INTRODUCTION TO LOGIC

Lecture 1

Validity Introduction to Sets and Relations.

Dr. James Studd

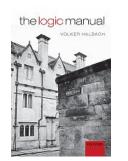
Pure logic is the ruin of the spirit. Antoine de Saint-Exupéry

Outline

- (1) Introductory
- (2) Validity
- (3) Course Overview
- (4) Sets and Relations

Resources

- The Logic Manual
- logicmanual.philosophy.ox.ac.uk
 - Exercises booklet
 - Lecture slides
 - Worked examples
 - Past examination papers some with solutions
- Mark Sainsbury: Logical Forms: An Introduction to Philosophical Logic, Blackwell, second edition, 2001, chs. 1–2.



Why logic?

Logic is the scientific study of valid argument.

- Philosophy is all about arguments and reasoning.
- Logic allows us to rigorously test validity.
- Modern philosophy assumes familiarity with logic.
- Used in linguistics, mathematics, computer science,...
- Helps us make fine-grained conceptual distinctions.
- Logic is compulsory.

Not valid

1.5 Arguments, Validity, and Contradiction

Validity 1/3

First approximation.

When an argument is valid, the truth of the premisses **guarantees** the truth of the conclusion.

An argument is valid if it 'can't' be the case that all of the premisses are true and the conclusion is false.

- Validity does <u>not</u> depend on contingent facts.
- Validity does <u>not</u> depend on laws of nature.
- Validity does <u>not</u> depend on the meanings of subject-specific expressions.
- Validity depends purely on the 'form' of the argument.

Examples

Argument 1Zeno is a tortoise.Therefore, Zeno is toothless.

The truth of the premiss does not provide a sufficiently strong guarantee of the truth of the conclusion

Argument 2	Valid
Zeno is a tortoise.	
All tortoises are toothless.	
Therefore, Zeno is toothless.	

1.5 Arguments, Validity, and Contradiction

Validity 2/3

Characterisation (p. 19)

An argument is **logically valid** if and only if: there is \underline{no} interpretation under which:

(i) the premisses are all true, and

(ii) the conclusion is false.

1.5 Arguments, Validity, and Contradiction

Not valid

Argument 1 revisited

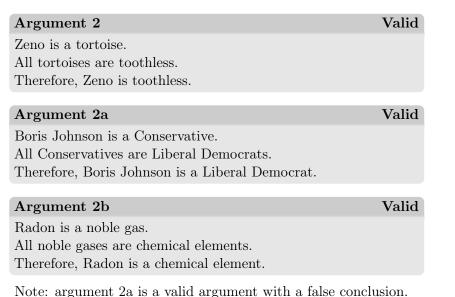
Argument 1	Not valid
Zeno is a tortoise.	
Therefore, Zeno is toothless.	

Argument 1a Boris Johnson is a Conservative. Therefore, Boris Johnson is a Liberal Democrat.

There is an interpretation under which:

- (i) the premiss is true, and
- (ii) the conclusion is false.

Argument 2 revisited



1.5 Arguments, Validity, and Contradiction

Subject-specific versus logical expressions

Examples: logical terms

all, every, some, no. not, and, or, unless, if, only if, if and only if.

Examples: subject-specific terms

Zeno, Boris Johnson, France, The North Sea, Radon, soap, bread, GDP, logical positivism, ...

tortoise, toothless, Conservative, nobel gas, philosopher, chemical element, \ldots

loves, owns, reacts with, voted for, ...

Validity 3/3.

Characterisation (p. 19)

An argument is **logically valid** if and only if: there is no **[uniform]** interpretation **[of subject-specific expressions]** under which:

- (i) the premisses are all true, and
- (ii) the conclusion is false.
- Each occurrence of an expression interpreted in the same way
- Logical expression keep their usual English meanings.

1.5 Arguments, Validity, and Contradiction

Argument 2 revisited again

Argument 2	Valid
Zeno is a tortoise.	
All tortoises are toothless.	
Therefore, Zeno is toothless.	

Argument 3

Not valid

Boris Johnson is a Conservative. No Conservatives are Liberal Democrats. Therefore, Boris Johnson is a Liberal Democrat.

Argument 4

Not valid

Radon is a noble gas. All noble gases are chemical elements. Therefore, air is a chemical element.

Overview

Course overview

- 1: Validity; Introduction to Sets and Relations
- 2: Syntax and Semantics of Propositional Logic
- **3:** Formalization in Propositional Logic
- 4: The Syntax of Predicate Logic
- 5: The Semantics of Predicate Logic
- 6: Natural Deduction
- 7: Formalization in Predicate Logic
- 8: Identity and Definite Descriptions

Sets 1/2

Characterisation

A set is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$ is short for 'a is an element of set b'.

Examples

- The set of positive integers less than 4: {1,2,3} or {n : n is an integer between 1 and 3}
- The set of positive integers: $\{1, 2, 3, 4, \ldots\}$ or $\{n : n > 0\}$
- The empty set:
 { } or {x : x is a round square} or Ø

1.1 Sets

Ordered pairs

Characterisation

An <u>ordered</u> **pair** comprises two components in a given order.

 ⟨d, e⟩ is the ordered pair whose first component is d and whose second component is e, in that order.

Example

 $\langle \text{London, Munich} \rangle \neq \langle \text{Munich, London} \rangle$ {London, Munich} = {Munich, London}

Sets 2/2

Fact about sets

Sets are identical if and only if they have the same elements.

Example

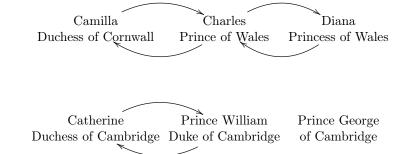
The following sets are all identical:

- {Lennon, McCartney, Harrison, Ringo}
- {Ringo, Lennon, Harrison, McCartney}
- {Ringo, Ringo, Ringo, Lennon, Harrison, McCartney}
- $\{x : x \text{ is a Beatle}\}$
- $\{x : x \text{ sang lead vocals on an Abbey Road track}\}$

1.1 Sets

1.2 Binary relations

Relations



The relation of having married

{\langle Charles, Diana \rangle, \langle Diana, Charles \rangle, \langle Charles, Camilla \rangle, \langle Camilla, Charles \rangle, \langle Kate, William \rangle, \langle William, Kate \rangle, \ldots \rangle \ran

1.2 Binary relations

Relations

Definition (p. 8)

A set R is a **binary relation** if and only if it contains only ordered pairs.

Informally: $\langle d, e \rangle \in R$ indicates that d stands in R to e.

Example

- The relation of *having married*.
 - { $\langle Kate, William \rangle, \langle Charles, Camilla \rangle, \cdots$ }
 - $\{\langle d, e \rangle : d \text{ married } e\}.$
- ${\ \bullet \ }$ The empty set: \emptyset

Worked example

Write down the following relation as a set of ordered pairs. Draw its arrow diagram.

The relation of being countries in GB sharing a border

Properties of relations 1/3

Definition (p. 9)

A binary relation R is reflexive on a set S iff:
o for all d in S: the pair ⟨d, d⟩ is an element of R.

Informally: every member of S bears R to itself.

ExampleReflexive on the set of human beings• The relation of being the same height as

Example

• $\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 1,3\rangle\}$

Not reflexive on this set

• The relation of *being taller than*

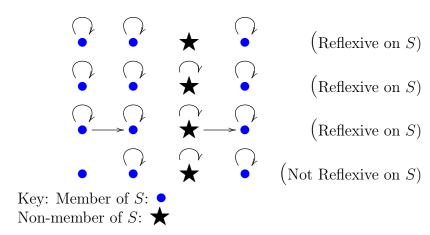
Example

Not reflexive on $\{1, 2, 3\}$ Reflexive on $\{1, 2\}$

1.2 Binary relations

1.2 Binary relations

Every point in S has a "loop".



Properties of relations 2/3

Definition (p. 9)

A binary relation R is symmetric on set S iff:

• for all d, e in S: if $\langle d, e \rangle \in R$ then $\langle e, d \rangle \in R$.

Informally: any member of S bears R to a second only if the second bears R back to the first.

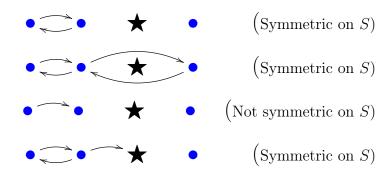
Example	Symmetric on the set of human being	çs
• The relat	on of being a sibling of	

ExampleNot symmetric on this set• The relation of being a brother of

1.2 Binary relations

Symmetry on \boldsymbol{S}

Every "outward route" between points in S has a "return route".



Properties of relations 3/3

Definition

A binary relation R is **transitive on S** iff:

• for all d, e, f in S: if $\langle d, e \rangle \in R$ and $\langle e, f \rangle \in R$, then also $\langle d, f \rangle \in R$

Informally: if any member of S bears R to a second, and the second also bears R to a third, the first bears R to the third.

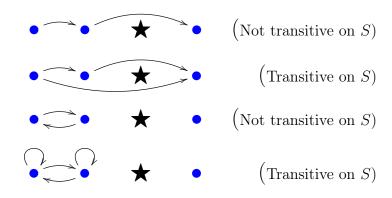
• The relation of *being taller than*

ExampleNot transitive on this set• The relation of not having the same height (±1cm)

1.2 Binary relations

Transitivity on S

Every "double-step" between points in S has a "one-step shortcut".



1.3 Functions

Example

Functions

Definition (p. 14)

A binary relation F is a **function** iff for all d, e, f: • if $\langle d, e \rangle \in F$ and $\langle d, f \rangle \in F$ then e = f.

Informally, everything stands in F to at most one thing.

Example

• The function that squares positive integers. $\{\langle 1,1\rangle, \langle 2,4\rangle, \langle 3,9\rangle, \ldots\}$ $\{\langle x,y\rangle : y = x^2, \text{ for } x \text{ a positive integer}\}$

1.3 Functions

F is a function

229 2 2 3 3 3 3 3 3 ≻4 4 4 "one-one" "many-one" "one-many" function function not a function

Everything stands in F to at most one thing ("many-one" or "one-one")

A "straightforward and elementary" example

(a) What is a binary relation?

(b) Consider the relation R of sharing exactly one parent:

 $R = \{ \langle d, e \rangle : d \text{ and } e \text{ share exactly one of their parents} \}$

Determine whether R is:

- (i) reflexive on the set of human beings
- (ii) symmetric on the set of human beings
- (iii) transitive on the set of human beings

Explain your answers.