INTRODUCTION TO LOGIC

Lecture 5 The Semantics of Predicate Logic Dr. James Studd

Dr. James Studd

We could forget about philosophy. Settle down and maybe get into semantics. Woody Allen 'Mr. Big'

Introduction

What of argument 2?

Argument 2Valid(1) Zeno is a tortoise.(2) All tortoises are toothless.Therefore, (C) Zeno is toothless.

Formalisation

(1) Ta(2) $\forall x(Tx \rightarrow Lx)$ (C) La

Dictionary: a: Zeno. T:... is a tortoise. L: ... is toothless

What is it for this \mathcal{L}_2 -argument to be valid?

Outline

Validity.

- **2** Semantics for simple English sentences.
- $3 \mathcal{L}_2$ -structures.
- **④** Semantics for \mathcal{L}_2 -formulae.

Introduction

Validity

Recall the definition of validity for \mathcal{L}_1 . Let Γ be a set of sentences of \mathcal{L}_1 and ϕ a sentence of \mathcal{L}_1

Definition

The argument with all sentences in Γ as premisses and ϕ as conclusion is valid if and only if there is no \mathcal{L}_1 -structure under which:

- (i) all sentences in Γ are true; and
- (ii) ϕ is false.

We use an exactly analogous definition for \mathcal{L}_2 , replacing ' \mathcal{L}_1 ' everywhere above with ' \mathcal{L}_2 '

It remains to define: \mathcal{L}_2 -structure, truth in an \mathcal{L}_2 -structure

Introduction

Structures

Structures interpret non-logical expressions.

\mathcal{L}_1 -structures

- Non-logical expressions in \mathcal{L}_1 : P, Q, R, \ldots
- An \mathcal{L}_1 -structure \mathcal{A} assigns each sentence letter a semantic value (specifically, a truth-value: T or F)

 \mathcal{L}_2 is a richer language. This calls for richer structures.

\mathcal{L}_2 -structures

- Non-logical expressions: P^1, Q^1, R^1, \dots P^2, Q^2, R^2, \dots \vdots a, b, c, \dots
- An \mathcal{L}_2 -structure \mathcal{A} assigns each predicate and constant a semantic value (specifically, what?)

Semantics in English

Similarly:

'Alonzo Church reveres Bertrand Russell' is true iff Church stands in the relation of *revering* to Russell

In other words:

|'Alonzo Church reveres Bertrand Russell'| = T iff |'Alonzo Church'| stands in |'reveres'| to |'Bertrand Russell'|

Semantics in English

Start with a semantics for simple English sentences.

'Bertrand Russell is a philosopher'

The sentence is true (i.e.: its semantic value is: T).

 \ldots because of the relationship between the semantic values of its constituents.

expression	semantic value
'Bertrand Russell'	Russell
'is a philosopher'	the property of <i>being a philosopher</i>

... because Russell has the property of *being a philosopher*.

... because |'Bertrand Russell'| has |'is a philosopher'|.

Notation

When e is an expression, we write |e| for its semantic value.

Semantics in English

Semantic values for English expressions

expression	semantic value
designator	object
unary predicate	property (alias: unary relation)
binary predicate	binary relation

Examples

- |'Bertrand Russell'| = Russell
- | 'is a philosopher'| = the property of *being a philosopher*
- |'revers'| = the relation of revering

We'll take this one step further, by saying more about properties and relations.

Semantics in English

Properties

In logic, we identify properties with sets.

Property (alias: unary relation)

A unary relation \boldsymbol{P} is a set of zero or more objects.

Specifically, \boldsymbol{P} is the set of objects that have the property.

Informally: $d \in \mathbf{P}$ indicates that d has property \mathbf{P} .

Example

The property of *being a philosopher*

= the set of philosophers = $\{d : d \text{ is a philosopher}\}\$ = {Descartes, Kant, Russell, ... }

Semantics in English

Relations

Recall that we identify binary relations with sets of pairs.

Binary relation

A binary relation \boldsymbol{R} is a set of zero or more pairs of objects.

 \boldsymbol{R} is the set of pairs $\langle d, e \rangle$ such that d stands in \boldsymbol{R} to e.

Informally: $\langle d, e \rangle \in \mathbf{R}$ indicates that d bears \mathbf{R} to e.

Example

The relation of *revering* = { $\langle d, e \rangle$: d reverse e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples). A quaternary (4-ary) relation is a set of quadruples (4-tuples). etc.

Semantics in English

Putting this all together:

'Bertrand Russell is a philosopher' is true iff |'Bertrand Russell'| has |'is a philosopher'| iff Russell \in the set of philosophers

Similarly:

'Alonzo Church reveres Russell' is true iff |'Alonzo Church'| stands in |'reveres'| to |'Russell'| iff (Church, Russell) $\in \{\langle d, e \rangle : d \text{ reveres } e\}$

Semantics for atomic \mathcal{L}_2 -sentences

The semantics for atomic \mathcal{L}_2 -sentences is similar.

An \mathcal{L}_2 -structure specifies semantic values for \mathcal{L}_2 -expressions:

\mathcal{L}_2 -expression	semantic value
constant: a	object: $ a _{\mathcal{A}}$
sentence letter: ${\cal P}$	truth-value: $ P $ (i.e. T or F)
unary predicate: P^1	unary relation: $ P^1 $ (i.e. a set)
binary predicate: P^2	binary relation: $ P^2 $ (a set of pairs)

Notation: $|e|_{\mathcal{A}}$ is the semantic value of e in \mathcal{L}_2 -structure \mathcal{A} .

Atomic Formulae

Semantics for atomic \mathcal{L}_2 -formulae

We have the semantics for \mathcal{L}_2 -sentences like Pa. What about \mathcal{L}_2 -formulae like Px?

In English:

- The designator 'Russell' has a constant semantic value.
- Pronouns, such as 'it', do not. 'it' refers to different objects depending on the context.

Something similar happens in an \mathcal{L}_2 -structure \mathcal{A} :

• a, b, c, \ldots are assigned a constant semantic value in \mathcal{A} .

• Variables: x, y, z, \ldots are not.

What object each variable denotes is specified with a variable assignment.

Variable assignments

Variable assignment

A variable assignment assigns an object to each variable.

One can think of a variable assignment as an infinite list

Example: the assignment α .

x	y	z	x_1	y_1	z_1	x_2	
Mercury	Venus	Venus	Neptune	Mars	Venus	Mars	

Notation

We write $|x|^{\alpha}$ for the object α assigns to x. We use lower case Greek letters: α, β, γ for assignments.

e.g. $|x|^{\alpha} =$ Mercury; $|y|^{\alpha} =$ Venus; $|x_2|^{\alpha} =$ Mars.

Atomic Formulae

Once x has been assigned an object, the semantics for Px are much like the semantics for Pa

We write $|e|_{\mathcal{A}}^{\alpha}$ for the semantic value of expression e in the structure \mathcal{A} under the variable assignment α .

•
$$|Px|^{\alpha}_{\mathcal{A}} = T$$
 iff $|x|^{\alpha}$ has $|P|_{\mathcal{A}}$ (NB: $|x|^{\alpha}_{\mathcal{A}} = |x|^{\alpha}$)
iff $|x|^{\alpha} \in |P|_{\mathcal{A}}$
• $|Rxy|^{\alpha}_{\mathcal{A}} = T$ iff $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\alpha}$
iff $\langle |x|^{\alpha}, |y|^{\alpha} \rangle \in |R|_{\mathcal{A}}$

Note: semantic values of constants and predicates are unaffected by the assignment (e.g. $|P|^{\alpha}_{\mathcal{A}} = |P|_{\mathcal{A}}, |a|^{\alpha}_{\mathcal{A}} = |a|_{\mathcal{A}}).$

•
$$|Rab|^{\alpha}_{\mathcal{A}} = T$$
 iff $\langle |a|_{\mathcal{A}}, |b|_{\mathcal{A}} \rangle \in |R|_{\mathcal{A}}$
• $|Rxb|^{\alpha}_{\mathcal{A}} = T$ iff $\langle |x|^{\alpha}, |b|_{\mathcal{A}} \rangle \in |R|_{\mathcal{A}}$

Similarly for other atomic formulae.

Atomic Formulae

Worked example Let \mathcal{L}_2 -structure \mathcal{A} be such that: • $|a|_{\mathcal{A}} = \text{Alonzo Church}$ • $|b|_{\mathcal{A}} = \text{Bertrand Russell}$ • $|P|_{\mathcal{A}} = \{\text{Frege, Russell}\}$ • $|R|_{\mathcal{A}} = \{\langle \text{Church, Russell} \rangle\}$ Let assignments α and β be such that: $\frac{x \quad y \quad z}{\alpha: \quad \text{Frege Russell Wittgenstein}}$ $\beta: \quad \text{Church Church Church}$

Compute the following:

$ x ^lpha_{\mathcal{A}} =$	$ x ^{eta}_{\mathcal{A}} =$	$ a ^lpha_{\mathcal{A}} =$
$ Py ^{lpha}_{\mathcal{A}} =$	$ Py ^{eta}_{\mathcal{A}} =$	$ Pb ^{\alpha}_{\mathcal{A}} =$
$ Rxy ^{lpha}_{\mathcal{A}} =$	$ Rxy ^{eta}_{\mathcal{A}} =$	$ Rxb ^{\alpha}_{\mathcal{A}} =$

Semantics for quantifiers

In English, the truth-value of a quantified sentence depends on how widely the quantifiers range.

Almost everyone attended the first lecture.

The context supplies a 'domain' telling us who 'everyone' ranges over

Domain: the set of first-year Oxford philosophy students Almost every first-year Oxford philosophy student attended the first lecture.

Domain: the set of everyone in the world

Almost everyone in the world attended the first lecture.

An \mathcal{L}_2 -structure \mathcal{A} specifies a non-empty set $D_{\mathcal{A}}$ as the domain. An assignment over \mathcal{A} assigns a member of $D_{\mathcal{A}}$ to each variable.

Semantics for \forall/\exists (first approximation):

 $|\forall x P x|_{\mathcal{A}} = T$ iff every member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$ iff every assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|^{\alpha} \in |P|_{\mathcal{A}}$ iff every assignment α over \mathcal{A} is such that $|Px|_{\mathcal{A}}^{\alpha} = T$

Similarly:

 $|\exists x P x|_{\mathcal{A}} = T$ iff some member of $D_{\mathcal{A}}$ has $|P|_{\mathcal{A}}$ iff some assignment α of x to a member of $D_{\mathcal{A}}$ is such that $|x|^{\alpha} \in |P|_{\mathcal{A}}$ iff some assignment α over \mathcal{A} is such that $|Px|_{\mathcal{A}}^{\alpha} = T$

This is correct but the general case is more complex.

Quantifiers

Quantifiers

The semantics of quantifiers is complicated by the need to deal with multiple quantifiers in sentences such as $\forall x \exists y Rxy$

Suppose we try to evaluate this as before under ${\mathcal A}$ with domain $D_{{\mathcal A}}$

 $|\forall x \exists y R x y|_{\mathcal{A}} = T$

iff every assignment α over \mathcal{A} is such that $|\exists y Rxy|_{\mathcal{A}}^{\alpha} = T$

To progress any further we need to be able evaluate $\exists y Rxy$ under an assignment α of an object to x. How to determine $|\exists y Rxy|_{\mathcal{A}}^{\alpha}$?

 $|\exists y Rxy|^{\alpha}_{\mathcal{A}} = T$

iff some d in $D_{\mathcal{A}}$ is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to d

iff some assignment β over \mathcal{A} is such that $|x|^{\alpha}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

So we don't have to keep track of multiple assignments:

Say that β differs from α in y at most if $|v|^{\alpha} = |v|^{\beta}$ for all variables v with the possible exception of y.

$|\exists y R x y|_{\mathcal{A}}^{\alpha} = \mathbf{T}$

iff some assignment β over \mathcal{A} which differs from α in y at most is such that $|x|^{\beta}$ stands in $|R|_{\mathcal{A}}$ to $|y|^{\beta}$

iff some assignment β over \mathcal{A} which differs from α in y at most is such that $|Rxy|^{\beta}_{\mathcal{A}} = T$

Quantifiers

\mathcal{L}_2 -structures

Here's the full specification of an \mathcal{L}_2 -structure.

- An \mathcal{L}_2 -structure \mathcal{A} supplies two things
- (1) a domain: a non-empty set $D_{\mathcal{A}}$
- (2) a semantic value for each predicate and constant.

 $\begin{array}{c|c} \mathcal{L}_2\text{-expression} & semantic \ value \ in \ \mathcal{A} \\ \hline & \text{constant: } a \\ \text{sentence letter: } P \\ \text{unary predicate: } P^1 \\ \text{unary relation: } |P|_{\mathcal{A}} \ (= \text{T or F}) \\ \text{unary predicate: } P^2 \\ \text{binary predicate: } P^2 \\ \text{ternary predicate: } P^3 \\ \text{etc. etc.} \\ \end{array}$

Quantifiers

Summary of semantics of \mathcal{L}_2

Let \mathcal{A} be an \mathcal{L}_2 -structure and α an assignment over \mathcal{A} .

Atomic formulae

Let Φ^n be a *n*-ary predicate letter (n > 0) and let t_1, t_2, \ldots be variables or constants.

- $|\Phi^n|^{\alpha}_{\mathcal{A}}$ is the *n*-ary relation assigned to Φ^n by \mathcal{A} .
- $|t|_{\mathcal{A}}^{\alpha}$ is the object t denotes in \mathcal{A} if t is a constant.
- $|t|_{\mathcal{A}}^{\alpha}$ is the object assigned to t by α if t is a variable.
- (i) $|\Phi^{1}t_{1}|_{\mathcal{A}}^{\alpha} = T$ if and only if $|t_{1}|_{\mathcal{A}}^{\alpha} \in |\Phi^{1}|_{\mathcal{A}}$ $|\Phi^{2}t_{1}t_{2}|_{\mathcal{A}}^{\alpha} = T$ if and only if $\langle |t_{1}|_{\mathcal{A}}^{\alpha}, |t_{2}|_{\mathcal{A}}^{\alpha} \rangle \in |\Phi^{2}|_{\mathcal{A}}$ $|\Phi^{3}t_{1}t_{2}t_{3}|_{\mathcal{A}}^{\alpha} = T$ if and only if $\langle |t_{1}|_{\mathcal{A}}^{\alpha}, |t_{2}|_{\mathcal{A}}^{\alpha}, |t_{3}|_{\mathcal{A}}^{\alpha} \rangle \in |\Phi^{3}|_{\mathcal{A}}$ etc.

Quantifiers

The semantics for connectives are just like those for \mathcal{L}_1 .

Semantics for connectives

- (ii) $|\neg \phi|^{\alpha}_{\mathcal{A}} = T$ if and only if $|\phi|^{\alpha}_{\mathcal{A}} = F$.
- (iii) $|\phi \wedge \psi|_{\mathcal{A}}^{\alpha} = T$ if and only if $|\phi|_{\mathcal{A}}^{\alpha} = T$ and $|\psi|_{\mathcal{A}}^{\alpha} = T$.
- (iv) $|\phi \lor \psi|_{\mathcal{A}}^{\alpha} = T$ if and only if $|\phi|_{\mathcal{A}}^{\alpha} = T$ or $|\psi|_{\mathcal{A}}^{\alpha} = T$.
- (v) $|\phi \to \psi|_{\mathcal{A}}^{\alpha} = T$ if and only if $|\phi|_{\mathcal{A}}^{\alpha} = F$ or $|\psi|_{\mathcal{A}}^{\alpha} = T$.
- (vi) $|\phi \leftrightarrow \psi|_{\mathcal{A}}^{\alpha} = T$ if and only if $|\phi|_{\mathcal{A}}^{\alpha} = |\psi|_{\mathcal{A}}^{\alpha}$.

These are the semantic clauses for $\forall v$ and $\exists v$.

Quantifiers

- (vii) $|\forall v \phi|_{\mathcal{A}}^{\alpha} = T$ if and only if $|\phi|_{\mathcal{A}}^{\beta} = T$ for all variable assignments β over \mathcal{A} differing from α in v at most.
- (viii) $|\exists v \phi|_{\mathcal{A}}^{\alpha} = T$ if and only if $|\phi|_{\mathcal{A}}^{\beta} = T$ for at least one variable assignment β over \mathcal{A} differing from α in v at most.

Truth

Just one detail remains.

50

Quantifiers

We haven't yet said what it is for a sentence to be true in an \mathcal{L}_2 -structure \mathcal{A} .

We've said what it is for a formula to be true in an \mathcal{L}_2 -structure \mathcal{A} under an assignment over \mathcal{A}

(We've defined $|\phi|_{\mathcal{A}}^{\alpha}$; we want now to define $|\phi|_{\mathcal{A}}$.)

Fact about sentences

The truth-value of a sentence does *not* depend on the assignment. For α and β over \mathcal{A} : $|\phi|^{\alpha}_{\mathcal{A}} = |\phi|^{\beta}_{\mathcal{A}}$ (when ϕ is a sentence).

A sentence ϕ is true in an \mathcal{L}_2 -structure \mathcal{A} (in symbols: $|\phi|_{\mathcal{A}} = T$) iff $|\phi|_{\mathcal{A}}^{\alpha} = T$ for all variable assignments α over \mathcal{A} .

equivalently: $|\phi|_{\mathcal{A}}^{\alpha} = T$ for some variable assignment α over \mathcal{A} .

http://logicmanual.philosophy.ox.ac.uk