff $|\phi|_A^\beta = T$ for at least one variable assignment β over A differing from α in v at most

Truth: A sentence ϕ is true in an L_2-structure A iff $|\phi|_A^\alpha = T$ for all variable assignments α over A.

Logical truth etc. (L_2 version)
(i) A sentence ϕ of \mathcal{L}_2 is logically true iff ϕ is true in all \mathcal{L}_2-structures.

(ii) A sentence ϕ of \mathcal{L}_2 is a contradiction iff ϕ is not true in any \mathcal{L}_2-structures.

(iii) Sentences ϕ and ψ of \mathcal{L}_2 are logically equivalent iff both are true in exactly the same \mathcal{L}_2-structures.

(iv) A set Γ of \mathcal{L}_2-sentences is semantically consistent iff there is an \mathcal{L}_2-structure A in which all sentences in Γ are true. A set of \mathcal{L}_2-sentences is semantically inconsistent iff it is not semantically consistent.

Validity (\mathcal{L}_2 version): Let Γ be a set of sentences of \mathcal{L}_2 and ϕ a sentence of \mathcal{L}_2. The argument with all sentences in Γ as premisses and ϕ as conclusion is valid iff there is no \mathcal{L}_2 structure in which all sentences in Γ are true and ϕ is false. This is abbreviated as $\Gamma \models \phi$.

6 Natural Deduction

Propositional Logic Rules

\[
\begin{array}{c}
\vdots \vdots
\end{array}
\]

\[
\frac{\phi}{\phi \land \psi} \landIntro
\]

\[
\begin{array}{c}
\vdots \vdots
\end{array}
\]

\[
\frac{\phi \land \psi}{\phi} \landElim_1 \quad \frac{\phi \land \psi}{\psi} \landElim_2
\]

\[
\begin{array}{c}
\vdots \vdots \vdots
\end{array}
\]

\[
\frac{\phi}{\phi \lor \psi} \lorIntro_1 \quad \frac{\phi \lor \psi}{\psi} \lorIntro_2
\]

\[
\begin{array}{c}
\vdots \vdots \vdots
\end{array}
\]

\[
\frac{\phi \lor \psi \chi \chi}{\chi} \lorElim
\]

\[
\begin{array}{c}
\vdots \vdots \vdots
\end{array}
\]

\[
\frac{\phi}{\phi \rightarrow \psi} \rightarrowIntro \quad \frac{\phi \rightarrow \psi}{\psi} \rightarrowElim
\]

\[
\begin{array}{c}
\vdots \vdots \vdots
\end{array}
\]

\[
\frac{\phi \psi \neg \psi \neg \psi}{\neg \phi} \negIntro \quad \frac{\psi \phi \neg \psi}{\phi} \negElim
\]

7
\[
\begin{align*}
\frac{[\phi] \quad [\psi]}{\phi \leftrightarrow \psi} & \quad \leftrightarrow \text{Intro} \\
\frac{\psi}{\phi \leftrightarrow \psi} & \quad \leftrightarrow \text{Elim}_1 \\
\frac{\phi \leftrightarrow \psi}{\psi} & \quad \leftrightarrow \text{Elim}_2
\end{align*}
\]

Predicate Logic Rules

\[
\frac{[\phi[t/v]]}{\forall \forall \phi} \quad \forall \text{Intro}
\]

provided that the constant \(t \) does not occur in \(\phi \) or in any undischarged assumption in the proof of \(\phi[t/v] \).

\[
\frac{\forall \forall \phi}{\phi[t/v]} \quad \forall \text{Elim}
\]

\[
\frac{\exists \forall \phi}{\psi} \quad \exists \text{Intro}
\]

\[
\frac{[\phi[t/v]]}{\exists \forall \phi} \quad \exists \text{Elim}
\]

provided that the constant \(t \) does not occur in \(\exists \forall \phi \) or in \(\psi \) or in any undischarged assumption other than \(\phi[t/v] \) in the proof of \(\psi \).

Identity Rules

\[
\frac{[t = t]}{\vdots} \quad = \text{Intro}
\]

\[
\frac{\phi[s/v]}{\phi[t/v]} \quad s = t \quad = \text{Elim}
\]

\[
\frac{\phi[s/v]}{\phi[t/v]} \quad t = s \quad = \text{Elim}
\]
7 Formalization in Predicate Logic

Syntactic consistency: A set Γ of \mathcal{L}_2-sentences is syntactically consistent iff there is a sentence ϕ such that $\Gamma \not\vdash \phi$.

Scope of a quantifier or connective in \mathcal{L}_2: The scope of an occurrence of a quantifiers or a connective in a sentence ϕ of \mathcal{L}_2 is the occurrence of the smallest \mathcal{L}_2-formula that contains that occurrence of the quantifier or connective and is part of ϕ.

Logical truth etc. (predicate version):
1. An English sentence is logically true in predicate logic iff its formalization in predicate logic is logically true.
2. An English sentence is a contradiction in predicate logic iff its formalization in predicate logic is a contradiction.
3. A set of English sentences is consistent in predicate logic iff the set of their formalizations in predicate logic is semantically consistent.

Validity (predicate version): An argument in English is valid in predicate logic iff its formalization in the language \mathcal{L}_2 of predicate logic is valid.

8 Identity and Definite Descriptions

Atomic formulae of $\mathcal{L}_=$: All atomic formulae of \mathcal{L}_2 are atomic formulae of $\mathcal{L}_=$. Furthermore, if s and t are variables or constants then $s = t$ is an atomic formula of $\mathcal{L}_=$.

Formulae of $\mathcal{L}_=$:
1. All atomic formulae of $\mathcal{L}_=$ are formulae of $\mathcal{L}_=$.
2. If ϕ and ψ are formulae of $\mathcal{L}_=$ then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$ and $(\phi \leftrightarrow \psi)$ are formulae of $\mathcal{L}_=$.
3. If v is a variable and ϕ is a formula then $\forall v \phi$ and $\exists v \phi$ are formulae of $\mathcal{L}_=$.
4. Nothing else is a formula of $\mathcal{L}_=$

Satisfaction in $\mathcal{L}_=$: As in the definition of satisfaction in \mathcal{L}_2 with the additional clause
5. $|s = t|_A^\alpha = T$ iff $|s|_A^\alpha = |t|_A^\alpha$