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Setting Accuracy Targets for Short-Term Judgemental Sales Forecasting 

 

Abstract 

Traditionally, the quality of a forecasting model is judged by how it compares, in terms of 

accuracy, to alternative models. However, by providing a relative measure, no indication is 

given as to how much scope there might be for improvements beyond the benchmark model. 

When judgemental methods are used alongside simple forecasting models, the scope for such 

improvements is considerable and difficult to benchmark. Derivation of targets for forecasting 

quality is thus not straightforward. The approach taken in this paper is to consider forecast error 

as consisting of irreducible error due to intrinsic unpredictable uncertainty, and error due to less 

than perfect modelling, estimation and forecasting. As the intrinsic uncertainty presents a bound 

on forecast accuracy, our derivation of an accuracy target is based on the measurement of this 

irreducible uncertainty. The motivation and data for this case-study was taken from the short-

term sales forecasting process of a major, international high-technology manufacturer. 
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1.  Introduction 

 This research was motivated by an organisation that wished to implement a quality 

initiative throughout its production and inventory management. Like many companies, this 

organisation sought to encourage a quality culture in their operations by the setting of targets for 

a number of key measurable activities (Juran and Gryna, 1993). However, one important activity 

that presents special problems for such quality target-setting is short-term sales forecasting. This 

paper addresses this problem, using the company as a case study. 

 Benchmarking against industry leaders, and top performing companies in similar 

functional areas in other industries, is worthwhile for target-setting in many instances of total 

quality management (Hradesky, 1995). However, cross-company comparisons have not 

generally been relevant, nor feasible, in the area of setting forecasting quality goals. Company 

specific and company sensitive market issues often preclude this. 

 Furthermore, when we look at the research literature on forecasting, it is evident that the 

focus is more upon models than processes, and that the quality of a forecasting model tends to 

be judged by how it compares, in terms of accuracy, to a reasonable alternative statistical model. 

However, the value of such a comparison clearly depends on the quality of the benchmark 

model. Moreover, as research has shown that the fit of a model to historical data is not always a 

good guide to the post-sample accuracy of the model (Makridakis, 1986; Pant and Starbuck, 

1990), forecasters have been advised to judge accuracy based on post-sample prediction error. 

Thus, we have seen many published studies deriving the post-sample forecast errors from a 

variety of statistical models (such as the M-Competition, Makridakis et al., 1982). However, to 

the extent that the process of most business forecasting in practice involves considerable well-

informed judgemental adjustments to simple time series methods, or may indeed be mostly 

judgemental, this research is therefore quite limited for the task of quality target-setting. 

 Indeed, it is clear that in circumstances where judgemental inputs are of proven value in 

forecasting, the usefulness of statistical model benchmarking is, at best, to provide lower quality 
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bounds on performance. This, therefore, still leaves open the issue of assessing upper bounds 

which are theoretically feasible, but strongly challenging and can thereby provide a viable 

motivation for managerial forecasters. 

 To address this, we present a methodological framework which considers the forecast 

error associated with a prediction to consist of two components: the irreducible error due to the 

intrinsic unpredictable uncertainty in the variable, and the error due to less than perfect 

modelling and estimation. The intrinsic uncertainty clearly presents a bound on the accuracy of 

the forecasting process. Hence, our derivation of an upper bound is based on the estimation of 

this irreducible component of uncertainty in the data. The analogy is with the study of physical 

systems, where observation noise can be seen as an upper limit to the accuracy of systematic 

measurements. This concept has been extended in forecasting research. For example, Bunn and 

Seigal (1983) found that there was an upper bound on the accuracy of minute-by-minute 

electricity load forecasts due to load measurement problems and used this as a basis for 

assessing the performance of various short-term predictors. Compared to a measure of ex post 

accuracy, which evaluates the forecast against the actual out-turn, the proposed quality target is 

clearly more reasonable, but is still an idealised upper bound on performance. 

 Measures of actual ex post accuracy are, of course, essential for monitoring and, as we 

have observed, simple model based comparisons can provide a reasonable lower bound on 

performance. It would seem reasonable, therefore, to evaluate the usefulness of quality target 

bounds where the upper ones are based upon estimates of irreducible uncertainty, and the lower 

ones are derived from a simple time series model (e.g. random walk). 

 We applied this approach to the quality initiatives of our collaborating company. This 

company operates worldwide in the fast changing, high-technology sector, selling a range of 

personal computers directly to consumers, either by telephone or internet. They hold no 

inventories of finished goods, just component parts, and assemble to order. The products have 

quite short life cycles, with sales very dependent upon pricing and advertising. Their forecasts 
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are mostly judgemental estimates, using sales force knowledge plus market information on 

product innovations and promotions, against a background of daily monitoring of underlying 

sales trends per product line. In this respect the case study described here is typical of a more 

general class of consumer forecasting problems where there is high frequency data (eg EPOS, 

internet or phone), and a necessarily substantial judgemental component. 

The hypothesis of this study is that, in the spirit of TQM, a forecast quality target, 

implemented with regular monthly feedback, will motivate and monitor improved forecasting 

throughout the company and that such a target could consist of two bounds. The upper bound 

could be an estimator which forecasts with error due only to intrinsic uncertainty, whilst the 

lower bound could be a naïve statistical method based upon a random walk. It is important to 

understand that this paper is not concerned with the problem of estimating prediction intervals. 

A prediction interval conveys the interval within which an actual out-turn is likely to fall with a 

given probability, such as 95%. A quality target is a measure that one must try to attain. Since 

forecast quality is assessed by accuracy measures, such as MSE, this paper aims to provide a 

methodology for deriving a value for the measure which would serve as a quality target. 

 In section 2, we consider the literature on forecast accuracy measures, in order to provide 

an appropriate metric for these bounds. We present the company’s own metric and then, in 

section 3, we present a framework for deriving bounds on forecast accuracy. Section 4 discusses 

the limitations of an analytical approach to assessing the accuracy bounds, whilst section 5 

presents an alternative approach, which uses Monte Carlo simulation. Section 6 reports the 

application of the simulation procedure to the company’s data and the final section offers some 

concluding comments. 
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2.  Evaluating Forecast Accuracy 

2.1.  Forecast Accuracy Measures 

 In a survey of practitioners and academicians, Carbone and Armstrong (1982) found that 

the most preferred measure of forecast accuracy is the Mean Square Error (MSE). Chatfield 

(1992) writes that, for a single series, it is perfectly reasonable to fit a model by least squares and 

evaluate forecasts from different models by the MSE. However, the MSE has been broadly 

criticised for use in comparing forecasting methods across series, as it can be disastrous to 

average MSE from different series since it is scale-dependent. Because of this, and its poor 

protection to outliers, Armstrong and Collopy (1992) recommend against using the MSE. They 

found that for selection among forecasting methods, the MdRAE, GMRAE and MdAPE are to 

be preferred to the MSE. The MdRAE is the median value of the relative absolute error (RAE). 

This is calculated for a given time series by dividing the absolute forecast error, at a given 

horizon, for a proposed model by the corresponding error for the random walk. The GMRAE is 

the geometric average of the RAE values. The MdAPE is the median absolute percentage error 

which has the advantage of having a closer relationship to decision making. In this context, 

Fildes (1992) argues that forecast comparisons, based on a population of time series, should not 

rely on a single time origin for each series but, instead, the error measure should be averaged 

across time in some way, as well as across different series. Of the alternatives considered, he 

found that only the geometric root mean squared error (GRMSE) is well-behaved and has a 

straightforward interpretation. Makridakis and Hibon (1995) disagree, arguing that the GRMSE 

has very little intuitive meaning as it involves squared terms, products and geometric roots. 

Their study evaluates various accuracy measures using two statistical and two user-oriented 

criteria. They conclude that selecting amongst them depends upon the situation involved and the 

needs of decision or policy makers. They note that such a choice cannot be made without trade-

offs. Clearly this issue is still a controversial area in forecasting research. 
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2.2.  The Company’s Accuracy Measure 

 Returning to the context of our case study and the company involved, after much 

deliberation concerning ease of interpretation and monitoring, the forecast accuracy measure 

adopted by the company was 

( ft / xt )×100   if   ft < xt 

      and      (1) 

( xt / ft ) ×100   if   ft > xt 

where xt is the actual value and ft is the forecast. We have termed this the similarity percentage 

(SP). If a summary measure is required for forecast accuracy for several periods, the mean or 

median of the SP values can be used. The median would be more consistent with the recent 

forecast evaluation literature as it would be more robust to outliers. 

 The SP seemed to fit the company’s requirements for a quality measure since it varies 

between zero and 100%, with a higher percentage reflecting more accurate forecasting. 

However, it is not one of the metrics usually discussed in the literature and this is probably 

because of its ambiguous interpretation. For example, an SP of 80% can result from two 

possibilities: either ft is greater than xt and the forecast error is 20% of ft, or ft is less than xt and 

the forecast error is 20% of xt. Nevertheless, this seemed to make sense to the company in terms 

of the relative costs of over-stocking versus lost sales. 

 An advantage of the SP is that, since it is in percentage terms and not scale dependent, it 

can be averaged across both time periods and time series. The measure seems to have one 

advantage over the absolute percentage error (APE), which is the most widely used percentage 

measure. Makridakis (1993) notes that the APE has the problem that equal errors when xt is 

larger than ft give smaller percentage errors than when xt is smaller than ft. (For example, when xt 

is 150 and ft is 100, the APE is 33.33%, however, when xt is 100 and ft is 150, the APE is 50%.) 

This difference can create serious problems when the value of xt is small (close to zero) and ft is 

large, as the size of the APE can become extremely large making the comparisons among 
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horizons and among series difficult. This type of asymmetry is not a problem, however, for the 

similarity percentage (SP) and, furthermore, the SP can never be greater than 100% (for positive 

values of xt and ft). Interestingly, the modified MAPE, proposed by Makridakis (1993) to 

overcome this type of asymmetry, has recently been shown by Goodwin and Lawton (1999) to 

be far from symmetric in other respects. This may also be the case for the SP. 

The main contribution of our work is not affected by the choice of accuracy measure. 

Thus, since this paper is essentially a case study, and the company had already established the 

practice of working with the SP measure, the accuracy targets described below, which we 

developed and were implemented by the company, were most appropriately expressed in these 

terms. 

  

3.  Framework for Deriving Accuracy Targets 

3.1.  The Components of Forecast Error 

 Having chosen an accuracy metric as a measure of forecast quality, we now address the 

problem of deriving target values for the metric. The way that we approach the problem is to 

estimate the limits on the accuracy of the company’s sales forecasts. Our methodological 

framework considers the forecast error associated with a prediction as consisting of two 

components: the irreducible error, et, due to the intrinsic unpredictable uncertainty in the 

variable, and the error, εt, due to less than perfect estimation (i.e. forecasting). We can then write 

the forecast error as 

xt - ft = et + εt 

 Improvement in forecasting will reduce εt but it cannot reduce the inherent uncertainty, 

et. Consequently, an ideal predictor will have εt = 0 and it is clear that et implies a bound on 

forecast accuracy. Suppose we are able to estimate the variance, σt
2, of et, and we assume that et 

is normally distributed about zero. We can then say that, with 5% probability, et will fall outside 

the interval [-1.96σt,1.96σt]. Since εt = 0 for a perfect predictor, we can say that the forecast 
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error for a perfect predictor would be expected to fall within these bounds 95% of the time. This 

could then serve as a target for forecast accuracy. It is important to note that these 95% limits are 

confidence limits for a perfect predictor and are, therefore, not standard prediction interval 

limits. In section 4, we adapt this idea for estimating targets to obtain bounds for the accuracy 

metric employed. First, however, we address the problem of assessing the variance, σt
2, of the 

intrinsic uncertainty, et, as this is fundamental to the approach. 

 

3.2.  Estimating the Intrinsic Uncertainty 

 The problem, as posed by the company, is to establish statistical target bounds for 

calendar month sales forecast accuracy measures based upon some measure of the intrinsic 

randomness in the data. Thus, we wish to estimate the irreducible component of uncertainty in 

the monthly values. The conceptual framework that we present for estimation is new and relies 

upon the availability of data with frequency that is higher than monthly data, for example, daily 

or weekly observations. 

 The general proposition is that measurements taken at higher frequency than that 

postulated for the underlying structural process can provide a means of estimating intrinsic 

randomness. The analogy is with estimating noise in physical systems, from repeated 

measurements with the same control variables. In our case study, the structural process proposed 

for the data by the company is that of monthly shifts in demand which need to be forecasted, but 

weekly or daily variations within the month which exhibit intrinsic randomness about that 

monthly mean. Clearly, more complex structural models could be developed imputing within 

month trends, but the data series investigated here did not seem to warrant the extra 

parameterisation, at least for a first analysis. Product life-cycles were short and the monthly 

mean shift seemed to be an appropriate structural assumption.  

 Thus, if average sales per week is correctly forecast, there would still be statistical error 

in the monthly total due to random week-by-week variations about this average. This variation 
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could be used to estimate the intrinsic uncertainty in the monthly totals, and this estimate could 

then be used to provide statistical bounds for monthly accuracy. The key underlying “stability” 

assumption is that each week’s value is varying independently about the same weekly average 

within a calendar month, although we would expect small average changes from one calendar 

month to another.  

 The variance, σt
2, of the intrinsic uncertainty, et, in the calendar month total, xt, is then 

calculated from the four weekly values, x1t, x2t, x3t and x4t, thus 

σt
2  =  var( x1t + x2t + x3t + x4t )  =  4σwt

2   (2) 

where σwt
2 is the variance in a weekly sales value. This variance, σwt

2, is estimated as the 

variance of the four values x1t, x2t, x3t and x4t. Expression (2) relies on the assumption that the 

four weekly sales values are not correlated. This was indeed true for our company’s data which 

implies that time series forecasting methods will be ineffective. It is therefore not surprising that 

the company uses judgemental methods to produce sales forecasts for these short life-cycle 

products. Although this framework is most suitable for judgemental forecasting, it is worth 

noting that it can be adapted to the situation where stable or sustained patterns do exist in the 

data. In such cases, the underlying pattern should be estimated and then the weekly randomness 

from it used to estimate intrinsic uncertainty in the monthly totals. 

 Whilst only weekly data was available for the individual products, daily data was 

available for the total sales. We calculated the intrinsic variances for the total monthly sales 

using weekly data and compared the results to those using daily data. For monthly totals, the 

intrinsic variances computed from weekly and daily data seemed sufficiently close to justify 

calculation of the monthly intrinsic variances for the individual products using the weekly data. 

We also investigated the significance of inter-correlations between sales of products on a weekly 

basis, to see the extent to which statistical dependencies needed to be taken into account when 

looking at averages of the accuracy measure across products. Our analysis indicated that the 
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inter-correlations could be omitted from the analysis as they did not appear to have a major 

effect. 

 The idea of using higher frequency data to estimate the variance in lower frequency data 

is not entirely original. For example, it has been used in financial applications to evaluate 

volatility forecasts (e.g. Day and Lewis, 1992). As volatility is unobservable, it is not obvious 

what to use as the actual with which to compare the forecast. Suppose we wish to evaluate 

forecasts of weekly volatility. If daily observations of the returns are available, a proxy for the 

actual weekly-return variance is created by computing the daily variance from the daily returns, 

and then multiplying this by the number of trading days in the week. 

 

4.  Analytical Approach to Assessing Accuracy Bounds for SP 

 We can work towards a bound on accuracy by considering the limit on the forecasting 

performance of an ideal predictor. The forecasts, pt, of an ideal predictor have εt = 0, so that 

xt - pt = et 

 If we assume that et is normally distributed, we can say that with 5% probability, et will 

fall outside the interval [-1.96σt,1.96σt]. Using this, and recalling the definition of the similarity 

percentage (SP) given in expression (1), we can make the following probability statements for 

the forecast of the ideal predictor: 

 Since pt > xt+1.96σt with probability of 2.5%, then with probability of 2.5%: 
 

xt  <  pt        and        
tt

t

t

t

x
x

p
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Since pt < xt-1.96σt with probability of 2.5%, then with probability of 2.5%: 

 

xt  >  pt        and        
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 We can thus say that, with probability less than 5% and greater than 2.5%: 
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SP of the Perfect Predictor < 100
96.1

100
96.1

,
96.1

min ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+ t

tt

t

tt

tt

t

x
x

x
x

x
x σσ

σ
 

(3) 
 

 The value of SP for the ideal predictor will thus be greater than the expression in (3) 

between 95 and 97.5% of the time. If the value of SP for our forecast is found to be greater than 

the expression in (3), then we could conclude that it is not significantly less accurate than the 

ideal predictor. The expression in (3) could then be used as a forecast accuracy target. 

 However, this analytical approach to assessing bounds for the accuracy measure is 

unsatisfactory for two reasons. Firstly, we may require an upper bound corresponding to a 

particular percentage. However, the analysis is only able to supply the imprecise probability 

statement for the SP of the perfect predictor with probability “less than 5% and greater than 

2.5%”. The second reason concerns the company’s additional requirement that accuracy targets 

are also derived for the weighted average (WSPt) of the similarity percentage for month t, 

averaged across different products. 

WSPt   =   ∑
i

itit SPw        where      
∑

=

i
it

it
it f

fw  

fit is the company’s forecast for sales of product i in month t, and SPit is the similarity percentage 

for fit. We require a 5% bound for WSPt for a particular month. Unfortunately, it is impossible to 

form probability statements, as in the previous section, for a weighted average of the accuracy 

metric. Consequently, it is impossible to form a probability statement for WSPit. With the 

complexity of the problem limiting the usefulness and feasibility of theoretical analysis, recourse 

to simulation provides a practical alternative. 

 

5.  Simulation Approach to Assessing Accuracy Targets for SP and WSP 

 Upper bounds may be derived for the accuracy measure by simulating the actual sales, 

xit, for product i in month t. We proceed by considering the observed actual as being a random 

variable consisting of a non-stochastic expectation component, E(xit), plus an intrinsic error 
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term, eit. Having estimated the standard deviation, σit, of eit, we are then in a position to simulate 

values of xit as 

xit  =  E(xit) + eit 

where eit is a value derived by Monte Carlo sampling from a normal distribution with zero mean 

and standard deviation σit. We use the observed actual as E(xit). The ideal predictor, pit, is then 

modelled as a perfect predictor of E(xit) so that the only error is due to the intrinsic uncertainty. 

pit  =  E(xit) 

 For each simulated value of xit, we record the value of the similarity percentage, SPit: 

( pit / xit )%   if   pit < xit 

and 

( xit / pit )%   if   pit > xit 

 We also record the weighted similarity percentage for the ideal predictor using the 

simulated actuals for a particular month, 

WSPt   =   ∑
i

itit SPw        where      
∑

=

i
it

it
it p

pw  

 By repeatedly sampling from the distribution for eit, we produce a distribution for SPit 

and for WSPt. The 5th percentiles of the resultant probability distributions can then be 

interpreted as respective upper bounds for the similarity percentage and weighted similarity 

percentage of the company’s sales forecasts. They have been computed at the 95% confidence 

level, in the sense that, with ideal forecasting of the monthly means, intrinsic variation would 

imply that one’s forecast metric would be less than the bounds only 5% of the time. The bound 

is therefore the limit of the acceptance region corresponding to the one-sided hypothesis test 

with null that the forecast is at least as accurate as the perfect predictor. 

 It is worth reiterating that the simulation methodology described in this section aims to 

generate the distribution for the similarity accuracy measure for a perfect predictor. We then use 

this probability distribution to provide quality targets for the similarity accuracy measure for the 
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company’s forecasts. Of course, these forecasts have not been used to construct the accuracy 

targets which, therefore, remain fixed over time. It is hoped that these targets will motivate 

improvement in the company’s forecast accuracy over time. 

 Although the main aim of this paper is to derive upper bounds for forecasting accuracy, 

which can be interpreted as quality targets, it seems useful to also consider a general approach to 

the derivation of lower bounds for accuracy. The random walk is often taken as a benchmark 

against which to test the success of other forecasting methods. Rather than simply calculating 

the accuracy metrics (SP and WSP) for random walk forecasting for each month, we used the 

simulated actuals to build up a distribution for the accuracy metrics for the random walk. 

 The company’s forecasts are made with a lead time of three months. In view of this, we 

used the simulated actual for month t-3 as the random walk forecast for product i in period t. By 

recording the SP for each simulated actual and the WSP for each month, we generated a 

distribution for the SP and WSP for random walk forecasting for each product in each month. A 

sensible probability statement regarding a lower bound would be that the forecast should not be 

significantly worse than the random walk. In other words, the accuracy metric for the company’s 

forecast should not be significantly lower than the accuracy measure for the random walk. The 

lower bound for accuracy would then be the 5th percentile of the probability distribution of the 

simulated accuracy measure for the random walk. 

 

6.  Case Study Results 

 We had data for 11 months. We used 1,000 iterations in the Monte Carlo simulations. In 

other words, we produced a thousand simulated actuals from which we calculated the SP and 

WSP for the ideal predictor and for the random walk. The 5th percentiles of the resultant 

distributions were then used as upper and lower bounds, respectively, on accuracy. The upper 

bound can serve as a target for forecast quality. 
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 The company groups all of its products into one of three different categories. The 

weighted accuracy metrics are calculated separately for each category. The results of the 

simulations for the WSP for category 1 are given in Table 1. Figure 1 shows the distribution 

generated for the WSP of perfect predictor forecasting for the products in category 1 in month 1. 

It is easy to confirm that the 5th percentile is approximately 91%, as reported in Table 1 for  

month 1. The negative skewness of the distribution was typical for all the WSP distributions. 

 Briefly, the results indicated that the upper bound or target value for the weighted 

similarity percentage (WSP) varied between about 80 and 90%. The company’s forecasts in this 

data set generally had a WSP which was about 30% lower. A noticeable difference between the 

recorded accuracy and the target is to be expected as the targets are ultimate and are not 

realistically achievable. 

 Rather more surprising are the values of the company’s WSP relative to the lower 

bounds. The results indicated that in more than half the cases the company’s WSP is below the 

corresponding lower bound and thereby appeared to be no better than a random walk model. 

However, in restricting the data set to stable months, and requiring a three month lead time, the 

sample size was small, already being judgementally filtered. Nevertheless, since performance on 

this data set was closer to the bottom than the top of the target bands, it did cause the company to 

think about more systematic ways of using the subjective sales and marketing information. 

 Overall, the main result of this study was to suggest that a target of 85% accuracy in the 

WSPs should be used for performance monitoring in the company and that a quality initiative 

should sustain a steady improvement towards that goal. Indeed in the six months that followed 

the setting of a quality target, the company did manage to move its average monthly WSPs to 

above 80%. Feedback on actual accuracy had been given to forecasters for several years, but it 

seems that being associated with a target provided the extra motivation for quality improvement. 

Furthermore, it does seem that quality improvement is essentially in the forecasting of demand, 

rather than in the sales teams managing their out-turns. The forecasts were estimated centrally, 
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whereas the sales were almost completely made through telephone call centres during the period 

of this study. Thus, given the short-lead times involved, the lack of personal contact between the 

sales team at the call centres and most of the customers and the fact that they had no discretion 

on discounting list prices, there would appear to have been relatively little scope for the sales 

team to have influenced the attainment of the forecasts.  

-----  TABLE 1  ----- 

-----  FIGURE 1  ----- 

 

7.  Concluding Comments 

 Based upon the assumptions of intrinsic randomness, we have presented a simulation 

framework for deriving an upper and lower bound for the weighted accuracy measure. In the 

actual case study, the approach assumed that there is unforecastable week-by-week variation 

within each month, but that the average, from which these weeks are statistical outcomes, is 

predictable. 

 The upper bound was computed at the 95% confidence level, in the sense that, with ideal 

forecasting of the monthly means, the forecast metric should achieve this bound 95% of the 

time. It is, of course, unreasonable to assume that, 3 months out, product transition effects, 

media influences, logistics and other events can be anticipated perfectly, and so we have to see 

the upper bound as an ideal target against which to motivate quality improvements in 

forecasting; it should not be seen as a benchmark that should be regularly attainable. Juran 

(1988) discusses how it should not be assumed that quality goals can always be met. 

Nevertheless, they do provide a basis for motivation. In this case, they succeeded where simple 

feedback had failed, and quality improvements in forecasting were achieved relative to the 

target. 

 The quality target bounds are, therefore, ultimate and are not realistically achievable 

every month. In order to position forecasting performance within the range of attainable 
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accuracies, we calculated lower bounds. The random walk model is often taken as a benchmark 

against which to test the success of other forecasting methods. It essentially assumes that future 

changes from the current level are unpredictable and that the best forecast is the latest value. The 

lower bound was specified so that if the accuracy measure falls below that value, one can 

conclude with 95% confidence that the forecast has been outperformed by the random walk. As 

we saw in this example, historical performance close to the lower bound can also instigate 

greater efforts at forecast improvements. 

 Finally, it should be observed that this is a "bounding" exercise, looking at statistical 

variation from two extremes. The upper assuming that the data is predictable 3 months out 

except for some short-term, intrinsic week-by-week variation. The lower assuming that changes 

from the latest value are not at all predictable. It is not, therefore, a “benchmarking” exercise in 

terms of seeing what sort of accuracy other commonly used techniques, such as exponential 

smoothing, could give. Nor does it address how a structured process of forecasting quality 

improvement might be implemented. Nevertheless, the statistical bounds derived here did 

provide a framework within which to motivate improvements in forecasting. The principle is 

generalisable to more complex structural models, such as trending and life-cycle models, and 

may well be the most appropriate way to set quality targets for forecasts which involve 

substantial judgemental inputs. 
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Months 1 2 3 4 5 6 7 8 9 10 11 Average 

WSP Lower Bound - - - 67 56 58 68 48 66 57 59 60 

Company’s WSP 64 54 68 61 51 46 49 63 51 67 50 57 

WSP Upper Bound 91 89 88 87 87 89 84 90 92 86 90 88 

 

Table 1: Bounds for the WSP for product category 1 
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Figure 1: Distribution for the WSP of the ideal 
predictor for the products in category 1 in month 1 
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