We could forget about philosophy.
Settle down and maybe get into semantics.

Woody Allen
‘Mr. Big’
Outline

1. Validity.
2. Semantics for simple English sentences.
3. Semantics for \mathcal{L}_2-formulae.
4. \mathcal{L}_2-structures.
What of argument 2?

<table>
<thead>
<tr>
<th>Argument 2</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Zeno is a tortoise.</td>
<td></td>
</tr>
<tr>
<td>(2) All tortoises are toothless.</td>
<td></td>
</tr>
<tr>
<td>Therefore, (C) Zeno is toothless.</td>
<td></td>
</tr>
</tbody>
</table>
What of argument 2?

<table>
<thead>
<tr>
<th>Argument 2</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Zeno is a tortoise.</td>
<td></td>
</tr>
<tr>
<td>(2) All tortoises are toothless.</td>
<td></td>
</tr>
<tr>
<td>Therefore, (C) Zeno is toothless.</td>
<td></td>
</tr>
</tbody>
</table>

Formalisation

| (1) Ta |
| (2) $\forall x (Tx \rightarrow Lx)$ |
| (C) La |

Dictionary: a: Zeno. T: ...is a tortoise. L: ...is toothless.
What of argument 2?

<table>
<thead>
<tr>
<th>Argument 2</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Zeno is a tortoise.</td>
<td></td>
</tr>
<tr>
<td>(2) All tortoises are toothless.</td>
<td></td>
</tr>
<tr>
<td>Therefore, (C) Zeno is toothless.</td>
<td></td>
</tr>
</tbody>
</table>

Formalisation

(1) \(Ta\)
(2) \(\forall x(Tx \rightarrow Lx)\)
(C) \(La\)

Dictionary: \(a\): Zeno. \(T\): ...is a tortoise. \(L\): ...is toothless.

What is it for this \(L_2\)-argument to be valid?
Validity

Recall the definition of validity for \mathcal{L}_1.
Validity

Recall the definition of validity for \mathcal{L}_1. Let Γ be a set of sentences of \mathcal{L}_1 and ϕ a sentence of \mathcal{L}_1. The argument with all sentences in Γ as premisses and ϕ as conclusion is valid if and only if there is no \mathcal{L}_1-structure under which:

(i) all sentences in Γ are true; and

(ii) ϕ is false.

We use an exactly analogous definition for \mathcal{L}_2, replacing ' \mathcal{L}_1' everywhere above with ' \mathcal{L}_2'.
Recall the definition of validity for \mathcal{L}_1. Let Γ be a set of sentences of \mathcal{L}_1 and ϕ a sentence of \mathcal{L}_1

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is **valid** if and only if there is no \mathcal{L}_1-structure under which:

(i) all sentences in Γ are true; and

(ii) ϕ is false.
Validity

Recall the definition of validity for \(\mathcal{L}_1 \).
Let \(\Gamma \) be a set of sentences of \(\mathcal{L}_1 \) and \(\phi \) a sentence of \(\mathcal{L}_1 \).

Definition

The argument with all sentences in \(\Gamma \) as premisses and \(\phi \) as conclusion is valid if and only if there is no \(\mathcal{L}_1 \)-structure under which:

(i) all sentences in \(\Gamma \) are true; and

(ii) \(\phi \) is false.

We use an exactly analogous definition for \(\mathcal{L}_2 \), replacing ‘\(\mathcal{L}_1 \)’ everywhere above with ‘\(\mathcal{L}_2 \)’.
Validity

Recall the definition of validity for \mathcal{L}_1.
Let Γ be a set of sentences of \mathcal{L}_2 and ϕ a sentence of \mathcal{L}_2

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is **valid** if and only if there is no \mathcal{L}_2-structure under which:

(i) all sentences in Γ are true; and
(ii) ϕ is false.

We use an exactly analogous definition for \mathcal{L}_2, replacing ‘\mathcal{L}_1’ everywhere above with ‘\mathcal{L}_2’
Validity

Recall the definition of validity for \mathcal{L}_1.
Let Γ be a set of sentences of \mathcal{L}_2 and ϕ a sentence of \mathcal{L}_2

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is valid if and only if there is no \mathcal{L}_2-structure under which:

(i) all sentences in Γ are true; and
(ii) ϕ is false.

We use an exactly analogous definition for \mathcal{L}_2, replacing ‘\mathcal{L}_1’ everywhere above with ‘\mathcal{L}_2’
It remains to define: \mathcal{L}_2-structure, truth in an \mathcal{L}_2-structure
Structures

Structures interpret non-logical expressions.
Structures

Structures interpret non-logical expressions.

\mathcal{L}_1-structures

- Non-logical expressions in \mathcal{L}_1: P, Q, R, \ldots
Structures interpret non-logical expressions.

L_1-structures

- Non-logical expressions in L_1: P, Q, R, \ldots
- An L_1 structure \mathcal{A} assigns each sentence letter a semantic value
Structures

Structures interpret non-logical expressions.

\mathcal{L}_1-structures

- Non-logical expressions in \mathcal{L}_1: P, Q, R, \ldots
- An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)
Structures interpret non-logical expressions.

<table>
<thead>
<tr>
<th>\mathcal{L}_1-structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Non-logical expressions in \mathcal{L}_1: P, Q, R, \ldots</td>
</tr>
<tr>
<td>- An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)</td>
</tr>
</tbody>
</table>

\mathcal{L}_2 is a richer language. This calls for richer structures.
Structures

Structures interpret non-logical expressions.

L_1-structures

- Non-logical expressions in L_1: P, Q, R, \ldots
- An L_1 structure A assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

L_2 is a richer language. This calls for richer structures.

L_2-structures

- Non-logical expressions: P^1, Q^1, R^1, \ldots
Structures interpret non-logical expressions.

\mathcal{L}_1-structures
- Non-logical expressions in \mathcal{L}_1: P, Q, R, \ldots
- An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

\mathcal{L}_2 is a richer language. This calls for richer structures.

\mathcal{L}_2-structures
- Non-logical expressions: P^1, Q^1, R^1, \ldots
- P^2, Q^2, R^2, \ldots
- \vdots
Structures

Structures interpret non-logical expressions.

L_1-structures

- Non-logical expressions in L_1: P, Q, R, \ldots
- An L_1 structure A assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

L_2 is a richer language. This calls for richer structures.

L_2-structures

- Non-logical expressions: P^1, Q^1, R^1, \ldots
 P^2, Q^2, R^2, \ldots
 \vdots
 a, b, c, \ldots
Structures

Structures interpret non-logical expressions.

<table>
<thead>
<tr>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{L}_1-structures</td>
</tr>
<tr>
<td>• Non-logical expressions in \mathcal{L}_1: P, Q, R, \ldots</td>
</tr>
<tr>
<td>• An \mathcal{L}_1 structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)</td>
</tr>
</tbody>
</table>

\mathcal{L}_2 is a richer language. This calls for richer structures.

<table>
<thead>
<tr>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{L}_2-structures</td>
</tr>
<tr>
<td>• Non-logical expressions: P^1, Q^1, R^1, \ldots</td>
</tr>
<tr>
<td>• P^2, Q^2, R^2, \ldots</td>
</tr>
<tr>
<td>• \vdots</td>
</tr>
<tr>
<td>• a, b, c, \ldots</td>
</tr>
<tr>
<td>• An \mathcal{L}_2-structure \mathcal{A} assigns each predicate and constant a semantic value</td>
</tr>
</tbody>
</table>
Structures

Structures interpret non-logical expressions.

L_1-structures

- Non-logical expressions in L_1: P, Q, R, \ldots
- An L_1 structure A assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

L_2 is a richer language. This calls for richer structures.

L_2-structures

- Non-logical expressions: P^1, Q^1, R^1, \ldots
 P^2, Q^2, R^2, \ldots
 \vdots
 a, b, c, \ldots
- An L_2-structure A assigns each predicate and constant a semantic value (specifically, what?)
Semantics in English

Start with a semantics for simple English sentences.
Semantics in English

Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’
Semantics in English

Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true
Semantics in English

Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).
Semantics in English

Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).

...because of the relationship between the semantic values of its constituents.
Semantics in English

Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).
...because of the relationship between the semantic values of its constituents.

<table>
<thead>
<tr>
<th>expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Bertrand Russell’</td>
<td>Russell</td>
</tr>
<tr>
<td>‘is a philosopher’</td>
<td>the property of being a philosopher</td>
</tr>
</tbody>
</table>
Semantics in English

Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).

...because of the relationship between the semantic values of its constituents.

<table>
<thead>
<tr>
<th>expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Bertrand Russell’</td>
<td>Russell</td>
</tr>
<tr>
<td>‘is a philosopher’</td>
<td>the property of being a philosopher</td>
</tr>
</tbody>
</table>

...because Russell has the property of being a philosopher.
Semantics in English

Start with a semantics for simple English sentences.

‘Bertrand Russell is a philosopher’

The sentence is true (i.e.: its semantic value is: T).

...because of the relationship between the semantic values of its constituents.

<table>
<thead>
<tr>
<th>expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Bertrand Russell’</td>
<td>Russell</td>
</tr>
<tr>
<td>‘is a philosopher’</td>
<td>the property of being a philosopher</td>
</tr>
</tbody>
</table>

...because Russell has the property of being a philosopher.

...because |‘Bertrand Russell’| has |‘is a philosopher’|.

Notation

When e is an expression, we write $|e|$ for its semantic value
Similarly:

‘Alonzo Church reveres Bertrand Russell’ is true iff Church stands in the relation of *revering* to Russell
Similarly:

‘Alonzo Church reveres Bertrand Russell’ is true iff Church stands in the relation of \textit{revering} to Russell

In other words:

\[
\langle \text{‘Alonzo Church reveres Bertrand Russell’} \rangle = T \iff \\
\langle \text{‘Alonzo Church’} \rangle \text{ stands in } \langle \text{‘reveres’} \rangle \text{ to } \langle \text{‘Bertrand Russell’} \rangle
\]
Semantic values for English expressions

<table>
<thead>
<tr>
<th>expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>designator</td>
<td>object</td>
</tr>
<tr>
<td>unary predicate</td>
<td>property (alias: unary relation)</td>
</tr>
<tr>
<td>binary predicate</td>
<td>binary relation</td>
</tr>
</tbody>
</table>
Semantic values for English expressions

<table>
<thead>
<tr>
<th>expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>designator</td>
<td>object</td>
</tr>
<tr>
<td>unary predicate</td>
<td>property (alias: unary relation)</td>
</tr>
<tr>
<td>binary predicate</td>
<td>binary relation</td>
</tr>
</tbody>
</table>

Examples

- |‘Bertrand Russell’| = Russell
- |‘is a philosopher’| = the property of *being a philosopher*
- |‘reveres’| = the relation of *revering*
Semantic values for English expressions

<table>
<thead>
<tr>
<th>expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>designator</td>
<td>object</td>
</tr>
<tr>
<td>unary predicate</td>
<td>property (alias: unary relation)</td>
</tr>
<tr>
<td>binary predicate</td>
<td>binary relation</td>
</tr>
</tbody>
</table>

Examples

- ‘Bertrand Russell’ = Russell
- ‘is a philosopher’ = the property of *being a philosopher*
- ‘reveres’ = the relation of *revering*

We’ll take this one step further, by saying more about properties and relations.
Properties

In logic, we identify properties with sets.
Properties

In logic, we identify properties with sets.

Property (alias: unary relation)

A unary relation P is a set of zero or more objects.
Properties

In logic, we identify properties with sets.

Property (alias: unary relation)

A *unary relation* \(P \) is a set of zero or more objects.

Specifically, \(P \) is the set of objects that have the property.
Properties

In logic, we identify properties with sets.

Property (alias: unary relation)

A *unary relation* P is a set of zero or more objects.

Specifically, P is the set of objects that have the property.

Informally: $d \in P$ indicates that d has property P.
Properties

In logic, we identify properties with sets.

Property (alias: unary relation)

A unary relation P is a set of zero or more objects.

Specifically, P is the set of objects that have the property.

Informally: $d \in P$ indicates that d has property P.

Example

The property of *being a philosopher*
Properties

In logic, we identify properties with sets.

Property (alias: unary relation)

A unary relation P is a set of zero or more objects.

Specifically, P is the set of objects that have the property.

Informally: $d \in P$ indicates that d has property P.

Example

The property of being a philosopher

$= \text{the set of philosophers}$

$= \{d : d \text{ is a philosopher}\}$

$= \{\text{Descartes, Kant, Russell, ...} \}$
Recall that we identify binary relations with sets of pairs.

Example: The relation of revering is \{⟨d,e⟩ : d reveres e\}
Relations

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation R is a set of zero or more pairs of objects.
Relations

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation R is a set of zero or more pairs of objects. R is the set of pairs $\langle d, e \rangle$ such that d stands in R to e.

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).

A quaternary (4-ary) relation is a set of quadruples (4-tuples).

etc.
Relations

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation R is a set of zero or more pairs of objects. R is the set of pairs $\langle d, e \rangle$ such that d stands in R to e.

Informally: $\langle d, e \rangle \in R$ indicates that d bears R to e.
Relations

Recall that we identify binary relations with sets of pairs.

Binary relation

A **binary relation** R is a set of zero or more pairs of objects. R is the set of pairs $\langle d, e \rangle$ such that d stands in R to e.

Informally: $\langle d, e \rangle \in R$ indicates that d bears R to e.

Example

The relation of *revering* $= \{ \langle d, e \rangle : d$ reveres $e \}$
Relations

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation R is a set of zero or more pairs of objects. R is the set of pairs $\langle d, e \rangle$ such that d stands in R to e.

Informally: $\langle d, e \rangle \in R$ indicates that d bears R to e.

Example

The relation of *revering* $= \{ \langle d, e \rangle : d$ reveres $e \}$

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
Relations

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation R is a set of zero or more pairs of objects. R is the set of pairs $\langle d, e \rangle$ such that d stands in R to e.

Informally: $\langle d, e \rangle \in R$ indicates that d bears R to e.

Example

The relation of *revering* $= \{\langle d, e \rangle : d$ reveres $e\}$

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
Relations

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation R is a set of zero or more pairs of objects. R is the set of pairs $\langle d, e \rangle$ such that d stands in R to e.

Informally: $\langle d, e \rangle \in R$ indicates that d bears R to e.

Example

The relation of *revering* $= \{ \langle d, e \rangle : d$ reveres $e \}$

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
e tc.
Putting this all together:
Putting this all together:

‘Bertrand Russell is a philosopher’ is true
Putting this all together:

‘Bertrand Russell is a philosopher’ is true iff |‘Bertrand Russell’| has |‘is a philosopher’|
Putting this all together:

‘Bertrand Russell is a philosopher’ is true
 iff ‘Bertrand Russell’ has ‘is a philosopher’
 iff Russell ∈ the set of philosophers
Putting this all together:

‘Bertrand Russell is a philosopher’ is true
iff |‘Bertrand Russell’| has |‘is a philosopher’|
iff Russell ∈ the set of philosophers

Similarly:

‘Alonzo Church reveres Russell’ is true
Putting this all together:

‘Bertrand Russell is a philosopher’ is true
iff |‘Bertrand Russell’| has |‘is a philosopher’|
iff Russell ∈ the set of philosophers

Similarly:

‘Alonzo Church reveres Russell’ is true
iff |‘Alonzo Church’| stands in |‘reveres’| to |‘Russell’|
Putting this all together:

‘Bertrand Russell is a philosopher’ is true
iff |‘Bertrand Russell’| has |‘is a philosopher’|
iff Russell ∈ the set of philosophers

Similarly:

‘Alonzo Church reveres Russell’ is true
iff |‘Alonzo Church’| stands in |‘reveres’| to |‘Russell’|
iff ⟨Church, Russell⟩ ∈ {⟨d, e⟩ : d reveres e}
Semantics for atomic \mathcal{L}_2-sentences

The semantics for atomic \mathcal{L}_2-sentences is similar.
Semantics for atomic \mathcal{L}_2-sentences

The semantics for atomic \mathcal{L}_2-sentences is similar.

An \mathcal{L}_2-structure specifies semantic values for \mathcal{L}_2-expressions:

<table>
<thead>
<tr>
<th>\mathcal{L}_2-expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant: a</td>
<td>object: $</td>
</tr>
<tr>
<td>sentence letter: P</td>
<td>truth-value: $</td>
</tr>
<tr>
<td>unary predicate: P^1</td>
<td>unary relation: $</td>
</tr>
<tr>
<td>binary predicate: P^2</td>
<td>binary relation: $</td>
</tr>
</tbody>
</table>

Notation: $|e|$ is the semantic value of e in \mathcal{L}_2-structure A.

Example:

- If a is an object in the structure, then $|a|$ is the object.
- If P is a truth-value, then $|P|$ is either T or F.
- If P^1 is a unary relation, then $|P^1|$ is a set.
- If P^2 is a binary relation, then $|P^2|$ is a set of pairs.
Semantics for atomic \mathcal{L}_2-sentences

The semantics for atomic \mathcal{L}_2-sentences is similar.

An \mathcal{L}_2-structure specifies semantic values for \mathcal{L}_2-expressions:

<table>
<thead>
<tr>
<th>\mathcal{L}_2-expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant: a</td>
<td>object: $</td>
</tr>
<tr>
<td>sentence letter: P</td>
<td>truth-value: $</td>
</tr>
<tr>
<td>unary predicate: P^1</td>
<td>unary relation: $</td>
</tr>
<tr>
<td>binary predicate: P^2</td>
<td>binary relation: $</td>
</tr>
</tbody>
</table>

- $|Pb| = \text{T} \text{ iff } |b| \text{ has } |P|$
Semantics for atomic \mathcal{L}_2-sentences

The semantics for atomic \mathcal{L}_2-sentences is similar.

An \mathcal{L}_2-structure specifies semantic values for \mathcal{L}_2-expressions:

<table>
<thead>
<tr>
<th>\mathcal{L}_2-expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant: a</td>
<td>object: $</td>
</tr>
<tr>
<td>sentence letter: P</td>
<td>truth-value: $</td>
</tr>
<tr>
<td>unary predicate: P^1</td>
<td>unary relation: $</td>
</tr>
<tr>
<td>binary predicate: P^2</td>
<td>binary relation: $</td>
</tr>
</tbody>
</table>

- $|Pb| = T$ iff $|b|$ has $|P|$ iff $|b| \in |P|$
Semantics for atomic L_2-sentences

The semantics for atomic L_2-sentences is similar.

An L_2-structure specifies semantic values for L_2-expressions:

<table>
<thead>
<tr>
<th>L_2-expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant: a</td>
<td>object: $</td>
</tr>
<tr>
<td>sentence letter: P</td>
<td>truth-value: $</td>
</tr>
<tr>
<td>unary predicate: P^1</td>
<td>unary relation: $</td>
</tr>
<tr>
<td>binary predicate: P^2</td>
<td>binary relation: $</td>
</tr>
</tbody>
</table>

- $|Pb| = T$ iff $|b|$ has $|P|$
 iff $|b| \in |P|$
- $|Rab| = T$ iff $|a|$ stands in $|R|$ to $|b|$
Semantics for atomic \mathcal{L}_2-sentences

The semantics for atomic \mathcal{L}_2-sentences is similar.

An \mathcal{L}_2-structure specifies semantic values for \mathcal{L}_2-expressions:

<table>
<thead>
<tr>
<th>\mathcal{L}_2-expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant: a</td>
<td>object: $</td>
</tr>
<tr>
<td>sentence letter: P</td>
<td>truth-value: $</td>
</tr>
<tr>
<td>unary predicate: P^1</td>
<td>unary relation: $</td>
</tr>
<tr>
<td>binary predicate: P^2</td>
<td>binary relation: $</td>
</tr>
</tbody>
</table>

- $|Pb| = T$ iff $|b|$ has $|P|$
 iff $|b| \in |P|$
- $|Rab| = T$ iff $|a|$ stands in $|R|$ to $|b|$
 iff $\langle |a|, |b| \rangle \in |R|$
Semantics for atomic \mathcal{L}_2-sentences

The semantics for atomic \mathcal{L}_2-sentences is similar.

An \mathcal{L}_2-structure specifies semantic values for \mathcal{L}_2-expressions:

<table>
<thead>
<tr>
<th>\mathcal{L}_2-expression</th>
<th>semantic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant: a</td>
<td>object: $</td>
</tr>
<tr>
<td>sentence letter: P</td>
<td>truth-value: $</td>
</tr>
<tr>
<td>unary predicate: P^1</td>
<td>unary relation: $</td>
</tr>
<tr>
<td>binary predicate: P^2</td>
<td>binary relation: $</td>
</tr>
</tbody>
</table>

- $|Pb| = T$ iff $|b|$ has $|P|$ iff $|b| \in |P|$
- $|Rab| = T$ iff $|a|$ stands in $|R|$ to $|b|$ iff $\langle |a|, |b| \rangle \in |R|$

Notation: $|e|_A$ is the semantic value of e in \mathcal{L}_2-structure A.
Semantics for atomic \mathcal{L}_2-formulae

We have the semantics for \mathcal{L}_2-sentences like Pa.
We have the semantics for L_2-sentences like Pa. What about L_2-formulae like Px?
Semantics for atomic \mathcal{L}_2-formulae

We have the semantics for \mathcal{L}_2-sentences like Pa. What about \mathcal{L}_2-formulae like Px?

In English:

- The designator ‘Russell’ has a constant semantic value.
Semantics for atomic \mathcal{L}_2-formulae

We have the semantics for \mathcal{L}_2-sentences like Pa. What about \mathcal{L}_2-formulae like Px?

In English:

- The designator ‘Russell’ has a constant semantic value.
- Pronouns, such as ‘it’, do not.
Semantics for atomic \mathcal{L}_2-formulae

We have the semantics for \mathcal{L}_2-sentences like Pa. What about \mathcal{L}_2-formulae like Px?

In English:

- The designator ‘Russell’ has a constant semantic value.
- Pronouns, such as ‘it’, do not. ‘it’ refers to different objects depending on the context.
Semantics for atomic \mathcal{L}_2-formulae

We have the semantics for \mathcal{L}_2-sentences like Pa. What about \mathcal{L}_2-formulae like Px?

In English:

- The designator ‘Russell’ has a constant semantic value.
- Pronouns, such as ‘it’, do not. ‘it’ refers to different objects depending on the context.

Something similar happens in an \mathcal{L}_2-structure \mathcal{A}:
Semantics for atomic \mathcal{L}_2-formulae

We have the semantics for \mathcal{L}_2-sentences like Pa. What about \mathcal{L}_2-formulae like Px?

In English:

- The designator ‘Russell’ has a constant semantic value.
- Pronouns, such as ‘it’, do not. ‘it’ refers to different objects depending on the context.

Something similar happens in an \mathcal{L}_2-structure \mathcal{A}:

- a, b, c, \ldots are assigned a constant semantic value in \mathcal{A}.
Semantics for atomic \mathcal{L}_2-formulae

We have the semantics for \mathcal{L}_2-sentences like Pa. What about \mathcal{L}_2-formulae like Px?

In English:

- The designator ‘Russell’ has a constant semantic value.
- Pronouns, such as ‘it’, do not. ‘it’ refers to different objects depending on the context.

Something similar happens in an \mathcal{L}_2-structure A:

- a, b, c, \ldots are assigned a constant semantic value in A.
- Variables: x, y, z, \ldots are not.
Semantics for atomic \mathcal{L}_2-formulae

We have the semantics for \mathcal{L}_2-sentences like Pa. What about \mathcal{L}_2-formulae like Px?

In English:

- The designator ‘Russell’ has a constant semantic value.
- Pronouns, such as ‘it’, do not. ‘it’ refers to different objects depending on the context.

Something similar happens in an \mathcal{L}_2-structure \mathcal{A}:

- a, b, c, \ldots are assigned a constant semantic value in \mathcal{A}.
- Variables: x, y, z, \ldots are not.

What object each variable denotes is specified with a variable assignment.
Variable assignments

<table>
<thead>
<tr>
<th>Variable assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A variable assignment assigns an object to each variable.</td>
</tr>
</tbody>
</table>

Example: the assignment α.
\[
\begin{align*}
x & \mapsto 1 \\
y & \mapsto 1 \\
z & \mapsto 1 \\
x & \mapsto 2
\end{align*}
\]

Mercury Venus Venus Neptune Mars Venus Mars \ldots

Notation

We write $|x|\alpha$ for the object α assigns to x.

We use lower case Greek letters: α, β, γ for assignments.

E.g. $|x|\alpha = \text{Mercury}$; $|y|\alpha = \text{Venus}$; $|x_2|\alpha = \text{Mars}$.
Variable assignments

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list:

\[
\begin{align*}
\alpha & : x \rightarrow 1, y \rightarrow 1, z \rightarrow 1, x \rightarrow 2, \ldots \\
& = \text{Mercury, Venus, Venus, Neptune, Mars, Venus, Mars, ...}
\end{align*}
\]
Variable assignments

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list.

Example: the assignment α.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x_1</th>
<th>y_1</th>
<th>z_1</th>
<th>x_2</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Venus</td>
<td>Venus</td>
<td>Neptune</td>
<td>Mars</td>
<td>Venus</td>
<td>Mars</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Variable assignments

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list.

Example: the assignment α.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x_1</th>
<th>y_1</th>
<th>z_1</th>
<th>x_2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Venus</td>
<td>Venus</td>
<td>Neptune</td>
<td>Mars</td>
<td>Venus</td>
<td>Mars</td>
<td>...</td>
</tr>
</tbody>
</table>

Notation

We write $|x|^\alpha$ for the object α assigns to x.
Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x_1</th>
<th>y_1</th>
<th>z_1</th>
<th>x_2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Venus</td>
<td>Venus</td>
<td>Neptune</td>
<td>Mars</td>
<td>Venus</td>
<td>Mars</td>
<td>...</td>
</tr>
</tbody>
</table>

Notation
We write $|x|^\alpha$ for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.
Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x_1</th>
<th>y_1</th>
<th>z_1</th>
<th>x_2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Venus</td>
<td>Venus</td>
<td>Neptune</td>
<td>Mars</td>
<td>Venus</td>
<td>Mars</td>
<td>...</td>
</tr>
</tbody>
</table>

Notation
We write $|x|^\alpha$ for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^\alpha =$
Variable assignments

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x₁</th>
<th>y₁</th>
<th>z₁</th>
<th>x₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Venus</td>
<td>Venus</td>
<td>Neptune</td>
<td>Mars</td>
<td>Venus</td>
<td>Mars</td>
</tr>
</tbody>
</table>

Example: the assignment α.

Notation

We write $|x|^\alpha$ for the object α assigns to x.

We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^\alpha = \text{Mercury}$
Variable assignments

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td>x₁</td>
<td>y₁</td>
<td>z₁</td>
</tr>
<tr>
<td>Mercury</td>
<td>Venus</td>
<td>Venus</td>
<td>Neptune</td>
<td>Mars</td>
<td>Venus</td>
</tr>
</tbody>
</table>

Notation

We write $|x|^\alpha$ for the object α assigns to x. We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^\alpha = \text{Mercury}$; $|y|^\alpha =$
Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x_1</th>
<th>y_1</th>
<th>z_1</th>
<th>x_2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Venus</td>
<td>Venus</td>
<td>Neptune</td>
<td>Mars</td>
<td>Venus</td>
<td>Mars</td>
<td>...</td>
</tr>
</tbody>
</table>

Notation
We write $|x|^\alpha$ for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^\alpha = \text{Mercury}; |y|^\alpha = \text{Venus}$
Variable assignments

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list.

Example: the assignment \(\alpha \).

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(y)</td>
<td>(z)</td>
<td>(x_1)</td>
<td>(y_1)</td>
<td>(z_1)</td>
</tr>
<tr>
<td>Mercury</td>
<td>Venus</td>
<td>Venus</td>
<td>Neptune</td>
<td>Mars</td>
<td>Venus</td>
</tr>
</tbody>
</table>

Notation

We write \(|x|^\alpha\) for the object \(\alpha \) assigns to \(x \).

We use lower case Greek letters: \(\alpha, \beta, \gamma \) for assignments.

e.g. \(|x|^\alpha = \text{Mercury};\ |y|^\alpha = \text{Venus};\ |x_2|^\alpha = \text{...} |
Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x_1</th>
<th>y_1</th>
<th>z_1</th>
<th>x_2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Venus</td>
<td>Venus</td>
<td>Neptune</td>
<td>Mars</td>
<td>Venus</td>
<td>Mars</td>
<td>...</td>
</tr>
</tbody>
</table>

Notation
We write $|x|^\alpha$ for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^\alpha = \text{Mercury}$; $|y|^\alpha = \text{Venus}$; $|x_2|^\alpha = \text{Mars}$.
Once x has been assigned an object, the semantics for Px are much like the semantics for Pa.
Once x has been assigned an object, the semantics for $P\!x$ are much like the semantics for $P\!a$

We write $|e|^\alpha_\mathcal{A}$ for the semantic value of expression e in the structure \mathcal{A} under the variable assignment α.
Once x has been assigned an object, the semantics for Px are much like the semantics for Pa

We write $|e|^\alpha_{\mathcal{A}}$ for the semantic value of expression e in the structure \mathcal{A} under the variable assignment α.

- $|Px|^\alpha_{\mathcal{A}} = T$ iff $|x|^\alpha$ has $|P|_{\mathcal{A}}$

Note: semantic values of constants and predicates are unaffected by the assignment (e.g. $|P|^\alpha_{\mathcal{A}} = |P|_{\mathcal{A}}$, $|a|^\alpha_{\mathcal{A}} = |a|_{\mathcal{A}}$).

- $|Rab|^\alpha_{\mathcal{A}} = T$ iff $\langle |a|_{\mathcal{A}}, |b|_{\mathcal{A}} \rangle \in |R|_{\mathcal{A}}$

- $|Rxb|^\alpha_{\mathcal{A}} = T$ iff $\langle |x|_{\mathcal{A}}, |b|_{\mathcal{A}} \rangle \in |R|_{\mathcal{A}}$
Once \(x \) has been assigned an object, the semantics for \(Px \) are much like the semantics for \(Pa \).

We write \(|e|_{\mathcal{A}}^\alpha \) for the semantic value of expression \(e \) in the structure \(\mathcal{A} \) under the variable assignment \(\alpha \).

- \(|Px|_{\mathcal{A}}^\alpha = T \) iff \(|x|_{\mathcal{A}}^\alpha \) has \(|P|_{\mathcal{A}} \)
 \(\text{(NB: } |x|_{\mathcal{A}}^\alpha = |x|_{\alpha}) \)
Once x has been assigned an object, the semantics for $P \cdot x$ are much like the semantics for $P \cdot a$

We write $|e|^\alpha_A$ for the semantic value of expression e in the structure A under the variable assignment α.

- $|P \cdot x|^\alpha_A = T$ iff $|x|^\alpha$ has $|P|^A$

 iff $|x|^\alpha \in |P|^A$

(NB: $|x|^\alpha_A = |x|^\alpha$)
Once x has been assigned an object, the semantics for Px are much like the semantics for Pa

We write $|e|^\alpha_\mathcal{A}$ for the semantic value of expression e in the structure \mathcal{A} under the variable assignment α.

- $|Px|^\alpha_\mathcal{A} = T$ iff $|x|^\alpha$ has $|P|^\mathcal{A}$ iff $|x|^\alpha \in |P|^\mathcal{A}$ (NB: $|x|^\alpha_\mathcal{A} = |x|^\alpha$)
- $|Rxy|^\alpha_\mathcal{A} = T$ iff $|x|^\alpha$ stands in $|R|^\mathcal{A}$ to $|y|^\alpha$
Once \(x \) has been assigned an object, the semantics for \(Px \) are much like the semantics for \(Pa \).

We write \(|e|_A^\alpha \) for the semantic value of expression \(e \) in the structure \(A \) under the variable assignment \(\alpha \).

- \(|Px|_A^\alpha = T \) iff \(|x|_A^\alpha \) has \(|P|_A \) iff \(|x|_A^\alpha \in |P|_A \) (NB: \(|x|_A^\alpha = |x|_A^\alpha \))
- \(|Rxy|_A^\alpha = T \) iff \(|x|_A^\alpha \) stands in \(|R|_A \) to \(|y|_A^\alpha \) iff \(\langle |x|_A^\alpha, |y|_A^\alpha \rangle \in |R|_A \)
Once x has been assigned an object, the semantics for Px are much like the semantics for Pa.

We write $|e|_A^\alpha$ for the semantic value of expression e in the structure \mathcal{A} under the variable assignment α.

- $|Px|_A^\alpha = T$ iff $|x|_A^\alpha$ has $|P|_A$ iff $|x|_A^\alpha \in |P|_A$
 \hspace{1cm} (NB: $|x|_A^\alpha = |x|_A$)

- $|Rxy|_A^\alpha = T$ iff $|x|_A^\alpha$ stands in $|R|_A$ to $|y|_A^\alpha$ iff $\langle |x|_A^\alpha, |y|_A^\alpha \rangle \in |R|_A$

Note: semantic values of constants and predicates are unaffected by the assignment (e.g. $|P|_A^\alpha = |P|_A$, $|a|_A^\alpha = |a|_A$).
Once x has been assigned an object, the semantics for Px are much like the semantics for Pa

We write $|e|_A^\alpha$ for the semantic value of expression e in the structure A under the variable assignment α.

- $|Px|_A^\alpha = T$ iff $|x|_A^\alpha$ has $|P|_A$

 iff $|x|_A^\alpha \in |P|_A$

- $|Rxy|_A^\alpha = T$ iff $|x|_A^\alpha$ stands in $|R|_A$ to $|y|_A$

 iff $\langle |x|_A^\alpha, |y|_A^\alpha \rangle \in |R|_A$

Note: semantic values of constants and predicates are unaffected by the assignment (e.g. $|P|_A^\alpha = |P|_A$, $|a|_A^\alpha = |a|_A$).

- $|Rab|_A^\alpha = T$ iff $\langle |a|_A, |b|_A \rangle \in |R|_A$
Once x has been assigned an object, the semantics for Px are much like the semantics for Pa

We write $|e|_{\mathcal{A}}^\alpha$ for the semantic value of expression e in the structure \mathcal{A} under the variable assignment α.

- $|Px|_{\mathcal{A}}^\alpha = T$ iff $|x|_{\mathcal{A}}^\alpha$ has $|P|_{\mathcal{A}}$ iff $|x|_{\mathcal{A}}^\alpha \in |P|_{\mathcal{A}}$ (NB: $|x|_{\mathcal{A}}^\alpha = |x|_{\mathcal{A}}^\alpha$)

- $|Rxy|_{\mathcal{A}}^\alpha = T$ iff $|x|_{\mathcal{A}}^\alpha$ stands in $|R|_{\mathcal{A}}$ to $|y|_{\mathcal{A}}^\alpha$ iff $\langle |x|_{\mathcal{A}}^\alpha, |y|_{\mathcal{A}}^\alpha \rangle \in |R|_{\mathcal{A}}$

Note: semantic values of constants and predicates are unaffected by the assignment (e.g. $|P|_{\mathcal{A}}^\alpha = |P|_{\mathcal{A}}, |a|_{\mathcal{A}}^\alpha = |a|_{\mathcal{A}}$).

- $|Rab|_{\mathcal{A}}^\alpha = T$ iff $\langle |a|_{\mathcal{A}}, |b|_{\mathcal{A}} \rangle \in |R|_{\mathcal{A}}$
- $|Rx b|_{\mathcal{A}}^\alpha = T$ iff $\langle |x|_{\mathcal{A}}, |b|_{\mathcal{A}} \rangle \in |R|_{\mathcal{A}}$
Once x has been assigned an object, the semantics for Px are much like the semantics for Pa.

We write $|e|^\alpha_A$ for the semantic value of expression e in the structure A under the variable assignment α.

- $|Px|^\alpha_A = T$ iff $|x|^\alpha$ has $|P|_A$
 - iff $|x|^\alpha \in |P|_A$
- $|Rxy|^\alpha_A = T$ iff $|x|^\alpha$ stands in $|R|_A$ to $|y|^\alpha$
 - iff $\langle |x|^\alpha, |y|^\alpha \rangle \in |R|_A$

Note: semantic values of constants and predicates are unaffected by the assignment (e.g. $|P|^\alpha_A = |P|_A$, $|a|^\alpha_A = |a|_A$).

- $|Rab|^\alpha_A = T$ iff $\langle |a|_A, |b|_A \rangle \in |R|_A$
- $|Rx|^\alpha_A = T$ iff $\langle |x|^\alpha, |b|_A \rangle \in |R|_A$

Similarly for other atomic formulae.
Worked example

Let \mathcal{L}_2-structure \mathcal{A} be such that:

- $|a|_\mathcal{A} = \text{Alonzo Church}$
- $|b|_\mathcal{A} = \text{Bertrand Russell}$
- $|P|_\mathcal{A} = \{\text{Frege, Russell}\}$
- $|R|_\mathcal{A} = \{\langle\text{Church, Russell}\rangle\}$

Let assignments α and β be such that:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>α:</td>
<td>Frege</td>
<td>Russell</td>
<td>Wittgenstein</td>
</tr>
<tr>
<td>β:</td>
<td>Church</td>
<td>Church</td>
<td>Church</td>
</tr>
</tbody>
</table>
Worked example

Let \mathcal{L}_2-structure \mathcal{A} be such that:

- $|a|_\mathcal{A} = \text{Alonzo Church}$
- $|b|_\mathcal{A} = \text{Bertrand Russell}$
- $|P|_\mathcal{A} = \{\text{Frege, Russell}\}$
- $|R|_\mathcal{A} = \{\langle \text{Church, Russell} \rangle\}$

Let assignments α and β be such that:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>α:</td>
<td>Frege</td>
<td>Russell</td>
<td>Wittgenstein</td>
</tr>
<tr>
<td>β:</td>
<td>Church</td>
<td>Church</td>
<td>Church</td>
</tr>
</tbody>
</table>

Compute the following:

- $|x|_\mathcal{A}^\alpha = \text{Frege}$
- $|x|_\mathcal{A}^\beta = \text{Church}$
- $|a|_\mathcal{A}^\alpha = \text{Church}$
- $|Py|_\mathcal{A}^\alpha = T$
- $|Py|_\mathcal{A}^\beta = F$
- $|Pb|_\mathcal{A}^\alpha = T$
- $|Rx|_\mathcal{A}^\alpha = F$
- $|Rx|_\mathcal{A}^\beta = F$
- $|Rx|_\mathcal{A}^\alpha = F$
Worked example

Let \mathcal{L}_2-structure \mathcal{A} be such that:

- $|a|_\mathcal{A} = \text{Alonzo Church}$
- $|b|_\mathcal{A} = \text{Bertrand Russell}$
- $|P|_\mathcal{A} = \{\text{Frege, Russell}\}$
- $|R|_\mathcal{A} = \{\langle\text{Church, Russell}\rangle\}$

Let assignments α and β be such that:

\[
\begin{array}{ccc}
 x & y & z \\
 \alpha: & \text{Frege} & \text{Russell} & \text{Wittgenstein} \\
 \beta: & \text{Church} & \text{Church} & \text{Church} \\
\end{array}
\]

Compute the following:

- $|x|_\mathcal{A}^\alpha = \text{Frege}$
- $|x|_\mathcal{A}^\beta =$
- $|a|_\mathcal{A}^\alpha =$
- $|P|_\mathcal{A}^\alpha =$
- $|P|_\mathcal{A}^\beta =$
- $|Pb|_\mathcal{A}^\alpha =$
- $|Rxy|_\mathcal{A}^\alpha =$
- $|Rxy|_\mathcal{A}^\beta =$
- $|Rx|_\mathcal{A}^\alpha =$
Worked example

Let \mathcal{L}_2-structure \mathcal{A} be such that:

- $|a|_{\mathcal{A}} = \text{Alonzo Church}$
- $|b|_{\mathcal{A}} = \text{Bertrand Russell}$
- $|P|_{\mathcal{A}} = \{\text{Frege, Russell}\}$
- $|R|_{\mathcal{A}} = \{\langle\text{Church, Russell}\rangle\}$

Let assignments α and β be such that:

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Frege</td>
<td>Church</td>
</tr>
<tr>
<td>y</td>
<td>Russell</td>
<td>Church</td>
</tr>
<tr>
<td>z</td>
<td>Wittgenstein</td>
<td>Church</td>
</tr>
</tbody>
</table>

Compute the following:

- $|x|^\alpha_{\mathcal{A}} = \text{Frege}$
- $|x|^\beta_{\mathcal{A}} = \text{Church}$
- $|a|^\alpha_{\mathcal{A}} =$
- $|Py|^\alpha_{\mathcal{A}} =$
- $|Py|^\beta_{\mathcal{A}} =$
- $|Pb|^\alpha_{\mathcal{A}} =$
- $|Rxy|^\alpha_{\mathcal{A}} =$
- $|Rxy|^\beta_{\mathcal{A}} =$
- $|Rxb|^\alpha_{\mathcal{A}} =$
Worked example

Let \mathcal{L}_2-structure \mathcal{A} be such that:

- $|a|_\mathcal{A} = \text{Alonzo Church}$
- $|b|_\mathcal{A} = \text{Bertrand Russell}$
- $|P|_\mathcal{A} = \{\text{Frege, Russell}\}$
- $|R|_\mathcal{A} = \{\langle\text{Church, Russell}\rangle\}$

Let assignments α and β be such that:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>α:</td>
<td>Frege</td>
<td>Russell</td>
<td>Wittgenstein</td>
</tr>
<tr>
<td>β:</td>
<td>Church</td>
<td>Church</td>
<td>Church</td>
</tr>
</tbody>
</table>

Compute the following:

- $|x|_\mathcal{A}^\alpha = \text{Frege}$
- $|x|_\mathcal{A}^\beta = \text{Church}$
- $|a|_\mathcal{A}^\alpha = \text{Church}$
- $|P|_\mathcal{A}^\alpha = \text{Frege}$
- $|P|_\mathcal{A}^\beta = \text{Church}$
- $|Pb|_\mathcal{A}^\alpha = \text{Church}$
- $|Rxy|_\mathcal{A}^\alpha = \text{Frege}$
- $|Rxy|_\mathcal{A}^\beta = \text{Church}$
- $|Rx b|_\mathcal{A}^\alpha = \text{Church}$
Worked example

Let \mathcal{L}_2-structure \mathcal{A} be such that:

- $|a|_\mathcal{A} = \text{Alonzo Church}$
- $|b|_\mathcal{A} = \text{Bertrand Russell}$
- $|P|_\mathcal{A} = \{\text{Frege, Russell}\}$
- $|R|_\mathcal{A} = \{\langle \text{Church, Russell} \rangle\}$

Let assignments α and β be such that:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>α:</td>
<td>Frege</td>
<td>Russell</td>
<td>Wittgenstein</td>
</tr>
<tr>
<td>β:</td>
<td>Church</td>
<td>Church</td>
<td>Church</td>
</tr>
</tbody>
</table>

Compute the following:

- $|x|_\mathcal{A}^\alpha = \text{Frege}$
- $|x|_\mathcal{A}^\beta = \text{Church}$
- $|a|_\mathcal{A}^\alpha = \text{Church}$
- $|Py|_\mathcal{A}^\alpha = \text{T}$
- $|Py|_\mathcal{A}^\beta = $ (Blank)
- $|Pb|_\mathcal{A}^\alpha = $ (Blank)
- $|Rxy|_\mathcal{A}^\alpha = $ (Blank)
- $|Rxy|_\mathcal{A}^\beta = $ (Blank)
- $|Rx b|_\mathcal{A}^\alpha = $ (Blank)
Worked example

Let \mathcal{L}_2-structure \mathcal{A} be such that:
- $|a|_\mathcal{A} = \text{Alonzo Church}$
- $|b|_\mathcal{A} = \text{Bertrand Russell}$
- $|P|_\mathcal{A} = \{\text{Frege, Russell}\}$
- $|R|_\mathcal{A} = \{\langle\text{Church, Russell}\rangle\}$

Let assignments α and β be such that:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Frege</td>
<td>Russell</td>
<td>Wittgenstein</td>
</tr>
<tr>
<td>β</td>
<td>Church</td>
<td>Church</td>
<td>Church</td>
</tr>
</tbody>
</table>

Compute the following:

$|x|_\mathcal{A}^\alpha = \text{Frege} \quad |x|_\mathcal{A}^\beta = \text{Church} \quad |a|_\mathcal{A}^\alpha = \text{Church}$

$|Py|_\mathcal{A}^\alpha = T \quad |Py|_\mathcal{A}^\beta = F \quad |Pb|_\mathcal{A}^\alpha =$

$|Rxy|_\mathcal{A}^\alpha = \quad |Rxy|_\mathcal{A}^\beta = \quad |Rx b|_\mathcal{A}^\alpha =$
Worked example

Let \mathcal{L}_2-structure \mathcal{A} be such that:

- $|a|_A = \text{Alonzo Church}$
- $|b|_A = \text{Bertrand Russell}$
- $|P|_A = \{\text{Frege, Russell}\}$
- $|R|_A = \{\langle \text{Church, Russell} \rangle\}$

Let assignments α and β be such that:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>α: Frege</td>
<td>Russell</td>
<td>Wittgenstein</td>
</tr>
<tr>
<td>β: Church</td>
<td>Church</td>
<td>Church</td>
</tr>
</tbody>
</table>

Compute the following:

- $|x|_A^\alpha = \text{Frege}$
- $|x|_A^\beta = \text{Church}$
- $|a|_A^\alpha = \text{Church}$
- $|Py|_A^\alpha = \text{T}$
- $|Py|_A^\beta = \text{F}$
- $|Pb|_A^\alpha = \text{T}$
- $|Rxy|_A^\alpha = \text{ }$
- $|Rxy|_A^\beta = \text{ }$
- $|Rx'b|_A^\alpha = \text{ }$
Worked example

Let \mathcal{L}_2-structure \mathcal{A} be such that:

- $|a|_\mathcal{A} = \text{Alonzo Church}$
- $|b|_\mathcal{A} = \text{Bertrand Russell}$
- $|P|_\mathcal{A} = \{\text{Frege, Russell}\}$
- $|R|_\mathcal{A} = \{\langle\text{Church, Russell}\rangle\}$

Let assignments α and β be such that:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>α:</td>
<td>Frege</td>
<td>Russell</td>
<td>Wittgenstein</td>
</tr>
<tr>
<td>β:</td>
<td>Church</td>
<td>Church</td>
<td>Church</td>
</tr>
</tbody>
</table>

Compute the following:

- $|x|_\mathcal{A}^\alpha = \text{Frege}$ $|x|_\mathcal{A}^\beta = \text{Church}$ $|a|_\mathcal{A}^\alpha = \text{Church}$
- $|Py|_\mathcal{A}^\alpha = T$ $|Py|_\mathcal{A}^\beta = F$ $|Pb|_\mathcal{A}^\alpha = T$
- $|Rxy|_\mathcal{A}^\alpha = F$ $|Rxy|_\mathcal{A}^\beta = $ $|Rx b|_\mathcal{A}^\alpha = $
Worked example

Let L_2-structure A be such that:

- $|a|_A = \text{Alonzo Church}$
- $|b|_A = \text{Bertrand Russell}$
- $|P|_A = \{\text{Frege, Russell}\}$
- $|R|_A = \{\langle\text{Church, Russell}\rangle\}$

Let assignments α and β be such that:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Frege</td>
<td>Russell</td>
<td>Wittgenstein</td>
</tr>
<tr>
<td>β</td>
<td>Church</td>
<td>Church</td>
<td>Church</td>
</tr>
</tbody>
</table>

Compute the following:

- $|x|_{\alpha} = \text{Frege}$
- $|x|_{\beta} = \text{Church}$
- $|a|_{\alpha} = \text{Church}$
- $|Py|_{\alpha} = T$
- $|Py|_{\beta} = F$
- $|Pb|_{\alpha} = T$
- $|Rxy|_{\alpha} = F$
- $|Rxy|_{\beta} = F$
- $|Rx|_{\alpha} = $
Worked example

Let \mathcal{L}_2-structure \mathcal{A} be such that:

- $|a|_\mathcal{A} = \text{Alonzo Church}$
- $|b|_\mathcal{A} = \text{Bertrand Russell}$
- $|P|_\mathcal{A} = \{\text{Frege, Russell}\}$
- $|R|_\mathcal{A} = \{\langle\text{Church, Russell}\rangle\}$

Let assignments α and β be such that:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Frege</td>
<td>Russell</td>
<td>Wittgenstein</td>
</tr>
<tr>
<td>β</td>
<td>Church</td>
<td>Church</td>
<td>Church</td>
</tr>
</tbody>
</table>

Compute the following:

- $|x|_\mathcal{A}^\alpha = \text{Frege}$
 $|x|_\mathcal{A}^\beta = \text{Church}$
 $|a|_\mathcal{A}^\alpha = \text{Church}$
- $|Py|_\mathcal{A}^\alpha = \text{T}$
 $|Py|_\mathcal{A}^\beta = \text{F}$
 $|Pb|_\mathcal{A}^\alpha = \text{T}$
- $|Rxy|_\mathcal{A}^\alpha = \text{F}$
 $|Rxy|_\mathcal{A}^\beta = \text{F}$
 $|Rx b|_\mathcal{A}^\alpha = \text{F}$
Semantics for quantifiers

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.
Semantics for quantifiers

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.
Semantics for quantifiers

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’ ranges over
Semantics for quantifiers

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’ ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended the first lecture.
Semantics for quantifiers

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’ ranges over

Domain: the set of first-year Oxford philosophy students

Almost every first-year Oxford philosophy student attended the first lecture.

T
Semantics for quantifiers

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’ ranges over

Domain: the set of first-year Oxford philosophy students
Almost every first-year Oxford philosophy student attended the first lecture. T

Domain: the set of everyone in the world
Almost everyone in the world attended the first lecture.
Semantics for quantifiers

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a ‘domain’ telling us who ‘everyone’ ranges over

Domain: the set of first-year Oxford philosophy students
Almost every first-year Oxford philosophy student attended the first lecture. T

Domain: the set of everyone in the world
Almost everyone in the world attended the first lecture. F
An L_2-structure \mathcal{A} specifies a non-empty set $D_\mathcal{A}$ as the domain.
An \mathcal{L}_2-structure \mathcal{A} specifies a non-empty set $D_\mathcal{A}$ as the domain. An assignment over \mathcal{A} assigns a member of $D_\mathcal{A}$ to each variable.
An \mathcal{L}_2-structure \mathcal{A} specifies a non-empty set $D_\mathcal{A}$ as the domain. An assignment over \mathcal{A} assigns a member of $D_\mathcal{A}$ to each variable.

Semantics for \forall/\exists (first approximation):

\[
|\forall x P x|_\mathcal{A} = T \quad \text{iff every member of } D_\mathcal{A} \text{ has } |P|_\mathcal{A}
\]
An \mathcal{L}_2-structure \mathcal{A} specifies a non-empty set $D_\mathcal{A}$ as the domain. An assignment over \mathcal{A} assigns a member of $D_\mathcal{A}$ to each variable.

Semantics for \forall/\exists (first approximation):

$$|\forall x P x|_\mathcal{A} = T$$
iff every member of $D_\mathcal{A}$ has $|P|_\mathcal{A}$
iff every assignment α of x to a member of $D_\mathcal{A}$ is such that $|x|^\alpha \in |P|_\mathcal{A}$
An \mathcal{L}_2-structure \mathcal{A} specifies a non-empty set $D_\mathcal{A}$ as the domain. An assignment over \mathcal{A} assigns a member of $D_\mathcal{A}$ to each variable.

Semantics for \forall/\exists (first approximation):

$$\forall x P x|_\mathcal{A} = T$$

iff every member of $D_\mathcal{A}$ has $|P|_\mathcal{A}$

iff every assignment α of x to a member of $D_\mathcal{A}$ is such that $|x|^\alpha \in |P|_\mathcal{A}$

iff every assignment α over \mathcal{A} is such that $|Px|^\alpha = T$
An \mathcal{L}_2-structure \mathcal{A} specifies a non-empty set $D_{\mathcal{A}}$ as the domain. An assignment over \mathcal{A} assigns a member of $D_{\mathcal{A}}$ to each variable.

Semantics for \forall/\exists (first approximation):

$|\forall xP x|_{\mathcal{A}} = T$
iff every member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$
iff every assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|_{\alpha} \in |P|_{\mathcal{A}}$
iff every assignment α over \mathcal{A} is such that $|Px|_{\alpha}^{\alpha} = T$

Similarly:

$|\exists xP x|_{\mathcal{A}} = T$
iff some member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$
An L_2-structure \mathcal{A} specifies a non-empty set $D_\mathcal{A}$ as the domain. An assignment over \mathcal{A} assigns a member of $D_\mathcal{A}$ to each variable.

Semantics for \forall/\exists (first approximation):

$$|\forall x P x|_\mathcal{A} = T$$

iff every member of $D_\mathcal{A}$ has $|P|_\mathcal{A}$

iff every assignment α of x to a member of $D_\mathcal{A}$ is such that $|x|^\alpha \in |P|_\mathcal{A}$

iff every assignment α over \mathcal{A} is such that $|P x|^\alpha_\mathcal{A} = T$

Similarly:

$$|\exists x P x|_\mathcal{A} = T$$

iff some member of $D_\mathcal{A}$ has $|P|_\mathcal{A}$

iff some assignment α of x to a member of $D_\mathcal{A}$ is such that $|x|^\alpha \in |P|_\mathcal{A}$

This is correct but the general case is more complex.
An \mathcal{L}_2-structure \mathcal{A} specifies a non-empty set $D_\mathcal{A}$ as the domain. An assignment over \mathcal{A} assigns a member of $D_\mathcal{A}$ to each variable.

Semantics for \forall / \exists (first approximation):

\[
|\forall xPx|_\mathcal{A} = T \\
\text{iff every member of } D_\mathcal{A} \text{ has } |P|_\mathcal{A} \\
\text{iff every assignment } \alpha \text{ of } x \text{ to a member of } D_\mathcal{A} \text{ is such that } |x|^{\alpha} \in |P|_\mathcal{A} \\
\text{iff every assignment } \alpha \text{ over } \mathcal{A} \text{ is such that } |Px|^{\alpha}_\mathcal{A} = T
\]

Similarly:

\[
|\exists xPx|_\mathcal{A} = T \\
\text{iff some member of } D_\mathcal{A} \text{ has } |P|_\mathcal{A} \\
\text{iff some assignment } \alpha \text{ of } x \text{ to a member of } D_\mathcal{A} \text{ is such that } |x|^{\alpha} \in |P|_\mathcal{A} \\
\text{iff some assignment } \alpha \text{ over } \mathcal{A} \text{ is such that } |Px|^{\alpha}_\mathcal{A} = T
\]
An \mathcal{L}_2-structure \mathcal{A} specifies a non-empty set $D_\mathcal{A}$ as the domain. An assignment over \mathcal{A} assigns a member of $D_\mathcal{A}$ to each variable.

|Semantics for \forall/\exists (first approximation):|

$|\forall xPx|_\mathcal{A} = T$
 iff every member of $D_\mathcal{A}$ has $|P|_\mathcal{A}$
 iff every assignment α of x to a member of $D_\mathcal{A}$ is such that $|x|_\alpha \in |P|_\mathcal{A}$
 iff every assignment α over \mathcal{A} is such that $|Px|_\alpha = T$

Similarly:

$|\exists xPx|_\mathcal{A} = T$
 iff some member of $D_\mathcal{A}$ has $|P|_\mathcal{A}$
 iff some assignment α of x to a member of $D_\mathcal{A}$ is such that $|x|_\alpha \in |P|_\mathcal{A}$
 iff some assignment α over \mathcal{A} is such that $|Px|_\alpha = T$

This is correct but the general case is more complex.
The semantics of quantifiers is complicated by the need to deal with multiple quantifiers in sentences such as $\forall x \exists y Rxy$
The semantics of quantifiers is complicated by the need to deal with multiple quantifiers in sentences such as $\forall x\exists y Rxy$

Suppose we try to evaluate this as before under \mathcal{A} with domain $D_{\mathcal{A}}$
The semantics of quantifiers is complicated by the need to deal with multiple quantifiers in sentences such as $\forall x \exists y Rxy$

Suppose we try to evaluate this as before under \mathcal{A} with domain $D_\mathcal{A}$

$$|\forall x \exists y Rxy|_\mathcal{A} = T$$

iff every assignment α over \mathcal{A} is such that $|\exists y Rxy|^\alpha_\mathcal{A} = T$
The semantics of quantifiers is complicated by the need to deal with multiple quantifiers in sentences such as $\forall x \exists y R xy$

Suppose we try to evaluate this as before under \mathcal{A} with domain D_A

$$|\forall x \exists y R xy|_\mathcal{A} = T$$

iff every assignment α over \mathcal{A} is such that $|\exists y R xy|_\mathcal{A}^\alpha = T$

To progress any further we need to be able evaluate $\exists y R xy$ under an assignment α of an object to x.
How to determine $|\exists yRxy|_A^\alpha$?
How to determine $|\exists y Rxy|^\alpha_A$?

$|\exists y Rxy|^\alpha_A = T$

iff some d in D_A is such that $|x|^\alpha$ stands in $|R|^A$ to d
How to determine $|\exists y R xy|_A^\alpha$?

$|\exists y R xy|_A^\alpha = T$

iff some d in D_A is such that $|x|_A^\alpha$ stands in $|R|_A$ to d

iff some assignment β over A is such that $|x|_A^\alpha$ stands in $|R|_A$ to $|y|_A^\beta$
How to determine $|\exists y Rxy|_A^\alpha$?

$|\exists y Rxy|_A^\alpha = T$

iff some d in D_A is such that $|x|_A^{\alpha}$ stands in $|R|_A$ to d

iff some assignment β over A is such that $|x|_A^{\alpha}$ stands in $|R|_A$ to $|y|_A^{\beta}$

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if $|v|_A^{\alpha} = |v|_A^{\beta}$ for all variables v with the possible exception of y.
How to determine $\exists y Rxy|_A^\alpha$?

$\exists y Rxy|_A^\alpha = T$

iff some d in D_A is such that $|x|^\alpha$ stands in $|R|_A$ to d

iff some assignment β over A is such that $|x|^\alpha$ stands in $|R|_A$ to $|y|^\beta$

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if $|v|^\alpha = |v|^\beta$ for all variables v with the possible exception of y.

$\exists y Rxy|_A^\alpha = T$

iff some assignment β over A which differs from α in y at most is such that $|x|^\alpha$ stands in $|R|_A$ to $|y|^\beta$
How to determine $|\exists y Rxy|^\alpha_A$?

$|\exists y Rxy|^\alpha_A = T$

iff some d in D_A is such that $|x|^\alpha$ stands in $|R|^A$ to d

iff some assignment β over A is such that $|x|^\alpha$ stands in $|R|^A$ to $|y|^\beta$

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if $|v|^\alpha = |v|^\beta$ for all variables v with the possible exception of y.

$|\exists y Rxy|^\alpha_A = T$

iff some assignment β over A which differs from α in y at most

is such that $|x|^\alpha$ stands in $|R|^A$ to $|y|^\beta$
How to determine $|\exists y R xy|^\alpha_A$?

$|\exists y R xy|^\alpha_A = T$

iff some d in D_A is such that $|x|^\alpha$ stands in $|R|^A$ to d

iff some assignment β over A is such that $|x|^\alpha$ stands in $|R|^A$ to $|y|^\beta$

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if $|v|^\alpha = |v|^\beta$ for all variables v with the possible exception of y.

$|\exists y R xy|^\alpha_A = T$

iff some assignment β over A which differs from α in y at most is such that $|x|^\beta$ stands in $|R|^A$ to $|y|^\beta$
How to determine $|\exists yRx_\alpha|_A$?

$|\exists yRx_\alpha|_A = T$

iff some d in D_A is such that $|x^\alpha$ stands in $|R|_A$ to d

iff some assignment β over A is such that $|x^\alpha$ stands in $|R|_A$ to $|y^\beta$

So we don’t have to keep track of multiple assignments:

Say that β differs from α in y at most if $|v^\alpha = |v^\beta$ for all variables v with the possible exception of y.

$|\exists yRx_\alpha|_A = T$

iff some assignment β over A which differs from α in y at most is such that $|x^\beta$ stands in $|R|_A$ to $|y^\beta$

iff some assignment β over A which differs from α in y at most is such that $|Rxy^\beta|_A = T$
\(\mathcal{L}_2\)-structures

Here’s the full specification of an \(\mathcal{L}_2\)-structure.
Here’s the full specification of an \mathcal{L}_2-structure.

An \mathcal{L}_2-structure \mathcal{A} supplies two things
\mathcal{L}_2-structures

Here’s the full specification of an \mathcal{L}_2-structure.

An \mathcal{L}_2-structure \mathcal{A} supplies two things

1. a domain: a non-empty set $D_\mathcal{A}$
\mathcal{L}_2-structures

Here’s the full specification of an \mathcal{L}_2-structure.

An \mathcal{L}_2-structure \mathcal{A} supplies two things

1. a domain: a non-empty set $D_\mathcal{A}$
2. a semantic value for each predicate and constant.
\mathcal{L}_2-structures

Here’s the full specification of an \mathcal{L}_2-structure.

An \mathcal{L}_2-structure \mathcal{A} supplies two things

1. a domain: a non-empty set $D_\mathcal{A}$
2. a semantic value for each predicate and constant.

<table>
<thead>
<tr>
<th>\mathcal{L}_2-expression</th>
<th>semantic value in \mathcal{A}</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant: a</td>
<td>object: $</td>
</tr>
<tr>
<td>sentence letter: P</td>
<td>truth-value: $</td>
</tr>
<tr>
<td>unary predicate: P^1</td>
<td>unary relation: $</td>
</tr>
<tr>
<td>binary predicate: P^2</td>
<td>binary relation: $</td>
</tr>
<tr>
<td>ternary predicate: P^3</td>
<td>ternary relation: $</td>
</tr>
<tr>
<td>etc. etc.</td>
<td></td>
</tr>
</tbody>
</table>
Summary of semantics of \mathcal{L}_2

Let A be an \mathcal{L}_2-structure and α an assignment over A.
Summary of semantics of \mathcal{L}_2

Let \mathcal{A} be an \mathcal{L}_2-structure and α an assignment over \mathcal{A}.

Atomic formulae

Let Φ^n be a n-ary predicate letter ($n > 0$) and let t_1, t_2, \ldots be variables or constants.
Summary of semantics of \mathcal{L}_2

Let A be an \mathcal{L}_2-structure and α an assignment over A.

Atomic formulae

Let Φ^n be a n-ary predicate letter ($n > 0$) and let t_1, t_2, \ldots be variables or constants.

- $|\Phi^n|_A^\alpha$ is the n-ary relation assigned to Φ^n by A.
Summary of semantics of L_2

Let A be an L_2-structure and α an assignment over A.

Atomic formulae

Let Φ^n be a n-ary predicate letter ($n > 0$) and let t_1, t_2, \ldots be variables or constants.

- $|\Phi^n|^{\alpha}_A$ is the n-ary relation assigned to Φ^n by A.
- $|t|^{\alpha}_A$ is the object t denotes in A if t is a constant.
- $|t|^{\alpha}_A$ is the object assigned to t by α if t is a variable.

(i) $|\Phi^1t_1|^{\alpha}_A = T$ if and only if $|t_1|^{\alpha}_A \in |\Phi^1|_A$
Summary of semantics of \mathcal{L}_2

Let \mathcal{A} be an \mathcal{L}_2-structure and α an assignment over \mathcal{A}.

Atomic formulae

Let Φ^n be a n-ary predicate letter ($n > 0$) and let t_1, t_2, \ldots be variables or constants.

- $|\Phi^n_\mathcal{A}^{\alpha}$ is the n-ary relation assigned to Φ^n by \mathcal{A}.
- $|t_\mathcal{A}^{\alpha}$ is the object t denotes in \mathcal{A} if t is a constant.
- $|t_\mathcal{A}^{\alpha}$ is the object assigned to t by α if t is a variable.

(i) $|\Phi^1 t_1_\mathcal{A}^{\alpha} = T$ if and only if $|t_1_\mathcal{A}^{\alpha} \in |\Phi^1_\mathcal{A}$
$|\Phi^2 t_1 t_2_\mathcal{A}^{\alpha} = T$ if and only if $\langle |t_1_\mathcal{A}^{\alpha}, |t_2_\mathcal{A}^{\alpha} \rangle \in |\Phi^2_\mathcal{A}$
Summary of semantics of \mathcal{L}_2

Let \mathcal{A} be an \mathcal{L}_2-structure and α an assignment over \mathcal{A}.

Atomic formulae

Let Φ^n be a n-ary predicate letter ($n > 0$) and let t_1, t_2, \ldots be variables or constants.

- $|\Phi^n|_\mathcal{A}^\alpha$ is the n-ary relation assigned to Φ^n by \mathcal{A}.
- $|t|_\mathcal{A}^\alpha$ is the object t denotes in \mathcal{A} if t is a constant.
- $|t|_\mathcal{A}^\alpha$ is the object assigned to t by α if t is a variable.

(i) $|\Phi^1t_1|_\mathcal{A}^\alpha = T$ if and only if $|t_1|_\mathcal{A}^\alpha \in |\Phi^1|_\mathcal{A}$

$|\Phi^2t_1t_2|_\mathcal{A}^\alpha = T$ if and only if $\langle |t_1|_\mathcal{A}^\alpha, |t_2|_\mathcal{A}^\alpha \rangle \in |\Phi^2|_\mathcal{A}$

$|\Phi^3t_1t_2t_3|_\mathcal{A}^\alpha = T$ if and only if $\langle |t_1|_\mathcal{A}^\alpha, |t_2|_\mathcal{A}^\alpha, |t_3|_\mathcal{A}^\alpha \rangle \in |\Phi^3|_\mathcal{A}$
Summary of semantics of \mathcal{L}_2

Let \mathcal{A} be an \mathcal{L}_2-structure and α an assignment over \mathcal{A}.

Atomic formulae

Let Φ^n be a n-ary predicate letter ($n > 0$) and let t_1, t_2, \ldots be variables or constants.

- $|\Phi^n|_A^\alpha$ is the n-ary relation assigned to Φ^n by \mathcal{A}.
- $|t|_A^\alpha$ is the object t denotes in \mathcal{A} if t is a constant.
- $|t|_A^\alpha$ is the object assigned to t by α if t is a variable.

(i) $|\Phi^1 t_1|_A^\alpha = T$ if and only if $|t_1|_A^\alpha \in |\Phi^1|_A$

$|\Phi^2 t_1 t_2|_A^\alpha = T$ if and only if $\langle |t_1|_A^\alpha, |t_2|_A^\alpha \rangle \in |\Phi^2|_A$

$|\Phi^3 t_1 t_2 t_3|_A^\alpha = T$ if and only if $\langle |t_1|_A^\alpha, |t_2|_A^\alpha, |t_3|_A^\alpha \rangle \in |\Phi^3|_A$

etc.
The semantics for connectives are just like those for \mathcal{L}_1.

<table>
<thead>
<tr>
<th>Semantics for connectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii) $</td>
</tr>
<tr>
<td>(iii) $</td>
</tr>
<tr>
<td>(iv) $</td>
</tr>
<tr>
<td>(v) $</td>
</tr>
<tr>
<td>(vi) $</td>
</tr>
</tbody>
</table>
These are the semantic clauses for $\forall v$ and $\exists v$.
These are the semantic clauses for $\forall v$ and $\exists v$.

Quantifiers

(vii) $|\forall v \phi|^\alpha_A = T$ if and only if $|\phi|^\beta_A = T$ for all variable assignments β over A differing from α in v at most.
These are the semantic clauses for $\forall v$ and $\exists v$.

<table>
<thead>
<tr>
<th>Quantifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(vii) $</td>
</tr>
<tr>
<td>(viii) $</td>
</tr>
</tbody>
</table>
Truth

Just one detail remains.
Truth

Just one detail remains.

We haven’t yet said what it is for a sentence to be true in an \mathcal{L}_2-structure A.
Truth

Just one detail remains.

We haven’t yet said what it is for a sentence to be true in an L_2-structure \mathcal{A}.

We’ve said what it is for a formula to be true in an L_2-structure \mathcal{A} under an assignment over \mathcal{A}.
Truth

Just one detail remains.

We haven’t yet said what it is for a sentence to be true in an L_2-structure A.

We’ve said what it is for a formula to be true in an L_2-structure A under an assignment over A

(We’ve defined $|\phi|_A^\alpha$; we want now to define $|\phi|_A$.)
Truth

Just one detail remains.

We haven’t yet said what it is for a sentence to be true in an L_2-structure A.

We’ve said what it is for a formula to be true in an L_2-structure A under an assignment over A (We’ve defined $|\phi|_A^\alpha$; we want now to define $|\phi|_A$.)

Fact about sentences

The truth-value of a sentence does not depend on the assignment.
Truth

Just one detail remains.

We haven’t yet said what it is for a sentence to be true in an L_2-structure A.

We’ve said what it is for a formula to be true in an L_2-structure A under an assignment over A.

(We’ve defined $|\phi|_A^\alpha$; we want now to define $|\phi|_A$.)

Fact about sentences

The truth-value of a sentence does not depend on the assignment. For α and β over A: $|\phi|_A^\alpha = |\phi|_A^\beta$ (when ϕ is a sentence).

50
Truth

Just one detail remains.

We haven’t yet said what it is for a sentence to be true in an L_2-structure \mathcal{A}.

We’ve said what it is for a formula to be true in an L_2-structure \mathcal{A} under an assignment over \mathcal{A}.

(We’ve defined $|\phi|_\mathcal{A}^\alpha$; we want now to define $|\phi|_\mathcal{A}$.)

Fact about sentences

The truth-value of a sentence does *not* depend on the assignment. For α and β over \mathcal{A}: $|\phi|_\mathcal{A}^\alpha = |\phi|_\mathcal{A}^\beta$ (when ϕ is a sentence).

A sentence ϕ is **true** in an L_2-structure \mathcal{A} (in symbols: $|\phi|_\mathcal{A} = T$) iff $|\phi|_\mathcal{A}^\alpha = T$ for all variable assignments α over \mathcal{A}.
Truth

Just one detail remains.

We haven’t yet said what it is for a sentence to be true in an L_2-structure A.

We’ve said what it is for a formula to be true in an L_2-structure A under an assignment over A

(We’ve defined $|\phi|_A^\alpha$; we want now to define $|\phi|_A$.)

Fact about sentences

The truth-value of a sentence does not depend on the assignment.
For α and β over A: $|\phi|_A^\alpha = |\phi|_A^\beta$ (when ϕ is a sentence).

A sentence ϕ is true in an L_2-structure A (in symbols: $|\phi|_A = T$) iff $|\phi|_A^\alpha = T$ for all variable assignments α over A.

equivalently: $|\phi|_A^\alpha = T$ for some variable assignment α over A.