James W. Taylor

 

James W. Taylor

Saïd Business School

University of Oxford

Park End Street

Oxford OX1 1HP

United Kingdom

email: james.taylor@sbs.ox.ac.uk

 


Research interests:

My research is in time series forecasting. I am particularly interested in various aspects of probabilistic forecasting.

 

My work has mainly concerned the following application areas: call centres, energy and the environment, financial markets and inventory management.


Published and Accepted Journal Papers:

Meng, X., Taylor, J.W., Ben Taieb, S., Li, S. Scores for Multivariate Distributions and Level Sets, Operations Research, forthcoming. (pdf)

 

Arora, S., Taylor, J.W., Mak, H.-Y. Probabilistic Forecasting of Patient Waiting Times in an Emergency Department, Manufacturing & Service Operations Management, forthcoming. (pdf)

 

Taylor, J.W. Forecasting Value at Risk and Expected Shortfall using a Model with a Dynamic Omega Ratio, Journal of Banking & Finance, forthcoming. (pdf)

 

Trucíos, C., Taylor, J.W. A Comparison of Methods for Forecasting Value-at-Risk and Expected Shortfall of Cryptocurrencies, Journal of Forecasting, forthcoming. (pdf)

 

Ludwig, N., Arora, S., Taylor, J.W. Modelling Uncertainty: Probabilistic Forecasting Using Weather Ensemble Predictions, Journal of the Operational Research Society, forthcoming. (pdf)

 

Taylor, J.W., Taylor, K.S. 2023. Combining Probabilistic Forecasts of U.S. COVID-19 Mortality. European Journal of Operational Research, 304(1), 25-41. (pdf)

 

Taylor, K.S., Taylor, J.W. 2022. Interval forecasts of weekly incident and cumulative COVID-19 mortality in the United States: A comparison of combining methods, PLOS One, 17(3), e0266096. (pdf) (Supplement: pdf)

 

Meng, X., Taylor, J.W. 2022. Comparing Probabilistic Forecasts of the Daily Minimum and Maximum Temperature. International Journal of Forecasting, 38(1), 267-281. (pdf)

 

Ben Taieb, S., Taylor, J.W., Hyndman, R.J. 2021. Hierarchical Probabilistic Forecasting of Electricity Demand with Smart Meter Data. Journal of the American Statistical Association, 116(533), 27-43. (pdf)

Taylor, J.W. 2021. Evaluating Quantile-Bounded and Expectile-Bounded Interval Forecasts. International Journal of Forecasting, 37(2), 800-811. (pdf)

 

Liu, M., Taylor, J.W., Choo, W.-C. 2020. Further Empirical Evidence on the Forecasting of Volatility with Smooth Transition Exponential Smoothing. Economic Modelling, 93, 651-659. (pdf)


Taylor, J.W. 2020. A Strategic Predictive Distribution for Tests of Probabilistic Calibration. International Journal of Forecasting, 36(4), 1380-1388. (
pdf)

Taylor, J.W. 2020. Forecast Combinations for Value at Risk and Expected Shortfall. International Journal of Forecasting, 36(2), 428-441. (
pdf)

 

Meng, X., Taylor, J.W. 2020. Estimating Value-at-Risk and Expected Shortfall Using the Intraday Low and Range. European Journal of Operational Research, 280(1), 191-202. (pdf)

Taylor, J.W. 2019. Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution. Journal of Business and Economic Statistics, 37(1), 121-133. (
pdf)

Taylor, J.W., Jeon, J. 2018. Probabilistic Forecasting of Wave Height for Offshore Wind Turbine Maintenance, European Journal of Operational Research, 267(3), 877-890. (
pdf)

Meng, X., Taylor, J.W. 2018. An Approximate Long-Memory Range-Based Approach for Value at Risk Estimation, International Journal of Forecasting, 34(3), 377-388. (
pdf)

Arora, S., Taylor, J.W. 2018. Rule-based Autoregressive Moving Average Models for Forecasting Load on Special Days: A Case Study for France, European Journal of Operational Research, 266(1), 259-268. (
pdf)

Taylor, J.W. 2017. Probabilistic Forecasting of Wind Power Ramp Events Using Autoregressive Logit Models. European Journal of Operational Research, 259(2), 703-712. (
pdf)

Taylor, J.W., Yu, K. 2016. Using Autoregressive Logit Models to Forecast the Exceedance Probability for Financial Risk Management. Journal of the Royal Statistical Society, Series A, 179(4), 1069-1092. (
pdf)

Jeon, J., Taylor, J.W. 2016. Short-term Density Forecasting of Wave Energy Using ARMA-GARCH Models and Kernel Density Estimation. International Journal of Forecasting, 32(3), 991-1004. (
pdf)

Taylor, J.W., Roberts, M.B. 2016. Forecasting Frequency-Corrected Electricity Demand to Support Frequency Control. IEEE Transactions on Power Systems, 31(3), 1925-1932. (
pdf)

Arora, S., Taylor, J.W. 2016. Forecasting Electricity Smart Meter Data using Conditional Kernel Density Estimation. Omega, 59, 47-59. (
pdf)

Taylor, J.W., Jeon, J. 2015. Forecasting Wind Power Quantiles Using Conditional Kernel Estimation. Renewable Energy, 80, 370-379. (
pdf)

Arora, S., Taylor, J.W. 2013. Short-term Forecasting of Anomalous Load Using Rule-based Triple Seasonal Methods. IEEE Transactions on Power Systems, 28(3), 3235-3242. (pdf)

Jeon, J., Taylor, J.W. 2013. Using Implied Volatility with CAViaR Models for Value at Risk Estimation. Journal of Forecasting, 32(1), 62-74. (pdf)

Jeon, J., Taylor, J.W. 2012. Using Conditional Kernel Density Estimation for Wind Power Density Forecasting. Journal of the American Statistical Association, 107(497), 66-79. (
pdf)

Taylor, J.W. 2012. Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing. Management Science, 58(3), 534-549. (
pdf)

Taylor, J.W. 2012. Short-Term Load Forecasting with Exponentially Weighted Methods. IEEE Transactions on Power Systems, 27(1), 458-464. (
pdf)

Taylor, J.W., Snyder, R.D. 2012. Forecasting Intraday Data with Multiple Seasonal Cycles Using Parsimonious Seasonal Exponential Smoothing. Omega, 40(6), 748-757. (
pdf)

Taylor, J.W. 2011. Multi-item Sales Forecasting with Total and Split Exponential Smoothing. Journal of the Operational Research Society, 62(3), 555-563. (
pdf)

Taylor, J.W. 2010. Exponentially Weighted Methods for Forecasting Intraday Time Series with Multiple Seasonal Cycles. International Journal of Forecasting, 26(4), 627-646. (
pdf)

Hippert, H., Taylor, J.W. 2010. An Evaluation of Bayesian Techniques for Controlling Model Complexity in a Neural Network for Short-term Load Forecasting, Neural Networks, 23(3), 386-395. (
pdf)

Taylor, J.W. 2010. Triple Seasonal Methods for Short-term Load Forecasting. European Journal of Operational Research, 204(1), 139-152. (
pdf)

Taylor, J.W., McSharry, P.E., Buizza, R. 2009. Wind Power Density Forecasting Using Wind Ensemble Predictions and Time Series Models. IEEE Transactions on Energy Conversion, 24(3), 775-782. (
pdf)

Little, M.A., McSharry, P.E., Taylor, J.W. 2009. Generalised Linear Models for Site-Specific Density Forecasting of UK Daily Rainfall. Monthly Weather Review, 137(3), 1031-1047. (
pdf)

Taylor, J.W. 2008. An Evaluation of Methods for Very Short Term Electricity Demand Forecasting Using Minute-by-Minute British Data. International Journal of Forecasting, 24(4), 645-658. (
pdf)

Taylor, J.W. 2008. Exponentially Weighted Information Criteria for Selecting Among Forecasting Models. International Journal of Forecasting, 24(3), 513-524. (
pdf)

Taylor, J.W. 2008. Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall. Journal of Financial Econometrics, 6(3), 382-406. (
pdf)

Taylor, J.W. 2008. Estimating Value at Risk and Expected Shortfall Using Expectiles. Journal of Financial Econometrics, 6(2), 231-252. (
pdf)

Taylor, J.W. 2008. A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center. Management Science, 54(2), 253-265. (
pdf)

Taylor, J.W., P. E. McSharry. 2007. Short-Term Load Forecasting Methods: An Evaluation Based on European Data. IEEE Transactions on Power Systems, 22(4), 2213-2219. (
pdf)

Taylor, J.W. 2007. Forecasting Daily Supermarket Sales Using Exponentially Weighted Quantile Regression. European Journal of Operational Research, 178(1), 154-167. (
pdf)

Taylor, J.W. 2006. Density Forecasting for the Efficient Balancing of the Generation and Consumption of Electricity. International Journal of Forecasting, 22(4), 707-724. (
pdf)

Taylor, J.W., R. Buizza. 2006. Density Forecasting for Weather Derivative Pricing. International Journal of Forecasting, 22(1), 29-42. (
pdf)

Taylor, J.W., L.M. M. de Menezes
,
P. E. McSharry. 2006. A Comparison of Univariate Methods for Forecasting Electricity Demand Up to a Day Ahead. International Journal of Forecasting, 22(1),1-16. (pdf)

Taylor, J.W. 2005. Generating Volatility Forecasts from Value at Risk Estimates. Management Science, 51(5), 712-725. (
pdf)

Taylor, J.W. 2004. Smooth Transition Exponential Smoothing. Journal of Forecasting, 23(6), 385-394. (
pdf)

Taylor, J.W., R. Buizza. 2004. A Comparison of Temperature Density Forecasts from GARCH and Atmospheric Models. Journal of Forecasting, 23(5), 337-355. (
pdf)

Taylor, J.W. 2004. Volatility Forecasting with Smooth Transition Exponential Smoothing. International Journal of Forecasting, 20(2), 273-286. (
pdf)

Taylor, J.W. 2003. Exponential Smoothing with a Damped Multiplicative Trend. International Journal of Forecasting, 19(4), 715-725. (
pdf)

Taylor, J.W. 2003. Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential Smoothing. Journal of Operational Research Society, 54(8), 799-805. (
pdf)

Taylor, J.W., R. Buizza. 2003. Using Weather Ensemble Predictions in Electricity Demand Forecasting. International Journal of Forecasting, 19(1), 57-70. (
pdf)

Taylor, J.W., R. Buizza. 2002. Neural Network Load Forecasting with Weather Ensemble Predictions. IEEE Transactions on Power Systems, 17(3), 626-632. (
pdf)

Bunn, D.W., J.W. Taylor. 2001. The Application of Quality Initiatives for Improving Short-term Judgemental Sales Forecasting. International Journal of Forecasting, 17(2), 159-169. (
pdf)

Taylor, J.W. 2000. A Quantile Regression Neural Network Approach to Estimating the Conditional Density of Multiperiod Returns. Journal of Forecasting, 19(4), 299-311. (
pdf)

M. de Menezes, L.M., D.W. Bunn, J.W. Taylor. 2000. Review Guidelines for Combining Forecasts. European Journal of Operational Research, 120(1), 190-204. (
pdf)

Taylor, J.W., S. Majithia. 2000. Using Combined Forecasts with Changing Weights for Electricity Demand Profiling. Journal of the Operational Research Society, 51(1), 72-82. (
pdf)

Taylor, J.W. 1999. A Quantile Regression Approach to Estimating the Distribution of Multiperiod Returns. Journal of Derivatives, 7(1), 64-78.

Taylor, J.W., D.W. Bunn. 1999. A Quantile Regression Approach to Generating Prediction Intervals. Management Science, 45(2), 225-237.

Taylor, J.W. 1999. Evaluating Volatility and Interval Forecasts. Journal of Forecasting, 18(2), 111-128.

Taylor, J.W., D.W. Bunn. 1999. Investigating Improvements in the Accuracy of Prediction Intervals for Combinations of Forecasts: A Simulation Study. International Journal of Forecasting, 15(3), 325-339.

Taylor, J.W., D.W. Bunn. 1998. Combining Forecast Quantiles Using Quantile Regression: Investigating the Derived Weights, Estimator Bias and Imposing Constraints. Journal of Applied Statistics, 25(2), 193-206.


Other publications:

Ben Taieb, S., Taylor, J.W., Hyndman, R.J. Coherent Probabilistic Forecasts for Hierarchical Time Series. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017. (pdf)

 

Taylor, J.W., A. Espasa. 2008. Introduction to Special Issue on Energy Forecasting. International Journal of Forecasting, 24(4), 561-565.(pdf)

 

Taylor, J.W. 2006. Comments on on 'Exponential Smoothing: The State of the Art - Part II' by E.S. Gardner, Jr., International Journal of Forecasting, 22(4), 671-672.(pdf)

 

Taylor, J.W. 2003. Forecasting Weather Variable Densities for Weather Derivatives and Energy Prices. In: Bunn, D.W. (Ed.), Modeling Prices in Competitive Electricity Markets, Wiley.


Teaching:


My links:


This page was last updated 19/12/2017 14:37