INTRODUCTION TO LOGIC

Lecture 2

Syntax and Semantics of Propositional Logic.

Dr. James Studd

Logic is the beginning of wisdom.

Thomas Aquinas

Syntax vs. Semantics

Syntax

Syntax is all about **expressions**: words and sentences.

Examples of syntactic claims

- 'Bertrand Russell' is a proper noun.
- 'likes logic' is a verb phrase.
- 'Bertrand Russell likes logic' is a sentence.
- Combining a proper noun and a verb phrase in this way makes a sentence.

Outline

- Syntax vs Semantics.
- **2** Syntax of \mathcal{L}_1 .
- **3** Semantics of \mathcal{L}_1 .
- 4 Truth-table methods.

Syntax vs. Semantics

Semantics

Semantics is all about **meanings** of expressions.

Examples of semantic claims

- 'Bertrand Russell' refers to a British philosopher.
- 'Bertrand Russell' refers to Bertrand Russell.
- 'likes logic' expresses a property Russell has.
- 'Bertrand Russell likes logic' is true.

Use vs Mention

Note our use of quotes to talk about expressions.

'Bertrand Russell' refers to Bertrand Russell.

Mention

- The first occurrence of 'Bertrand Russell' is an example of mention.
- This occurrence (with quotes) mentions—refers to—an expression.

Use

- The second occurrence of 'Bertrand Russell' is an example of use.
- This occurrence (without quotes) uses the expression to refer to a man.

2.2 The Syntax of the Language of Propositional

Combining sentences and connectives makes new sentences.

Some complex sentences

- 'It is not the case that' and 'Bertrand Russell likes logic' make: 'It is not the case that Bertrand Russell likes logic'.
- '¬' and 'P' make: '¬P'.
- 'Bertrand Russell likes logic' and 'and' and 'Philosophers like conceptual analysis' make:
 - 'Bertrand Russell likes logic and philosophers like conceptual analysis'.
- \circ 'P', ' \wedge ' and 'Q' make: '(P \wedge Q)'.

Logic convention: no quotes around \mathcal{L}_1 -expressions.

 \bullet P, \wedge and Q make: $(P \wedge Q)$.

Syntax: English vs. \mathcal{L}_1 .

English has many different sorts of expression.

Some expressions of English

- (1) Sentences: 'Bertrand Russell likes logic', 'Philosophers like conceptual analysis', etc..
- (2) Connectives: 'it is not the case that', 'and', etc..
- (3) Noun phrases: 'Bertrand Russell', 'Philosophers', etc..
- (4) Verb phrases: 'likes logic', 'like conceptual analysis', etc..
- (5) Also: nouns, verbs, pronouns, etc., etc., etc.,

 \mathcal{L}_1 has **just two** sorts of basic expression.

Some basic expressions of \mathcal{L}_1

- (1) Sentence letters: e.g. 'P', 'Q'.
- (2) Connectives: e.g. \neg , \wedge .

2.2 The Syntax of the Language of Propositional

Connectives

Here's the full list of \mathcal{L}_1 -connectives.

name	in English	symbol
conjunction	and	\wedge
disjunction	or	V
negation	it is not the	_
	case that	
arrow	if then	\rightarrow
double arrow	if and only if	\leftrightarrow

The syntax of \mathcal{L}_1

Here's the official definition of \mathcal{L}_1 -sentence.

Definition

- (i) All sentence letters are sentences of \mathcal{L}_1 :
 - $P, Q, R, P_1, Q_1, R_1, P_2, Q_2, R_2, P_3, \dots$
- (ii) If ϕ and ψ are sentences of \mathcal{L}_1 , then so are:
 - $\bullet \neg \phi$
 - $\bullet \ (\phi \wedge \psi)$
 - $\bullet \ (\phi \lor \psi)$

 - $(\phi \leftrightarrow \psi)$
- (iii) Nothing else is a sentence of \mathcal{L}_1 .

Greek letters: ϕ ('PHI') and ψ ('PSI'): not part of \mathcal{L}_1 .

2.2 The Syntax of the Language of Propositional

Object vs. Metalanguage

I mentioned that ϕ and ψ are **not** part of \mathcal{L}_1 .

- \circ $\neg P$ is a \mathcal{L}_1 -sentence.
- $\neg \phi$ describes many \mathcal{L}_1 -sentences (but is not one itself). e.g. $\neg P$, $\neg (Q \lor R)$, $\neg (P \leftrightarrow (Q \lor R))$...

 ϕ and ψ are part of the metalanguage, not the object one.

Object language

The object language is the one we're theorising about.

• The object language is \mathcal{L}_1 .

Metalanguage

The metalanguage is the one we're theorising in.

• The metalanguage is (augmented) English.

 ϕ and ψ are used as variables in the metalanguage: in order to generalise about sentences of the object language.

How to build a sentence of \mathcal{L}_1

Example

The following is a sentence of \mathcal{L}_1 :

$$\neg\neg(((P \land Q) \to (P \lor \neg R_{45})) \leftrightarrow \neg((P_3 \lor R) \lor R))$$

Definition of \mathcal{L}_1 -sentences (repeated from previous page)

- (i) All sentence letters are sentences of \mathcal{L}_1 .
- (ii) If ϕ and ψ are sentences of \mathcal{L}_1 , then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$ are sentences of \mathcal{L}_1 .
- (iii) Nothing else is a sentence of \mathcal{L}_1 .

2.3 Rules for Dropping Brackets

Bracketing conventions

There are conventions for dropping brackets in \mathcal{L}_1 . Some are similar to rules used for + and \times in arithmetic.

Example in arithmetic

- $4+5\times 3$ does not abbreviate $(4+5)\times 3$.
- \times 'binds more strongly' than +. $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

Examples in \mathcal{L}_1

- \wedge and \vee bind more strongly than \rightarrow and \leftrightarrow . $(P \rightarrow Q \land R)$ abbreviates $(P \rightarrow (Q \land R))$.
- One may drop outer brackets. $P \wedge (Q \rightarrow \neg P_4)$ abbreviates $(P \wedge (Q \rightarrow \neg P_4))$.
- One may drop brackets on strings of \land s or \lor s. $(P \land Q \land R)$ abbreviates $((P \land Q) \land R)$.

Semantics

Recall the characterisation of validity from week 1.

Characterisation

An argument is **logically valid** if and only if there is <u>no</u> interpretation of subject-specific expressions under which:

- (i) the premisses are all true, and
- (ii) the conclusion is false.

We'll adapt this characterisation to \mathcal{L}_1 .

- Logical expressions: $\neg, \land, \lor, \rightarrow$ and \leftrightarrow .
- Subject specific expressions: P, Q, R, \dots
- Interpretation: \mathcal{L}_1 -structure.

2.4 The Semantics of Propositional Logic

Truth-values of complex sentences 1/3

 \mathcal{L}_1 -structures **only** directly specify truth-values for P, Q, R, \ldots

- The logical connectives have fixed meanings.
- These determine the truth-values of complex sentences.
- Notation: $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

Truth-conditions for \neg

The meaning of \neg is summarised in its **truth table**.

$$\begin{array}{c|c}
\phi & \neg \phi \\
\hline
T & F \\
F & T
\end{array}$$

In words: $|\neg \phi|_{\mathcal{A}} = T$ if and only if $|\phi|_{\mathcal{A}} = F$.

\mathcal{L}_1 -structures

We interpret sentence letters by assigning them truth-values: either T for True or F for False.

Definition

An \mathcal{L}_1 -structure is an assignment of exactly one truth-value (**T** or **F**) to every sentence letter of \mathcal{L}_1 .

Examples

One may think of an \mathcal{L}_1 -structure as an infinite list that provides a value T or F for every sentence letter.

We use \mathcal{A} , \mathcal{B} , etc. to stand for \mathcal{L}_1 -structures.

2.4 The Semantics of Propositional Logic

Worked example 1

 $|\phi|_{\mathcal{A}}$ is the truth-value of ϕ under \mathcal{A} .

$$\begin{array}{c|c}
\phi & \neg \phi \\
\hline
T & F \\
F & T
\end{array}$$

Compute the following truth-values.

Let the structure \mathcal{A} be partially specified as follows.

Compute:

$$|P|_{\mathcal{A}} = |Q|_{\mathcal{A}} = |R_1|_{\mathcal{A}} =$$
 $|\neg P|_{\mathcal{A}} = |\neg Q|_{\mathcal{A}} = |\neg R_1|_{\mathcal{A}} =$
 $|\neg P|_{\mathcal{A}} = |\neg R_1|_{\mathcal{A}} =$

Truth-values of complex sentences 2/3

Truth-conditions for \wedge and \vee

The meanings of \wedge and \vee are given by the truth tables:

ϕ	ψ	$(\phi \wedge \psi)$		ϕ	ψ	$\phi \lor \psi$
Т	T	T		Γ	T	Т
Τ	F	F	r	T	F	T
F	Τ	F		\mathbf{F}	T	T
F	F	F	-	\mathbf{F}	F	F

$$|(\phi \wedge \psi)|_{\mathcal{A}} = T$$
 if and only if $|\phi|_{\mathcal{A}} = T$ and $|\psi|_{\mathcal{A}} = T$.
 $|(\phi \vee \psi)|_{\mathcal{A}} = T$ if and only if $|\phi|_{\mathcal{A}} = T$ or $|\psi|_{\mathcal{A}} = T$ (or both).

2.4 The Semantics of Propositional Logic

Worked example 2

Let
$$|P|_{\mathcal{B}} = T$$
 and $|Q|_{\mathcal{B}} = F$.

Compute
$$|\neg(P \to Q) \to (P \land Q)|_{\mathcal{B}}$$

What is the truth value of $\neg(P \to Q) \to (P \land Q)$ under \mathcal{B} ?

$$(P \to Q)|_{\mathcal{B}} = F$$
 and $|(P \land Q)|_{\mathcal{B}} = F$

$$(P \rightarrow Q) \rightarrow (P \land Q)|_{\mathcal{B}} = F$$

Truth-values of complex sentences 3/3

Truth-conditions for \rightarrow and \leftrightarrow

The meanings of \rightarrow and \leftrightarrow are given by the truth tables:

$$|(\phi \to \psi)|_{\mathcal{A}} = T$$
 if and only if $|\phi|_{\mathcal{A}} = F$ or $|\psi|_{\mathcal{A}} = T$.
 $|(\phi \leftrightarrow \psi)|_{\mathcal{A}} = T$ if and only if $|\phi|_{\mathcal{A}} = |\psi|_{\mathcal{A}}$.

2.4 The Semantics of Propositional Logic

For actual calculations it's usually better to use tables.

Suppose $|P|_{\mathcal{B}} = T$ and $|Q|_{\mathcal{B}} = F$.

Compute
$$|\neg(P \to Q) \to (P \land Q)|_{\mathcal{B}}$$

$$P \mid Q \mid \neg (P \to Q) \to (P \land Q)$$

Using the same technique we can fill out the full truth table for $\neg(P \to Q) \to (P \land Q)$

The main column (underlined) gives the truth-value of the whole sentence.

2.4 The Semantics of Propositional Logic

Worked example 3

We can use truth-tables to show that \mathcal{L}_1 -arguments are valid.

Example

Show that $\{P \to \neg Q, Q\} \models \neg P$.

Rows correspond to interpretations.

One needs to check that there is no row in which all the premisses are assigned T and the conclusion is assigned F.

Validity

Let Γ be a set of sentences of \mathcal{L}_1 and ϕ a sentence of \mathcal{L}_1 .

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is valid if and only if there is no \mathcal{L}_1 -structure under which:

- (i) all sentences in Γ are true; and
- (ii) ϕ is false.

Notation: when this argument is valid we write $\Gamma \vDash \phi$.

 $\{P \to \neg Q, Q\} \models \neg P$ means that the argument whose premises are $P \to \neg Q$ and Q, and whose conclusion is $\neg P$ is valid. Also written: $P \to \neg Q, Q \models \neg P$

2.4 The Semantics of Propositional Logic

Other logical notions

Definition

A sentence ϕ of \mathcal{L}_1 is **logically true** (a **tautology**) iff: • ϕ is true under all \mathcal{L}_1 -structures.

e.g. $P \vee \neg P$, and $P \to P$ are tautologies.

Truth tables of tautologies

Every row in the main column is a T.

Definition

A sentence ϕ of \mathcal{L}_1 is a **contradiction** iff:

• ϕ is not true under any \mathcal{L}_1 -structure.

e.g. $P \wedge \neg P$, and $\neg (P \rightarrow P)$ are contradictions.

Truth tables of contradictions

Every row in the main column is an F.

2.4 The Semantics of Propositional Logic

Worked example 4

Example

Show that the sentence $(P \to (\neg Q \land R)) \lor P$ is a tautology.

Method 1: Full truth table

- Write out the truth table for $(P \to (\neg Q \land R)) \lor P$.
- Check there's a T in the every row of the main column.

Definition

Sentences ϕ and ψ are logically equivalent iff:

- ϕ and ψ are true in exactly the same \mathcal{L}_1 -structures.
- \circ P and $\neg\neg$ P are logically equivalent.
- $P \wedge Q$ and $\neg(\neg P \vee \neg Q)$ are logically equivalent.

Truth tables of logical equivalents

The truth-values in the main columns agree.

2.4 The Semantics of Propositional Logic

Worked example 4 (cont.)

Show that the sentence $(P \to (\neg Q \land R)) \lor P$ is a tautology.

Method 2: Backwards truth table.

- Put an F in the main column.
- Work backwards to show this leads to a contradiction.

$$\begin{array}{c|c|c}
P & Q & R & (P \to (\neg Q \land R)) \lor P \\
\hline
\end{array}$$

Worked example 5

Example

Show that $P \leftrightarrow \neg Q \vDash \neg (P \leftrightarrow Q)$

Method 1: Full truth table

- Write out the full truth table.
- Check there's no row in which the main column of the premiss is T and the main column of the conclusion is F.

Worked example 5 (cont.)

Show that $P \leftrightarrow \neg Q \vDash \neg (P \leftrightarrow Q)$

Method 2: Backwards truth table

- Put a T in the main column of the premiss and an F in the main column of the conclusion.
- Work backwards to obtain a contradiction.

$$\begin{array}{c|c|c|c} P & Q & P \leftrightarrow \neg & Q & \neg & (P \leftrightarrow Q) \\ \hline & & & & & \end{array}$$

$$\begin{array}{c|c|c|c} \phi & \phi & \psi & (\phi \leftrightarrow \psi) \\ \hline T & F & T & F \\ F & T & F & F \\ F & F & T & F \\ \hline F & F & T & T \\ \end{array}$$