INTRODUCTION TO LOGIC

4 The Syntax of Predicate Logic

Volker Halbach

I counsel you, dear friend, in sum,
That first you take collegium logicum.
Your spirit’s then well broken in for you,
In Spanish boots laced tightly to,
That you henceforth may more deliberately keep
The path of thought and straight along it creep,
And not perchance criss-cross may go,
A- will-o’-wisping to and fro.
Then you’ll be taught full many a day
What at one stroke you’ve done alway,
Like eating and like drinking free,
It now must go like: One! Two! Three!

Goethe, Faust I

The argument

Zeno is a tortoise. All tortoises are toothless. Therefore
Zeno is toothless.

is logically valid but not propositionally valid: replacing ‘Zeno is
tortoise’, ‘All tortoises are toothless’, and ‘Zeno is toothless’
(uniformly) with other sentences doesn’t always yield another
valid argument.

But the validity is independent of the meaning of ‘Zeno’, ‘tortoise’,
and ‘toothless’; so in order to capture the validity of this
argument, I need to analyse the constituents of the sentences.

In the language \mathcal{L}_2 of predicate logic such arguments can be
analysed.

Some sentences can be parsed into designators and predicate
expressions:

- **John** is tall.
 - designator predicate

- London is bigger than the capital of France.
 - designator predicate designator

- Dawei opens the file with the dvi viewer.
 - designator first part of predicate designator second part of predicate designator

In predicate logic predicate expressions are translated into
predicate letters, such as P, Q, R.

The upper index is called the ‘arity index’. It indicates how many
designators the predicate takes. In the above examples

- ‘is tall’ takes one
- ‘is bigger than’ takes two
- ‘opens … with’ takes three

So the predicate expression ‘is tall’ can be translated as P^1, ‘is
bigger than’ as Q^2, and ‘opens … with’ as R^3.
Designators come in different varieties: as proper names like 'Barack Obama' or 'the Eiffel Tower' or as definite descriptions like 'the tallest student in Oxford'; and there are more. Designators (purport to) refer to one single object.

Especially proper names are formalised in L_2 as 'constants'. Constants are a, b, c, a_1, b_1, c_1, and so on.

Using the same dictionary

Example

Tom hates Mary or Mary hates Tom.

is formalised as $(P^2 ab \lor P^2 ba)$.

Sentences of L_2 can be combined using connectives in the same way as L_1-sentences.

Pronouns

I distinguish two uses of pronouns (like 'him', 'she' etc.):

(i) lazy uses:

Example

Tom hates Mary and sheMary hates him.Tom.

The pronoun can be replaced with the designator to which it refers back.

(ii) quantificational uses:

Example

A person is morally responsible if and only if she acts freely.a person acts freely.

The pronoun cannot be replaced with the noun to which it refers back (without changing the meaning).
In Example

A person is morally responsible if and only if she acts freely.

the pronoun ‘she’ is used to express generalisation.

There are other ways to express generalisation, but pronouns offer a very flexible and efficient way of generalising.

Here is how to express a generalisation using only pronouns and generalisations over all objects.

Example

All tortoises are reptiles.

This generalisation can be reexpressed using ‘something’: . . . or as a generalisation over everything: Replacing pronouns with variables gives the logical form:

If something is a tortoise then it is a reptile.

For everything: if it is a tortoise then it is a reptile.

For all x: if x is a tortoise then x is a reptile

So I need an expression in L_2 that corresponds to ‘for all’. The symbol \forall is used for that purpose.

Example

If an object$_1$ is part of another object$_2$ and it$_2$ is part of still another object$_3$, then it$_1$ is a part of it$_3$.

Using numerical subscripts one can make the reference of the pronouns clear and unambiguous. In the language L_2 the variables $x, y, z, x_1, y_1, z_1, x_2, \ldots$ play the role of pronouns that are used for quantification.

If an object x_1 is part of another object x_2 and x_2 is part of still another object x_3, then x_1 is a part of x_3.

To save on indices I’ll use $x, y, z, x_1, y_1, z_1, x_2, \ldots$

I didn’t specify the syntax of L_2, and I didn’t say anything about the semantics of L_2; thus we cannot really discuss translations from English into L_2. But I’ll sketch how we’ll carry out formalisations in L_2.

For formalisations one can again first give the logical form and then replace the English expressions by the corresponding L_2-symbols.
Example

All epistemologists are philosophers. For everything: if it is an epistemologist then it is a philosopher. For all \(x \): if \(x \) is an epistemologist then \(x \) is a philosopher. For all \(x \): (if \(x \) is an epistemologist then \(x \) is a philosopher)

This is the original sentence. I reexpress the general claim using a pronoun. I replace the pronoun with a variable. ‘For all \(x \)’ is in logical form. I turn to the remaining sentence ‘if \(x \) is an epistemologist then \(x \) is a philosopher’ and apply the methods from propositional logic. As ‘if … then’ is a standard connective I put the expression in brackets and turn to the subsentences. ‘\(x \) is an epistemologist’ is a designator and a predicate: it cannot be sensibly be reformulated with a connective or a generalising expression

Example

Some philosophers are logicians.

At least one philosopher is a logician.

There is at least one thing such that it is a philosopher and it is a logician.

This is the original sentence. I understand the sentence as saying this.

I reexpress the claim using a pronoun. Now this isn't a generalisation but rather an existential claim. So I put ‘at least one thing’ rather than ‘everything.’ ‘There is at least one \(x \)’ is in logical form.

Example

From the logical form the \(L_2 \)-sentence can be obtained by the following substitutions

Example

For all \(x \): if \(x \) is an epistemologist then \(x \) is a philosopher.

This is the logical form. The standard connectives are replaced with the respective symbols. ‘for all’ is replaced with \(\forall \). ‘\(x \) is an epistemologist’ is formalised as the atomic formula \(Q^1 x \), and ‘\(x \) is a philosopher is formalised as \(P^1 x \).’ as in the case of propositional logic the brackets around sentence that are not further analysable are dropped. So the sentence is formalised as \(\forall x \ (Q^1 x \rightarrow P^1 x) \) with the following dictionary:

\begin{align*}
P^1: & \quad \ldots \text{is a philosopher} \\
Q^1: & \quad \ldots \text{is an epistemologist}
\end{align*}

Example

There is at least one \(x \): ((\(x \) is a philosopher) and (\(x \) is a logician))

This is formalised as:

\[\exists x \ (P^1 x \land R^1 x) \]

\begin{align*}
P^1: & \quad \ldots \text{is a philosopher} \\
R^1: & \quad \ldots \text{is a logician}
\end{align*}
Example

All persons have a soul.

For all x: if x is a person then x has a soul
For all x: (if x is a person then x has a soul)
For all x: (if x is a person then x has a soul)
For all x: (if x is a person then x has a soul)
For all x: (if x is a person then x has a soul)
For all x: (if x is a person then x has a soul)

Everything up to this point is just an informal blurb motivating the following definitions.

I am now going to specify the syntax of L_2 in precise terms.

Definition (predicate letters)

All expressions of the form P_n, Q_n, or R_n are predicate letters, where k and n are either missing (no symbol) or a numeral ‘1’, ‘2’, ‘3’, ...

So the letter P with or without numerals ‘1’, ‘2’, and so on as upper and/or lower indices is a predicate letter, and similarly for Q and R. The sentence letters P, Q, R, P_1, Q_1, ... are also predicate letters, according to this definition. Furthermore, P^1, Q^1, R^1, P_1^1, Q_1^1, R_1^1, P_1^2, Q_1^2, R_1^2, ..., P^2, Q^2, R^2, P_2^2, Q_2^2, R_2^2, and so on, are predicate letters.

Example

Starting from the logical I go on to the formalisation:

Starting from the logical I go on to the formalisation:

Example

For all x: (if (x is a person) then there is at least one y: (x has y) and (y is a soul))) $\forall x ((x \text{ is a person}) \rightarrow \exists y ((x \text{ has } y) \wedge (y \text{ is a soul})))$

$\forall x (P^1 x \rightarrow \exists y (Q^2 x y \wedge R^1 y))$

This is the logical form.

I introduce the symbols for connectives and quantifiers.

Predicate expressions are replaced with predicate letters of an appropriate arity… using the following dictionary:

$P^1 x$ is a person

Definition

The value of the upper index of a predicate letter is called its **arity**.

If a predicate letter does not have an upper index its arity is 0.

Definition (constants)

$a, b, c, a_1, b_1, c_1, a_2, b_2, c_2, a_3, ...$ are **constants**.

Definition (variables)

$x, y, z, x_1, y_1, z_1, x_2, ...$ are **variables**.
Definition (atomic formulae of \mathcal{L}_2)

If Z is a predicate letter of arity n and each of t_1, \ldots, t_n is a variable or a constant, then $Zt_1\ldots t_n$ is an atomic formula of \mathcal{L}_2.

Example

The following expressions are atomic formulae of \mathcal{L}_2:

- Q^1x
- P^2cy
- $P^3_x\epsilon_y$
- R^2xx

Definition (formulae of \mathcal{L}_2)

(i) All atomic formulae of \mathcal{L}_2 are formulae of \mathcal{L}_2.
(ii) If ϕ and ψ are formulae of \mathcal{L}_2, then $\neg\phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$ and $(\phi \leftrightarrow \psi)$ are formulae of \mathcal{L}_2.
(iii) If v is a variable and ϕ is a formula, then $\forall v \phi$ and $\exists v \phi$ are formulae of \mathcal{L}_2.

Example

The following expressions are formulae of \mathcal{L}_2:

- $\forall x \ (P^2xa \rightarrow Q^1x)$
- $\forall z_{77} \neg \exists y_{56} (P^2xy \rightarrow \exists x_2 (R^3_{z77}c_3x\ z_{77} \land Q))$
- $(\exists x \ P^1x \leftrightarrow \neg \exists y \ Q^2yy)$
- $\forall x \exists z \ R^2az$

Definition

A quantifier is an expression $\forall v$ or $\exists v$ where v is a variable.

Thus, $\forall x_{348}$ and $\exists z$ are quantifiers.

The formula P^1x isn't a sentence. Only once the variable x is used or bound by some quantifier is becomes a sentence.
Roughly speaking, an occurrence of a variable is bound iff it refers back to a quantifier; otherwise the occurrence is free.

Example

\(\forall x (P^1 x \rightarrow Q^2 a x) \)

In this formula both occurrences of the variable \(x \) are free. Now both occurrences of the variable \(x \) refer back to the quantifier \(\forall x \), so they are both bound.

Definition

(i) All occurrences of variables in atomic formulae are free.

(ii) The occurrences of a variable that are free in \(\phi \) and \(\psi \) are also free in \(\neg \phi \), \(\phi \land \psi \), \(\phi \lor \psi \), \(\phi \rightarrow \psi \) and \(\phi \leftrightarrow \psi \).

(iii) In a formula \(\forall \nu \phi \) no occurrence of the variable \(\nu \) is free; all occurrences of variables other than \(\nu \) that are free in \(\phi \) are also free in \(\forall \nu \phi \).

(iv) In a formula \(\exists \nu \phi \) no occurrence of the variable \(\nu \) is free; all occurrences of variables other than \(\nu \) that are free in \(\phi \) are also free in \(\exists \nu \phi \).

An occurrence of a variable is bound in a formula if and only if it is not free.

Example

\((\forall x P^1 x \rightarrow Q^2 a x) \)

In this formula only the first red occurrence of \(x \) refers back to \(\forall x \); it's bound by this quantifier; the second (i.e. green) occurrence is free.

I look at my example again to illustrate the definition:

Example

\(P^1 x \quad \forall x P^1 x \quad \forall x P^1 x \quad Q^2 a x \)

\((\forall x P^1 x \rightarrow Q^2 a x) \)

\(P^1 x \) is an atomic formula... Writing \(\forall x \) in front of \(P^1 x \) binds the green occurrence of \(x \). \(Q^2 a x \) is an atomic formula, so the red occurrence of \(x \) is free. \(Q^2 a x \) is still not related to \(P^1 x \). Now I combine the two formulae using \(\rightarrow \) but that doesn't make the red occurrence of \(x \) a bound occurrence.
Definition

A variable occurs freely in a formula if and only if there is at least one free occurrence of the variable in the formula.

Definition (sentence of L_2)

A formula of L_2 is a sentence of L_2 if and only if no variable occurs freely in the formula.

Notational Conventions

This section doesn't concern the syntax of L_2; it just contains some rules for abbreviating formulae of L_2. These rules do not form part of the syntax of L_2, they just are conventions that allow one to abbreviate formulae.

The bracketing conventions of L_1 apply also to L_2 formulae.

Convention

An L_2-formula may be abbreviated by dropping the arity indices.

So instead of P^2xy one may write Pxy.

Example

$$\forall x (((P^1x \land R^2xa)) \rightarrow \exists y (((R^3xy^2 \land Q^1x)) \land P^1y^2))$$

This is the sentence. Now I apply the rules for abbreviating formulae of L_2. The connective \land binds more strong than \rightarrow; so I drop the the red brackets. The pair of green brackets can be dropped because in chains of formulae with \land 'left-bracketing' applies. And then, according to the new rule, I can drop the arity indices from all predicate letters. Note that there is no pair of outer brackets that I could drop. The formula cannot be further abbreviated.

In the abbreviation

$$Pa \land Pab$$

the two occurrences of P stand for different predicate letters, which becomes obvious when arity indices are added:

$$(P^1a \land P^2ab)$$
This is only my first stab on formalisation in \mathcal{L}_2. In Chapter 7 I’ll take up the topic again after specifying the semantics of \mathcal{L}_2.