
INTRODUCTION TO LOGIC

Lecture 7
Formalisation in Predicate Logic

Dr. James Studd

‘Contrariwise,’ continued Tweedledee,
‘if it was so, it might be;

and if it were so, it would be;
but as it isn’t, it ain’t.

That’s logic’
Lewis Carroll

Through the Looking-Glass



Introduction

Outline
(1) Review of adequacy.
(2) Logical properties of English sentences.
(3) Further issues in predicate formalisation.



7.1 Adequacy

Recap: Adequacy
Two notions of consequence coincide.

Let Γ be a set of L2-sentences and φ a L2-sentence

Definition: provable (syntactic)
Γ ` φ iff there is a proof of φ with only sentences in Γ as
non-discharged assumptions.

Definition: valid (semantic)
Γ |= φ iff there is no L2-structure in which all sentences in Γ
are true and φ is false.

Adequacy theorem (Soundness and Completeness)
Γ ` φ iff Γ � φ
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7.4 Predicate logic and arguments in English

How does validity in L2 relate to English?

Definition: valid in predicate logic
An argument in English is valid in predicate logic iff its
formalisation in the language L2 is valid.

Suppose we have an English argument.

Method to establish validity
Step (i) Formalise the argument in L2.
Step (ii) Prove the formalised argument in Natural

Deduction.

Method to establish non-validity
Step (i) Formalise the argument in L2.
Step (ii) Construct a counterexample. (An L2-structure in

which the premisses are true and the conclusion is
false.)
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7.4 Predicate logic and arguments in English

Unfinished business
Show that argument 2 is valid
(1) Zeno is a tortoise.
(2) All tortoises are toothless.
Therefore, (C) Zeno is toothless.

Step (i): formalise

(1) Ta
(2) ∀x(Tx→ Lx)
(C) La

Dictionary: a: Zeno. T :. . . is a tortoise. L: . . . is toothless

Step (ii): show the formalisation is valid

Need to show: Ta,∀x(Tx→ Lx) |= La.
Sufficient to show: Ta,∀x(Tx→ Lx) ` La.
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7.4 Predicate logic and arguments in English

Sufficient to show: Ta,∀x(Tx→ Lx) ` La.

Ta

∀x(Tx→ Lx)

Ta→ La
La

That completes the proof
Consequently: Ta,∀x(Tx→ Lx) |= La (by adequacy)
The English argument about Zeno is valid in predicate logic.
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7.4 Predicate logic and arguments in English

Exercise: show that the following argument is valid
All concrete objects are located in space. The number 5 isn’t
located in space. So the number 5 isn’t a concrete object.

Dictionary: a: the number 5.
C: . . . is a concrete object. L: . . . is located in space.

Formalisation

Premiss 1: ∀x (Cx→ Lx)
Premiss 2: ¬La
Conclusion: ¬Ca

[

Ca

]

∀x(Cx→ Lx)

Ca→ La

La ¬La
¬Ca
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7.4 Predicate logic and arguments in English

Note on partial formalisation
To establish validity: partial formalisation may suffice.

Less detailed

More detailed Not detailed

(I)

(II) enough (III)

Premiss 1 ∀x (Cx→ Lx)

∀x (Cx→ L2xb) A

Premiss 2 ¬La

¬L2ab S

Conclusion ¬Ca

¬Ca C

Dictionary: b: Space. L2: . . . is located in . . . .

Both (I) and (II) are fine. (III) is not.

A: All concrete objects are located in space.
S: The number 5 isn’t located in space.
C The number 5 isn’t a concrete object.

NB: to show non-validity: full formalisation required.
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7.4 Predicate logic and arguments in English

Example: show the following argument is not valid
A belief is known only if it is true and justified. The belief
that Jones is in Barcelona or Jones owns a Ford is true and
justified. Therefore, it’s known.

Step (i): formalise
Premiss 1: ∀x (Bx→ (Kx→ (Tx ∧ Jx))).

Premiss 2: Ba ∧ Ta ∧ Ja.
Conclusion: Ka.

Dictionary:
B: . . . is a belief
K: . . . is known
T : . . . is true
J : . . . is justified
a: the belief that Jones is in Barcelona

or Jones owns a Ford
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7.4 Predicate logic and arguments in English

Step (ii): construct a counterexample.
∀x (Bx→ (Kx→ (Tx ∧ Jx))), Ba ∧ Ta ∧ Ja 2 Ka 25

Here is a counterexample:

Let A be an L2-structure with {1} as its domain and

|B|A = {1}
|K|A = ∅
|T |A = {1}
|J |A = {1}
|a|A = 1

The premisses are true, and the conclusion is false in A.
So A is a counterexample.
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|J |A = {1}
|a|A = 1

The premisses are true, and the conclusion is false in A.
So A is a counterexample.



7.4 Predicate logic and arguments in English

Other logical notions
Let φ be an L2-sentence:

φ is a logical truth iff:
φ is true in every L2-structure. (by definition)
i.e. � φ
i.e. ` φ (Adequacy: Γ � φ iff Γ ` φ.)
i.e. there is a proof of φ with no undischarged assumptions.

φ is a contradiction iff:
φ is true in no L2-structure. (by definition)
i.e. ¬φ is true in every L2-structure
i.e. � ¬φ
i.e. ` ¬φ
i.e. there is a proof of ¬φ with no undischarged assumptions.
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7.4 Predicate logic and arguments in English

Definitions
An English sentence is:

logically true in predicate logic iff its formalisation in
predicate logic is logically true.

a contradiction in predicate logic iff its formalisation in
predicate logic is a contradiction.

Methods in predicate logic
To show that an English sentence is:

logically true in predicate logic:
Step (i) formalise the sentence as a sentence φ of L2.
Step (ii) prove that ` φ.

a contradiction in predicate logic:
Step (i) formalise the sentence as a sentence φ of L2.
Step (ii) prove that ` ¬φ.
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7.4 Predicate logic and arguments in English

Example: show the sentence is a contradiction.
Something is bigger than everything but not bigger than itself.

Step (i): formalise
Paraphrase: Some x is such that (x is bigger than
everything and x is not bigger than itself)

x is bigger than everything: ∀yBxy

x is not bigger than itself: ¬Bxx

Dictionary: B: . . . is bigger than . . . .

Formalisation: ∃x(∀yBxy ∧ ¬Bxx)
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7.4 Predicate logic and arguments in English

Step (ii): prove the negation of the formalisation
We need to show: ` ¬∃x(∀yBxy ∧ ¬Bxx)

Proof strategy: we’ll try to show
∃x(∀yBxy ∧ ¬Bxx) leads to a contradiction.
∀yBay ∧ ¬Baa leads to a contradiction.

[

(∀yBay ∧ ¬Baa)

]

∀yBay

Baa

[

(∀yBay ∧ ¬Baa)

]

¬Baa

¬∃x(∀yBxy ∧ ¬Bxx)

[

∃x(∀yBxy ∧ ¬Bxx)

]

¬∃x(∀yBxy ∧ ¬Bxx)
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¬∃x(∀yBxy ∧ ¬Bxx)
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7.2 Ambiguity

Further issues: scope ambiguity

Every philosopher knows a metaphysician. 40

Paraphrases
(1) Every philosopher is such that they know some metaphysician.

Every x is such that (if x is a philosopher,
then x knows some metaphysician)

x knows some metaphysician: ∃y(My ∧Kxy)

Formalisations
(1) ∀x(Px→ ∃y(My ∧Kxy))

(2) ∃y(My ∧ ∀x(Px→ Kxy))

P : . . . is a philosopher. M : . . . is a metaphysician. K: . . . knows . . . .
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7.2 Ambiguity

Issue 2: variable arity.

Example: formalise in L2 as a valid argument.
Manny is eating the scrambled egg out of his shoe with his comb.
So, Manny is eating the scrambled egg and Manny is eating out
of his shoe.

Clearly the following formalisation is not valid.

Premiss: E1mesc. Conclusion: E2me ∧ E3ms.

Dictionary:
m: Manny. e: the scrambled egg.
s: Manny’s shoe. c: Manny’s comb.
E1: . . . is eating . . . out of . . . with . . .
E2: . . . is eating . . . .
E3: . . . is eating out of . . .
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The trick is to formalise the argument just using E1.

Paraphrase of conclusion
Manny is eating the scrambled egg out of something with
something and Manny is eating something out of his shoe with
something.

Premiss: E1mesc.

Conclusion: ∃z∃wE1mezw ∧ ∃y∃wE1mysw
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7.2 Ambiguity

Issue 3: adverbs
Example: formalise in L2 as a valid argument.
Usain ran quickly; so Usain ran. 45

The following formalisation is clearly not valid.

Premiss: Qb. Conclusion: Rb.

Dictionary: b: Usain. Q: . . . ran quickly. R: . . . ran.

But there is a (somewhat contrived) way to formalise it.

Dictionary: b: Usain. R1: . . . was a running (event).
Q1: . . . was quick. P : . . . is the person who did . . . .

The following is valid:

Premiss: ∃x(R1x ∧ Pbx ∧Q1x). Conclusion: ∃x(R1x ∧ Pbx).
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7.3 Extensionality

Issue 4: non-extensionality

Example

Not valid

Miles wants to live in Oxford. Oxford is a city with high
levels of air pollution. Therefore Miles wants to live in a city
with high levels of air pollution.

Yet the obvious L2-formalisation is valid.

Premiss 1: Lmo.
Premiss 2: Po.
Conclusion: ∃x (Lmx ∧ Px).

L: . . . wants to live in . . .
P : . . . is a city with high levels of air pollution
m: Miles
o: Oxford
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7.3 Extensionality

Extensionality of L2

L2-structures assign extensions to expressions.

L2-expression extension
constant object
sentence truth-value

unary predicate set
binary predicate set of pairs

They have the following feature.

Extensionality
In a L2-structure, the extension of a sentence depends only
on the extensions of its constituent expressions.
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7.3 Extensionality

Let A be an L2-structure, φ an L2-sentence.

Extensionality in L2

Replacing an expression in φ for another with the same
extension in A leaves the extension (truth-value) of φ in A
unchanged.

‘Coextensive expressions are always substitutable salva
veritate’

Examples

(i) Suppose |Pa|A = T and |a|A = |b|A. Then |Pb|A = T

(ii) Suppose |Pa|A = T and |P |A = |Q|A. Then |Qa|A = T

Proof:

(i) |Pa|A = T ; so |a|A ∈ |P |A; so |b|A ∈ |P |A; so |Pb|A = T
(ii) |Pa|A = T ; so |a|A ∈ |P |A; so |a|A ∈ |Q|A; so |Qa|A = T
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7.3 Extensionality

We can likewise assign extensions to English expressions.

English expression extension
designator object
sentence truth-value

However, some English predicates are non-extensional: we cannot
substitute coextensive designators in them without changing the
truth-value of the sentence.
Write |e| for the extension of an English expression e.

|‘Superman’| = |‘Clark Kent’|
|‘Lois knows that Superman wears a cape’| = T
|‘Lois knows that Clark Kent wears a cape’| = F
|‘8’| = |‘the number of Planets’|
|‘If Mars blew up, the number of planets would be 7’| = T
|‘If Mars blew up, 8 would be 7’| = F
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7.3 Extensionality

Non-extensional predicates
Miles wants to live in . . .
. . . knows that . . . wears a cape
If Mars blew up . . . would be . . . X

We can only formalise extensional predicates as predicate
letters in L2.

Example: formalise in as much detail as possible
Lois knows that Superman wears a cape

Formalisation: Ka
Dictionary: a: Lois.
K: . . . knows that Superman wears a cape

‘. . . knows that Superman wears a cape’ is extensional.
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