The analysis of the beginning would thus yield the notion of the unity of being and not-being — or, in a more reflected form, the unity of differentiatedness and non-differentiatedness, or the identity of identity and non-identity.

Hegel, *The Science of Logic*

Assume Keith and Volker don’t share a car; they only have the same model of the same year (same colour etc).

Example
Keith and Volker have the same car.
Keith and Volker have identical cars.

This an example of (approximate) **qualitative identity**.

Qualitative identity can be formalised as a binary predicate letter expressing close similarity or sameness in all relevant aspects.

Example
This is the same car as the car that was seen at the scene.

This means probably that the *very same* car and not just a car of the same brand, the same colour etc was seen at the scene.

This is an example of **numerical identity**.

Occasionally it’s ambiguous whether numerical or qualitative identity is meant.

In what follows I talk about numerical identity.

The language L_ω is L_2 plus an additional binary predicate letter $=$ that is always interpreted as identity.

In L_2 we can formalise ‘is identical to’ as a binary predicate letter, but this predicate letter can receive arbitrary relations as extension (semantic value).

In L_ω the new binary predicate letter is always taken to express identity.
The Syntax of L_∞

Definition (atomic formulae of L_∞)

All atomic formulae of L_2 are atomic formulae of L_∞. Furthermore, if s and t are variables or constants, then $s = t$ is an atomic formula of L_∞.

Example

c = a, $x = y$, $x_2 = x_7$, and $x = a$ are all atomic formulae of L_∞.

The symbol ‘=’ now plays two roles: as symbol of L_∞ and as a symbol in the metalanguage.

One can use connectives and quantifiers to build formulae of L_∞ in the same ways as in L_2.

Example

$\neg x = y$ and $\forall x (Rxy_2 \rightarrow y_2 = x)$ are formulae of L_∞.

The notion of an L_∞-sentence is defined in analogy to the notion of an L_2-sentence.

Everything is as for L_2, except that an additional clause needs to be added to the definition of satisfaction, where \mathcal{A} is an L_2-structure, s is a variable or constant, and t is a variable or constant:

(ix) $|s = t|^\mathcal{A} = T$ if and only if $|s|^\mathcal{A} = |t|^\mathcal{A}$.

All other definitions of Chapter 5 carry over to L_∞, just with ‘L_2’ replaced by ‘L_∞’.

Caution: L_∞-structures don’t assign semantic values to the symbol ‘=’. There is no difference between L_∞ and L_2-structures!

Example

$\forall x \forall y x = y$ isn’t logically true.

Counterexample: Let \mathcal{A} be any L_2-structure with $\{1, 2\}$ as its domain.
Natural Deduction for $\mathcal{L}_=$ has the same rules as Natural Deduction for \mathcal{L}_2 except for rules for $=$:

$=$Intro

Any assumption of the form $t = t$ where t is a constant can and must be discharged.

A proof with an application of $=$Intro looks like this:

$$
\begin{array}{c}
[t = t] \\
\vdash
\end{array}
$$

$=$Elim

If s and t are constants, the result of appending $\phi[t/v]$ to a proof of $\phi[s/v]$ and a proof of $s = t$ or $t = s$ is a proof of $\phi[t/v]$.

$$
\begin{array}{c}
\vdash \\
\vdash \\
\vdash
\end{array}
\begin{array}{c}
\vdash \\
\vdash \\
\vdash
\end{array}
\begin{array}{c}
\vdash \\
\vdash \\
\vdash
\end{array}
\begin{array}{c}
\phi[s/v] \\
\phi[t/v]
\end{array}
\begin{array}{c}
s = t \\
t = s
\end{array}
=Elim
=Elim

Strictly speaking, only one of the versions is needed, as from $s = t$ one can always obtain $t = s$ using only one of the rules.

Example

$$
\vdash \forall x \forall y (Rx y \to (x = y \to Ryx))
$$

Here is the proof:

$$\begin{array}{c}
\vdash \\
\vdash \\
\vdash
\end{array}
\begin{array}{c}
\vdash \\
\vdash \\
\vdash
\end{array}
=Elim
\begin{array}{c}
\vdash \\
\vdash \\
\vdash
\end{array}
=Elim
=Elim
=Elim

Theorem (Adequacy)

Assume that ϕ and all elements of Γ are \mathcal{L}_--sentences. Then $\Gamma \vdash \phi$ if and only if $\Gamma \models \phi$.
Using = one can formalise overt identity claims:

Example
William II is Wilhelm II.

FORMALISATION
\[a = b \]
\[a: \text{William II} \]
\[b: \text{Wilhelm II} \]

Identity can also be used in formalisations of sentences that do not involve identity explicitly.

Example
There is exactly one perfect being.

FORMALISATION
\[\exists x (P x \land \forall y (P y \rightarrow x = y)) \]
\[P: \text{... is a perfect being} \]

Similar tricks work for various other numerical quantifiers ‘at least three’, ‘at most 2’, and so on.

There is no reference to numbers.

Don’t confuse identity with predication.

Example
William is an emperor.

FORMALISATION
\[Q a \]
\[a: \text{William} \]
\[Q: \text{... is an emperor} \]

Here ‘is’ forms part of the predicate ‘is an emperor’.

Example
William is the emperor.

Here ‘is’ expresses identity.

Definite descriptions

The following expressions are definite descriptions:

- the present king of France
- Tim’s car
- the person who has stolen a book from the library and who has forgotten his or her bag in the library

Formalising definite descriptions as constants brings various problems as the semantics of definite descriptions doesn’t match the semantics of constants in \(\mathcal{L}_e \).
Russell's trick

Example
Tim's car is red.

Paraphrase
Tim owns exactly one car and it is red.

FORMALISATION
\[\exists x (Qx \land Rbx \land \forall y (Qy \land Rby \rightarrow x = y) \land Px) \]

- \(b \): Tim
- \(Q \): ... is a car
- \(R \): ... owns ...
- \(P \): ... is red

This formalisation is much better than the formalisation of ‘Tim's car’ as a constant.
For instance, the following argument comes out as valid if Russell's trick is used (but not if a constant is used):

Example
Tim's car is red. Therefore there is a red car.

FORMALISATION
\[\exists x (Qx \land Rbx \land \forall y (Qy \land Rby \rightarrow x = y) \land Px) \rightarrow \exists x (Px \land Qx) \]

The proof is in the Manual.

So the English argument is valid in predicate logic with identity.

By using Russell's trick one can formalise definite descriptions in such a way that the definite description may fail to refer to something. Constants, in contrast, are assigned objects in any \(L_2 \)-structure.

Using Russell's trick offers more ways to analyse sentences containing definite descriptions and negations.

Example
- Volker's Ferrari is red.
- Volker's Ferrari isn't red.

The first sentence is false, but is the second sentence true?

There is a reading under which both sentence are false. This reading can be made explicit in \(L_\approx \) using Russell's analysis of definite descriptions.

Example
Volker's Ferrari isn't red.

FORMALISATION
\[\exists x ((Qx \land Rax) \land \forall y (Qy \land Ray \rightarrow x = y) \land \neg Px) \]

- \(a \): Volker
- \(Q \): ... is a Ferrari
- \(R \): ... owns ...
- \(P \): ... is red

This formalisation expresses that Volker has exactly one Ferrari and that it isn't red.

Under this analysis ‘Volker's Ferrari is red’ and ‘Volker's Ferrari isn't red’ are both false.
Example

It's not the case (for whatever reason) that Volker's Ferrari is red.

I tend to understand this sentence in the following way:

FORMALISATION

\[\neg \exists x ((Qx \land Rax) \land \forall y(Qy \land Ray \rightarrow x = y) \land Px) \]

Perhaps the sentence ‘Volker’s Ferrari isn’t red’ can be understood as saying the same; so it is ambiguous (scope ambiguity concerning \(\neg \)).

\[\neg \exists x ((Qx \land Rax) \land \forall y(Qy \land Ray \rightarrow x = y) \land \neg Px) \]

Logical constants

I have treated identity, the connectives and expressions like ‘all’ etc. as subject-independent vocabulary. Perhaps there are more such expressions:

- many, few, infinitely many
- necessarily, possibly
- it’s obligatory that

At any rate the logical vocabulary of \(\mathcal{L}_e \) is sufficient for analysing the validity of arguments in (large parts of) the sciences and mathematics.

You can learn more about extensions of \(\mathcal{L}_e \) in the *Philosophical Logic* paper.

Perhaps the above expressions can be analysed in \(\mathcal{L}_e \) in the framework of specific theories.

The dark side

So far you have seen the logician mainly as a kind of philosophical hygienist, who makes sure that philosophers don’t blunder by using logically invalid arguments or by messing up the scopes of quantifiers or connectives.

Logic seems to be an auxiliary discipline for sticklers who secure the foundations of other disciplines.

But there is also a dark side.

Here is an example.

Russell’s paradox

If there are any safe foundations in any discipline, then the foundations of mathematics and logic should be unshakable.

I have used sets for the foundations of logic: sets, relations, and functions. \(\mathcal{L}_2 \)-structures are defined in terms of sets. Large parts of various disciplines (mathematics, sciences, various parts of philosophy) are founded on set theory.

Sets replace in many cases the role assigned to universals in classical philosophy.

But the theory of sets is threatened by paradox.
Example (Exercise 7.6)

There is not set \(\{ d : d \notin d \} \) that contains exactly those things that do not have themselves as elements.

Thus defining sets using expressions \(\{ d : \ldots d \ldots \} \) is risky. So presumably the assumptions about sets you used at school form an inconsistent set of assumptions: anything can be proved from them.

Russell’s paradox shattered Frege’s foundations of mathematics.

In the early 20th century logicians developed theories of sets in which the Russell paradox does not arise (e.g. Zermelo-Fraenkel set theory). They are still in use.

But there remained doubt in the hearts of some mathematicians and philosophers: they still didn’t know that the theory of sets (and therefore the foundations of mathematics) is consistent as there could be other paradoxes.

The hope: one day a white knight would come and prove, using the instruments of logic, that the revised theory of sets is (syntactically or semantically) consistent. Some tried…

In the end a black knight came and, using the methods of logic, proved roughly the following:

If there is a proof of the consistency of set theory, using the tools of logic and set theory, then set theory is inconsistent.

We can never prove, perhaps never know, that the foundations are safe (consistent). Not only did the white knights fail, they failed by necessity.

Gödel’s proof is so devastatingly general that replacing set theory with a tamer theory will not help against Gödel’s result. One can prove the consistency of one’s standpoint only if that standpoint is inconsistent.

What remains is, perhaps, faith…