THE CHEMISTRY OF THE CARBONYL GROUP

Professor Tim Donohoe

8 lectures, HT, weeks 1-4, 2007

Handout A

You will be able to download copies of the handouts from this course at
http://users.ox.ac.uk/~magd1571/Teaching/Teaching.htm
Course Structure

1) Nucleophilic addition to C=O
 A) Nucleophiles and electrophiles
 B) Reversible addition (hydrates and hemiacetals)
 C) Irreversible addition (reduction and Grignard addition)

2) Nucleophilic substitution of C=O
 A) acetals
 B) imines, oximes and hydrazones

3) Nucleophilic substitution at C=O
 A) tetrahedral intermediates in substitution-
 B) leaving group ability
 C) Acid chlorides
 D) Anhydrides
 E) Esters
 F) Amides

4) Enolisation of carbonyl compounds
 A) keto-enol tautomerism
 B) enols and enolates as nucleophiles
 C) condensation reactions with carbonyl groups
 D) conjugate additions

5) Making Alkenes
 • Wittig reaction

Suggested Reading:
Core Carbonyl Chemistry, J. Jones, Oxford Primer
Organic Chemistry, Clayden, Greeves, Warren and Wothers
Organic Chemistry, Volhard and Schore
A guidebook to mechanism in organic chemistry, Sykes
The Chemistry of the Carbonyl Group, Warren
1. Nucleophilic addition to C=O

A) Nucleophiles and Electrophiles

Structure of carbonyls consider the σ and π framework

MO picture of a C=O

Antibonding orbital resembles

A p-orbital on carbon

a p-orbital on O

Bonding orbital resembles

So, C=O have a low energy (unfilled) π* orbital that has a large coefficient on carbon and this is crucial to its reactivity.

Canonicals show the C is electron deficient

In order to break a bond we place two electrons in the antibonding orbital; the bond order then becomes

Bond order is:
When nucleophiles attack the C=O group they do so by passing electrons from their highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) of the carbonyl ie. Negatively charged species are also attracted to the electron deficient carbon atom.

So, in the addition of cyanide to acetone, the following electron movements are involved.

a) Curly arrow representation

\[
\begin{align*}
\text{C}=\text{O} & \quad \rightarrow \quad \text{NCO}^{-} \quad \rightarrow \quad \text{NCOOH} \\
\text{CN}^{-} &
\end{align*}
\]

b) orbitals involved

\[
\begin{align*}
\text{NCO}^{-} & \quad \rightarrow \quad \text{NCO} \\
\text{at the same time} & \quad \rightarrow \quad \text{NCOOH}
\end{align*}
\]

All additions to C=O follow the same pattern of events, but the nature of the HOMO depends on the particular nucleophile used. Once you understand the orbitals involved you do not need to draw the orbitals for every addition to a carbonyl.

We must make a distinction between reversible and irreversible additions:

B Reversible addition: eg. The addition of cyanide can be reversed by adding a base

This happens because CN is a good...
The addition of water is also reversible and observed through the formation and collapse of hydrates

\[\text{hydrate of ketone} \]

For this reversible reaction, the thermodynamic stability of the carbonyl versus the hydrate will determine the percentage of hydrate at equilibrium.

Standard ketones (acetone) contain very little hydrate:

\[
\begin{array}{c|c|c}
\text{Keq (in water, 25°C)} & \text{Keq (in water, 25°C)} \\
\hline
\text{H}_2\text{O} & \text{Cl}_3\text{C} = \text{H} & 18 & 36 \\
\text{Me} & \text{F}_3\text{C} = \text{CF}_3 & 0.01 & 22000 \\
\text{Me} & \text{Me} & 1.8 \times 10^{-5} & \\
\end{array}
\]

Factors influencing extent of hydration
i) Steric hindrance: repulsion between groups that are close in space:

ii) Electron withdrawing groups. Inductive effect increases the reactivity of the C=O to nucleophiles
iii) Delocalisation (conjugation)

These three factors influence other C=O reactions too.
Of course, the addition of alcohols to C=O is also easy (and reversible).

Some hemiacetals are stable because the alcohol attacks in an

The formation of hemiacetals is catalysed by either ACID or BASE

In ACID

EtOH, H⁺
In BASE

Further reading: look up the (reversible) addition of bisulfite to carbonyl compounds and also the Meerwein Pondorff Verley reduction.

C. Irreversible addition at a carbonyl is perhaps more common

Addition of carbon nucleophiles such as Grignards is v. important in synthesis

These organometallic reagents add to C=O, although the precise details of the attack are complex because the metal ion acts as a Lewis acid.
Organolithium reagents are very similar to Grignards in this context.

Reduction of carbonyl compounds is observed when bulky Grignards are used e.g. \(\text{tBuMgBr} \):

We see a similar pattern of reactivity during the **Cannizzaro** reaction:

\[
2 \text{PhCHO} \xrightarrow{(i) \text{NaOH (conc.)}} \xrightarrow{(ii) \text{H}_3\text{O}^+} \text{PhCH(OH)}_2
\]

The mechanism involves base catalysed addition of hydroxide to the aldehyde; followed by hydride transfer.
Q. Why does this reaction only work with aldehydes that have NO alpha protons?

However, reduction of a carbonyl is best accomplished with NaBH₄ or LiAlH₄
Ketones are reduced to
Aldehydes are reduced to

Reaction mechanism with LiAlH₄ is more complex and takes place in an inert solvent such as ether (this is because

2. Nucleophilic substitution of C=O
A) Acetals: In acid, hemiacetal formation from an aldehyde or ketone does not
The acid allows

\[
\begin{align*}
\text{R} & \quad \text{O} & \quad \text{R} \\
\text{H} & & \text{H} & & \text{H}
\end{align*}
\]

The product is an

Remember, acetals **only** form in

Also

This process is an equilibrium and can be shifted in either direction by removal of the products or addition of excess of one reagent.

To **form** an acetal use:

To **hydrolyse** an acetal use:

Acetals are stable to base, nucleophiles and oxidants; so they are commonly used as
B) Formation of Imines and related derivatives from carbonyls

Nitrogen based nucleophiles also add to carbonyl compounds: consider attack of a primary amine at a ketone.

\[\text{CH}_3\text{NH}_2 + \text{RCHO} \rightarrow \text{CH}_3\text{N}^+\text{R}^- \]

Other amine derivatives add to carbonyl compounds in an analogous manner.

\[\text{HO–NH}_2 \]

\[\text{H}_2\text{N–NH}_2 \]

These condensations are very pH dependent

\[\text{HONH}_2 + \text{RCHO} \rightarrow \text{R}^- \]

Step 1

Step 2
Note that secondary amines cannot condense with a carbonyl to produce a neutral compound.

And, just like aldehydes and ketones, imines are useful electrophiles although they are less electrophilic (because nitrogen is less electronegative than oxygen).

This is called **reductive amination**: a method for converting aldehydes and ketone to amines.
Bearing in mind the reaction of aldehydes and ketones with cyanide, we can rationalise the Strecker reaction

\[
\text{Step 1} \quad \begin{array}{c}
\text{O} \\
\text{R} \quad \text{H}
\end{array} \xrightarrow{\text{NH}_4\text{Cl}} \xrightarrow{\text{NaCN}} \begin{array}{c}
\text{O} \\
\text{R} \quad \text{H}
\end{array}
\]

\[
\text{Step 2} \\
\begin{array}{c}
\text{O} \\
\text{R} \quad \text{H}
\end{array} \xrightarrow{\text{H}_2\text{O}^+ \text{ mechanism?}} \\
\begin{array}{c}
\text{R} \\
\text{H}
\end{array}
\]

3. Nucleophilic substitution at C=O

A) tetrahedral intermediates in substitution

Overall, the substitution process can be represented as:

\[
\begin{array}{c}
\text{O} \\
\text{R} \quad \text{X}
\end{array} \xrightarrow{\text{Nu}} \begin{array}{c}
\text{O} \\
\text{R} \quad \text{Nu}
\end{array}
\]

This reaction does NOT go through a direct displacement: instead, the nucleophile finds it easier to add to the carbonyl group (the \(\pi^*\) is lower in energy and more accessible to the HOMO of the nucleophile than a \(\sigma^*\) orbital).

The intermediate (known as a TETRAHEDRAL INTERMEDIATE) can do two things,

\[
\begin{array}{c}
\text{O} \\
\text{R} \quad \text{X}
\end{array} \xrightarrow{\text{Nu} \ominus} \begin{array}{c}
\text{R} \\
\text{X}
\end{array} \xrightarrow{\text{OR}} \begin{array}{c}
\text{R} \\
\text{Nu}
\end{array}
\]

This clearly depends upon

B) Leaving group ability
Leaving group ability: correlation with pKa How do we know which is the best leaving group?

There is already a scale that can help us: pKa:

| Large values of pKa mean small values of Ka ie |
| Small values of pKa mean large values of Ka ie |

Strong acids readily ionise to

ie the conjugate base X^- of a strong acid H-X is easily lost as X^-

put simply

| Large values of pKa mean |
| Small values of pKa mean |

Leaving group X^- pKa of H-X

Me
H
NH$_2$
EtO
HO
MeCO$_2$
Cl
Q: How does the nature of X affect the reactivity of the carbonyl group towards nucleophiles?

There are two effects here:

(i) Inductive electron withdrawal

\[
\begin{align*}
\text{R} & \quad \text{R} & \quad \text{R} \\
\text{O} & \quad \text{O} & \quad \text{O}
\end{align*}
\]

Increased electronegativity of X

(ii) Conjugation of a lone pair on X with the C=O

Think about the shape of the ester oxygen

\[
\begin{align*}
\text{R} & \quad \text{O} \\
\text{O} & \quad \text{O}
\end{align*}
\]

In molecular orbital terms:

By conjugating the two species

the LUMO

and the HOMO

\[
\begin{align*}
\text{R} & \quad \text{O} \\
\text{O} & \quad \text{O}
\end{align*}
\]
C) X= chlorine then we have an acid chloride which are very reactive species because

\[R\text{OCl} \rightarrow \text{ROH} \rightarrow \text{RCl} \rightarrow \text{RCl} \rightarrow \text{R} \]

Note that a base must be present here because

You can make acid chlorides from carboxylic acids like this:

\[R\text{OH} \rightarrow \text{Cl}\text{SOCl} \rightarrow \text{RCl} \rightarrow \text{RCl} \rightarrow \text{R} \]
D) When $X=\text{OCOR}$ these are called **anhydrides** and are slightly less reactive than acid chlorides

![Chemical structure of anhydrides]

So, oxygen shares its

As one would expect, reaction of anhydrides mirrors that of acid chlorides

![Chemical reaction of anhydrides]

E) $X=\text{OR}$, esters

Esters are substantially less reactive towards nucleophiles than aldehydes and ketones;

![Chemical structure of esters]

Esters do react, but only with more powerful nucleophiles, eg NaOH

![Chemical reaction of esters]
We can also increase the reactivity of esters by using ACID catalysis

\[
\begin{align*}
\text{H}_3\text{O}^+ & \quad \xrightarrow{\text{R} \quad \text{O} \quad \text{Me}} \quad \text{R} \quad \text{O} \quad \text{Me} \\
& \quad \xrightarrow{\text{R} \quad \text{O} \quad \text{Me}} \quad \text{R} \quad \text{O} \quad \cdot\\
& \quad \xrightarrow{\text{R} \quad \text{O}} \quad \text{R} \quad \text{O} \quad \cdot
\end{align*}
\]

Drive reaction to completion by using an excess of water or remove the alcohol by-product

Further reading: the acid and base catalysed hydrolysis of esters can be classified into 8 different categories (\(A_{AC1}, A_{AC2}, A_{AL1}, A_{AL2}, B_{AC1}, B_{AC2}, B_{AL1}, B_{AL2}\)) depending upon the mechanism—see J. March, Advanced Organic Chemistry, Fourth Ed, P378.

Given the above, the following should come as no surprise:

1) reaction with an amine (\(\Delta\))

2) reduction with LiAlH\(_4\)
So, what happens if we try to make a ketone via reaction of an ester with

\[
\begin{align*}
&\text{O} \quad \text{Me} \\
&\text{O} \quad \text{Me} \\
&\text{Me} \\
&\text{Me}
\end{align*}
\]

In fact, this is a good method for making tertiary alcohols whereby two R groups are the same.

Clearly there is a problem in making ketones with this chemistry. Two solutions are available.

1) React a carboxylic acid with TWO equivalents of a reactive organolithium reagent

\[
\begin{align*}
&\text{H} \\
&\text{O} \quad \text{O} \\
&\text{MeLi}
\end{align*}
\]

2) Use an acid chloride rather than an ester; AND decrease the reactivity of the nucleophile by changing the metal counterion from lithium to
The selectivity displayed below was used as a key step in the synthesis of an antibiotic, septamycin.

F) X= NR₂, amides
These are the least reactive of the derivatives (towards nucleophiles) discussed so far because

As the constituents of poly amides (i.e., peptides) these functional groups are essential parts of biological systems. We can hydrolyse an amide bond in the laboratory, but require harsh acidic or basic conditions to do it.
notice that one equivalent of acid is

Generally, acid is better than base for hydrolysing amide, although strong bases such as can do the hydrolysis.

Most of the time

This has no alternative
Think about the reduction of amides with LiAlH$_4$

A simple way of making substituted amines involves coupling of an acid chloride with an amine to give an amide, followed by

\[
R\text{NH}_2 + R'\text{Cl} \xrightarrow{\text{LiAlH}_4} R'\text{O} \xrightarrow{\text{LiAlH}_4}
\]
The following scheme says it all

Increased reactivity:
Increased leaving group ability

Increased pKa of leaving group's conjugate acid