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A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at 

a Call Center 

 

Abstract 

Predictions of call center arrivals are a key input to staff scheduling models. It is, therefore, 

surprising that simplistic forecasting methods dominate practice, and that the research 

literature on forecasting arrivals is so small. In this paper, we evaluate univariate time series 

methods for forecasting intraday arrivals for lead times from one half-hour ahead to two 

weeks ahead. We analyze five series of intraday arrivals for call centers operated by a retail 

bank in the UK. A notable feature of these series is the presence of both an intraweek and an 

intraday seasonal cycle. The methods considered include seasonal ARIMA modeling; 

periodic AR modeling; an extension of Holt-Winters exponential smoothing for the case of 

two seasonal cycles; robust exponential smoothing based on exponentially weighted least 

absolute deviations regression; and dynamic harmonic regression, which is a form of 

unobserved component state space modeling. Our results indicate strong potential for the use 

of seasonal ARIMA modeling and the extension of Holt-Winters for predicting up to about 

two to three days ahead and that, for longer lead times, a simplistic historical average is 

difficult to beat. We find a similar ranking of methods for call center data from an Israeli 

bank. 
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1.  Introduction 

 Call centers have become a convenient and widely used channel through which 

organizations communicate with their customers. Their importance means that improvements to 

the management of call center operations can have substantial financial implications. Gans et al. 

(2003) describe the operational problems associated with call center management, and provide a 

thorough review of the associated research literature. They write that, for most call centers, 

capacity costs, and in particular human resource costs, amount to 60-70% of operating expenses. 

The efficient scheduling and hiring of call center staff rely heavily on accurate forecasts for the 

number of calls arriving at the center. These forecasts are needed for a range of lead times. Gans 

et al. explain that an initial schedule might be produced several weeks ahead, but this schedule 

will be continually updated until the scheduled day itself. On the day, it is common for call 

centers to track the volume of calls to enable dynamic real-time updating of the agents’ 

deployment. Agents becoming free at short-notice, can be usefully assigned to meetings and 

training. The latter is particularly relevant, given the typically high turnover of call center 

agents. 

In their assessment of future directions for call center research, Gans et al. highlight 

the forecasting of arrival rates as one of the most important areas. They write that the practice 

of time series forecasting at call centers is “still in its infancy”. This is supported by the fact 

that there are so few time series forecasting papers included in Mandelbaum’s (2006) 

extensive call center bibliography. With regard to the broader telecommunications area, 

Fildes (2002) also highlights the need for more research into time series forecasting methods. 

In this paper, we evaluate time series methods for forecasting intraday arrivals for lead times 

from one half-hour ahead to two weeks ahead.  

We analyze five series of half-hourly arrivals at call centers operated by a retail bank 

in the UK. Following the practice of the bank, and with no access to potential explanatory 

variables, we confined our attention to univariate methods. As the forecasting method must 
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be used in an automated online system, the focus on univariate methods seems reasonable. 

Multivariate online systems can be very demanding in terms of inputs and require default 

procedures to ensure robustness. An interesting feature of the five series is the presence of 

both an intraweek seasonal cycle and an intraday seasonal cycle. This feature is also present 

in intraday electricity demand time series, which prompts consideration of methods proposed 

in the electricity demand literature. One such method is seasonal ARIMA modeling, which 

has previously been applied to call center arrivals, and another is Taylor’s (2003) extension 

of the Holt-Winters exponential smoothing method for the case of two seasonal cycles. In 

addition, we consider periodic AR modeling, which allows the parameters in an AR model to 

vary across the seasonal cycles. We also implement a robust form of exponential smoothing 

based on exponentially weighted least absolute deviations regression (see Cipra 1992). 

Finally, we consider dynamic harmonic regression, which was applied by Tych et al. (2002), 

with some success, to an intraday call center series. The approach involves trigonometric 

regressors with time-varying parameters formulated as an unobserved component state space 

model.  

 In Section 2, we introduce the five UK bank call center time series. In Section 3, we 

review the literature on time series forecasting of call center arrivals, before describing the 

five main approaches that we consider. Section 4 evaluates the forecast accuracy of the 

different approaches. In Section 5, we test the robustness of our findings by comparing the 

relative accuracy of the methods for the Israeli bank call center arrivals series analyzed by 

Brown et al. (2005). The final section provides a summary and concluding comments. 

 

2.  Description of the UK Bank Time Series 

In this paper, our main focus is the analysis of five time series of half-hourly arrivals 

at the call center of a major retail bank in the UK. The data is for the 36-week period from 3 

January 2004 to 10 September 2004, inclusive. The series with by far the largest volumes 
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corresponds to calls received by the bank’s four large call centers dealing with general 

customer enquiries. These centers, known as Central Telephony centers, together receive 

more than a quarter of a million calls each week. The other four series correspond to 

individual call centers, which are known as channels. Each channel specializes in a particular 

banking product. The average weekly volume of calls for each series, for our 36-week 

period, is given in Table 1. The table also shows the opening hours for the different centers.  

----------  Table 1 and Figures 1 to 3  ---------- 

Figures 1 and 2 show the final four weeks of the Central Telephony series and the 

Channel 3 series, respectively. These four-week periods are very representative of the 

behavior of the two series throughout our full sample of data. The first point to note is the 

vast difference in the volumes of arrivals in the two series. Both series exhibit no apparent 

trend and very clear seasonality. A repeating intraweek cycle can be seen in each series. For 

the Central Telephony series, the volume of arrivals generally peaks on Mondays and is 

clearly much lower on Sundays. For the Channel 3 series, arrivals on both Saturdays and 

Sundays is noticeably lower than weekdays. Although the intraday cycle is less obvious for 

both series, closer inspection reveals that, at least on weekdays, there is a peak around 11am 

followed by a second, lower peak around 2pm. Gans et al. (2003) explain that such an 

intraday pattern is reasonably typical. It is interesting to note that, by comparison with the 

Central Telephony series, the Channel 3 series seems to possess noticeably greater volatility, 

when judged relative to the levels of each series. This volatility is not surprising given the 

low volume of calls at the Channel 3 center. Figure 2 also shows that the Channel 3 series 

occasionally has unusually large values, suggesting that the conditional distribution is 

skewed. Our comments here regarding the features of the Channel 3 series also apply to the 

other three channel series. The one exception to this is that the magnitude of the seasonality 

in the Channel 4 series changes more substantially over the sample period. This can be seen 

in Figure 3, which shows the Channel 4 series for the entire 36-week sample of data. 
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If several years of half-hourly data had been available, the modeling of a possible 

intrayear seasonal cycle could also have been considered. Gans et al. (2003) discuss how, in 

other areas of call center management, there is a lack of data, and that this is likely to be due, at 

least in part, to the common use of relatively simple methods. This is one reason why our 

collaborating UK bank has, in the past, stored only a limited history of intraday data. Another 

reason is that the role and organization of the bank’s call centers has changed in recent years, 

with new centers being set up, and old ones being merged.  

Prior to fitting and evaluating methods, we smoothed out the ‘special days’, such as 

bank holidays, as their inclusion is likely to be unhelpful in our comparison of methods. 

These days are so very unlike the rest of the year that univariate methods are generally 

unable to produce reasonable forecasts. In practice, interactive facilities tend to be used for 

special days, which allow the user to override the system offline. In our study, we replaced 

all special days by the average of the corresponding period in the two adjacent weeks.  

We found that all five series possessed heteroskedasticity, with the variance 

appearing to be approximately proportional to the volume of arrivals. The existence of a 

relationship between the level of the series and the variance is consistent with the common 

assumption that call center arrivals obey a time-inhomogeneous Poisson process (see, for 

example, Brown et al. 2005). To address this issue further, in a manner consistent with our 

time series modeling approach, one would need to investigate the relationship between model 

estimates of the conditional mean and conditional variance. In order to reduce the 

heteroskedasticity in the Central Telephony series, we applied a logarithmic transformation 

to this series before fitting each of the forecasting methods in our empirical study. We were 

unable to apply the transformation to the four channel series because they contained periods 

with zero arrivals, as can be seen from Figures 2 and 3. Instead, for these series, we applied a 

square root transformation as this is sometimes used to reduce heterokedasticity when it is 

proportional to the level of the series (see, for example, Makridakis et al. 1998, Section 2.7). 
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Brown et al. (2005) use a similar variance-stabilizing transformation in their analysis. They 

take the square root of the sum of the arrivals plus 0.25. Their motivation is that the resultant 

random variable is asymptotically Gaussian if arrivals are Poisson distributed.  

We used the first 24 weeks of observations to estimate method parameters, and the 

remaining 12 weeks for post-sample forecast evaluation. The number of half-hours in the 

estimation and evaluation samples for each series is given in Table 1. We considered all 

forecast horizons from one half-hour ahead to two weeks ahead. For each series, we rolled 

the forecast origin forward through the post-sample evaluation period to produce a collection 

of forecasts from each method for each horizon. We opted not to re-specify or re-estimate 

methods, as we rolled the forecast origin forward, because we felt this would be impractical 

in an online forecasting implementation, for at least some of the methods that we considered.  

 

3.  Univariate Time Series Forecasting Methods 

3.1.  Review of Previous Studies 

The literature on time series methods for forecasting call center arrivals is small 

(Gans et al. 2003). We were able to find only five papers that considered the choice of time 

series methods for this application. A method considered in all five papers is ARIMA 

modeling. This is essentially a univariate method that can be adapted for the inclusion of 

independent variables. For the prediction of daily call volumes at a retailer’s call center, 

Andrews and Cunningham (1995) incorporate advertising effects in an ARIMA model 

through the use of transfer functions. In a study of daily applications for loans at a financial 

services call center, Antipov and Meade (2002) implement a univariate ARIMA model, but 

find that it is outperformed by a multivariate model involving several marketing variables.  

Bianchi et al. (1998) used ARIMA modeling for forecasting daily arrivals at a 

telemarketing call center. They supplemented the approach with intervention analysis to 

control for outliers, and found that the resultant forecasts outperformed standard Holt-
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Winters seasonal exponential smoothing. In our study, we also compare these two 

approaches, but our versions of these methods differ in that we allow for the two seasonal 

cycles in intraday data. Of the five time series forecasting papers, the study by Tych et al. 

(2002) is the only one that deals with intraday data. They consider hourly calls to a credit 

card company’s customer service centers. The paper compares a relatively complex 

unobserved components state space method with a univariate ARIMA model for double 

seasonality. Evaluation for lead times up to a week ahead showed the state space method 

outperforming the ARIMA model.  

Seasonal time series are often deseasonalized to enable the use of non-seasonal point 

forecasting methods (see, for example, Makridakis and Hibon 2000). The resultant forecasts 

are then reseasonalized prior to being used. In his analysis of daily emergency telephone call 

arrivals, Mabert (1985) considers several simple methods based on deseasonalized data, and 

finds that one of them is able to outperform a simple ARIMA model.  

In view of the small literature on time series methods for call center arrivals, it is not 

surprising that simplistic methods dominate forecasting practice in this area. An approach 

that is often used is the ‘top-down’ approach (Gans et al. 2003). Indeed, it is the approach 

currently used by our collaborating UK bank. This method can be viewed as a version of the 

deseasonalizing approach to seasonal time series forecasting. If applied to half-hourly calls, 

the top-down approach involves summing over all half-hours in each month to give monthly 

totals. These totals are then used as a basis for forecasting future monthly totals. This is either 

done using simple time series methods or, as in the case of our collaborating UK bank, by a 

judgmental approach. The resulting forecast for a monthly total is then decomposed into 

forecasts for each week within the month, based on historical records for the proportion of 

the monthly totals that occur in that week. In a similar way, weekly totals are broken down 

into daily totals, which in turn are decomposed into forecasts for each half-hour of the day.  
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Although lacking in sophistication and statistical eloquence, the top-down approach 

has the appeal of transparency. This is an important issue. Given that their predictions form 

the basis of potentially emotive decisions regarding recruitment and scheduling of personnel, 

forecasters are unlikely to adopt a method for which they have little intuition. Of course, it is 

also worth acknowledging that simpler forecasting methods can sometimes turn out to be 

more accurate than more sophisticated alternatives. 

 In the remainder of Section 3, we describe our implementation of five different 

approaches to forecasting our five series of UK bank call center arrivals. At the end of 

Section 3, we list all the methods that we included in our empirical study.  

 

3.2.  Seasonal ARMA 

We fitted ARIMA models of the type considered by Tych et al. (2002). For each of 

our five UK bank series, we followed the Box-Jenkins methodology to identify the most 

suitable model based on the estimation sample of 24 weeks. We considered differencing for 

the Channel 4 series because the magnitude of its seasonality changes to some degree over 

time, but the resultant model had weaker diagnostics than a model fitted with no differencing. 

The other four series were clearly stationary, so we concluded that differencing was not 

necessary for any of the series. We, therefore, change the notation from ARIMA to ARMA.  

The multiplicative double seasonal ARMA model (see Box et al. 1994, p. 333) can be 

written as 

( ) ( ) ( )( ) ( ) ( ) ( ) t
s

Q
s

Qqt
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P
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2

1

1

2

2

1

1
ΨΘ=−ΩΦ  

where yt represents call center arrivals transformed as described in Section 2; c is a constant 

term; L is the lag operator; εt is a white noise error term; φp, 1PΦ , 
2PΩ , θq, 1QΘ  and 

2QΨ  are 

polynomial functions of orders p, P1, P2, q, Q1 and Q2, respectively, and s1 and s2 are the 

lengths of the intraday and intraweek cycles, respectively. This model can be expressed as 
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ARMA
21

),(),(),( 2211 ss QPQPqp ×× . We estimated the model using maximum likelihood 

with the likelihood based on the standard Gaussian assumption. For the lower volume series, 

a Gaussian assumption seems unconvincing, but we use it here by default, as it is not obvious 

what other distribution to use.  Although a time-inhomogeneous Poisson distribution might 

seem appropriate for the number of call center arrivals, we do not use it as a basis for the 

ARMA likelihood for three reasons. Firstly, we have no evidence that our arrivals possess 

such a distribution. Secondly, discrete versions of double seasonal ARMA models are not 

available. Thirdly, transformations have been applied to the arrivals series in order to reduce 

heteroskedasticity, as described in Section 2.  

We considered lag polynomials up to order three because initial experimentation with 

the data suggested that higher order lags were unnecessary. We based model selection on the 

Schwarz Bayesian Criterion (SBC), with the requirement that all parameters were significant 

(at the 5% level). Table 2 presents the orders of the ARMA model selected for each of the 

five UK bank series. The model for the logged Central Telephony series was of the form 

shown in expression (1). The parameters of this model are shown in Table 3.  
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−−−−−−−−−   (1) 

----------  Tables 2 and 3  ---------- 

 

3.3.  Periodic AR 

Periodic ARMA models allow the parameters in the model to change with the seasons 

(see Franses and Paap 2004). For economic data, periodic models are often found to be more 

suitable than standard time-invariant coefficient models (e.g. Osborn et al. 1988). However, 

although periodic models can improve explanatory power, Ghysels and Osborn (2001, 

Section 6.6) comment that the evidence on their usefulness for forecasting is less clear. 
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To assess the potential for periodic ARMA models, we examined whether the 

autocorrelation at a specified lag exhibited variation across the half-hours of the day or the 

week. For example, for the Central Telephony series, Figure 4 shows how the autocorrelation 

at lag s2=224 varies across the 224 half-hours of the week. The confidence intervals in the 

figure are based on standard error calculated as the inverse of the square root of the number 

of observations. Although the sample size is not sufficiently large to conclude with 

confidence, the variation in the autocorrelation in this plot and in the one for lag s1=32, and 

in similar graphs for the other series, suggested to us that there was some appeal in 

estimating periodic ARMA models for our data. Interestingly, we found substantially less 

evidence of seasonal variation in the autocorrelation at lag one. 

-----------  Figure 4  ----------- 

Empirical studies have shown that periodic AR models tend to be sufficient, and that 

MA terms are unnecessary (Franses and Paap 2004, p. 28). Therefore, we considered only 

periodic AR models for the call center series. More specifically, we estimated periodic AR 

models with periodicity in the constant term and the coefficients of AR terms of lags one, s1 

and s2. In Section 2, we described how the forecast lead times of interest in this paper are 

from one half-hour to two weeks ahead. For the Central Telephony series, we found that for 

lead times beyond two hours ahead, substantial improvement in the accuracy of the approach 

can be achieved by excluding the lag one AR term from the model. Of the other four series, 

the inclusion of the lag one term was noticeably beneficial only for the Channel 4 series. In 

view of this, for simplicity, the results that we present in Sections 4 and 5, for periodic AR 

modeling, correspond to the use of the method with no lag one AR term. The formulation for 

this method is presented in the following expressions: 

tstsstst ytytty εφφφ +++= −− 2211
)()()(0       
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d(t) and w(t) are repeating step functions that number the half-hours within each day and 

week, respectively. For example, for the Central Telephony series, d(t) counts from 1 to 32 

within each day, and w(t) counts from 1 to 224 within each week. ωp, λpi, νpi, κpi and υpi are 

constant parameters. The periodic parameters, φp(t), use a similar flexible fast Fourier form to 

that employed by Andersen and Bollerslev (1998) in their analysis of the volatility in 

intraday financial returns. For simplicity, we chose to sum from i=1 to 4 for all five series. 

This choice was made based on inspection of the SBC and significance tests for the constant 

parameters. These parameters were estimated using OLS regression.  

 

3.4.  Exponential Smoothing for Double Seasonality 

Exponential smoothing is a simple and pragmatic approach to forecasting, whereby 

the forecast is constructed from an exponentially weighted average of past observations. The 

stability and accuracy of the approach has led to its widespread use in applications where a 

large number of series necessitates an automated procedure, such as inventory control. This 

motivates its consideration for the automated online forecasting of call center arrivals.  

A problem with using the standard Holt-Winters seasonal exponential smoothing 

method for our call center series is that it can only accommodate a single seasonal cycle. 

Taylor (2003) extends the formulation in order to accommodate the two seasonal cycles 

present in half-hourly electricity demand series. As the method involves no model 

specification, it has the appeal of simplicity and robustness over ARIMA modeling. The 

formulation for two additive seasonal cycles is given in the following expressions: 

)()1()( 1121 −−−− +−+−−= ttststtt TSWDyS αα       (2) 
       11 )1()( −− −+−= tttt TSST γγ         (3) 
       

12
)1()( ststttt DWSyD −− −+−−= δδ        (4) 

21
)1()( ststttt WDSyW −− −+−−= ωω        (5) 

( )( )
2121 11)(ˆ ststttt

k
kstkstttt WDTSyWDTkSky −−−−+−+− +++−++++= φ    (6) 
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St and Tt, are the smoothed level and trend; Dt and Wt are the seasonal indices for the intraday 

and intraweek seasonal cycles, respectively; α, γ, δ and ω are the smoothing parameters; and 

)(ˆ kyt is the k step-ahead forecast made from forecast origin t. For simplicity, we have 

presented, in expression (6), the forecast function for k ≤ s1, but it is straightforward to 

rewrite the expression for longer lead times. The term involving the parameter φ, in 

expression (6), is a simple adjustment for first-order autocorrelation. The parameters are 

estimated in a single procedure by minimizing the sum of squared one step-ahead in-sample 

forecast errors. The initial smoothed values for the level, trend and seasonal components are 

estimated by averaging the early observations.  

We fitted the method to the five UK bank series using the estimation sample of 24 

weeks. The estimated parameters are shown in Table 4. The values of zero for γ were 

accompanied by very small values for the smoothed trend, Tt, which seems reasonable since 

none of the series show any clear trend. For the Central Telephony and Channels 3 and 4 

series, the values of the intraweek cycle smoothing parameter, ω, are noticeably higher than 

the corresponding values of the intraday cycle smoothing parameter, δ. This indicates that the 

smoothed intraweek cycle is updated to a greater degree each period than the smoothed 

intraday cycle. By contrast ω is zero for the Channels 1 and 2 series, indicating that the 

smoothed intraweek cycle is not updated from its initial values. 

-----------  Table 4  ----------- 

 

3.5.  Robust Exponential Smoothing 

In Section 2, we commented that the lower volume channel series exhibit sizeable 

volatility and occasional large values, suggesting that the conditional distribution for the 

series may be skewed. This motivates consideration of methods that are robust to non-

Gaussian distributions and outlying observations. Cipra (1992) proposes the use of 
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exponentially weighted least absolute deviations (EWLAD) regression as a robust form of 

exponential smoothing. It is essentially exponential smoothing of the median. For a specified 

value of the weighting parameter, λ, the EWLAD minimization has the form:  

∑ −−

t
tt

tT myλ
β

min  

where T is the sample size and β is a vector of parameters in the model, mt. This 

minimization can be formulated as a linear program (LP) for which the dual problem is 

conveniently solved. As a recursive formula does not exist for updating the estimate, the LP 

must be solved afresh as each new observation becomes available. With the development of 

computational power, this should not be a significant obstacle to implementation. 

For seasonal data, sinusoidal terms can be included in the EWLAD regression. 

However, for our call center series, this led to poor results beyond the very early lead times. 

An explanation for this is that the one parameter is not adequate for smoothing the level and 

the various seasonal terms. In this paper, we apply the method to deseasonalized data, and 

use just a constant with no regressors. With just a constant used in the regression, the 

multiperiod forecasts for the deseasonalised data are equal to the one step-ahead prediction. 

Optimization of the weighting parameter λ proceeded by the use of a rolling window 

of six weeks of observations to produce one step-ahead estimates for each of the remaining 

observations in the 24-week estimation sample. The choice of six weeks was made 

arbitrarily, but the procedure was not sensitive to this number. The value of λ deemed to be 

optimal was the value that minimized the sum of absolute one step-ahead in-sample forecast 

errors. We considered values for λ between 0.50 and 1, with a step size of 0.005.  

 

3.6.  Dynamic Harmonic Regression 

 Tych et al. (2002) develop their dynamic harmonic regression model (see Young et 

al. 1999) for application to intraday call center time series. Similarly to the basic structural 
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model of Harvey (1990), dynamic harmonic regression involves a state space model for the 

sum of unobserved components representing the trend and seasonal cycles. The basic form of 

the model is presented in expression (7).   

( ) ( ) t
i

iit
i

iittt tbtaTy εωω ∑∑ +++= sincos     (7) 

where the ωi are appropriately chosen frequencies, and Tt, ait and bit are stochastic time-

varying parameters. The trend component, Tt, is specified to be an integrated random walk 

process, as in expressions (8) and (9), with dTt defined as the change in the trend. The 

parameters ait and bit are modeled as simple random walk processes. The Kalman filter is 

used to update the time-varying parameters and to generate forecasts. 

11 −− += ttt dTTT                (8) 

tdTtt dTdT ,1 η+= −                (9) 

 The unknown constant parameters in the model, termed the hyper-parameters, are the 

variances of the error terms in expression (7) and in the stochastic models for the time-

varying parameters. In state space modeling, the standard approach to the estimation of these 

hyper-parameters is maximum likelihood. Young et al. (1999) argue that the optimization of 

the likelihood function can be difficult in practice, and, instead, they propose the novel idea 

of performing the optimization in the frequency domain. This amounts to a least squares 

optimization for the difference between the empirical spectrum for the time series and the 

theoretical pseudo-spectrum for the state space model, which, conveniently, is a linear 

function of the unknown variance parameters.  

 The empirical spectrum for the Central Telephony series is shown in Figure 5. The 

spikes indicate the presence of cycles of lengths: 32/3, 32/2, 32, 224/5, 224/4, 224/3, 224/2 

and 224. These cycles clearly correspond to harmonics for the intraday and intraweek 

seasonal cycles, which are of length s1=32 and s2=224, respectively. Inspection of the 
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empirical spectra for the other four series led us to use, for all five series, the following set of 

frequencies in expression (7): 2πj/s1 and 2πj/s2 for j=1 to 5.  

-----------  Figure 5  ----------- 

 Tych et al. describe how the basic dynamic harmonic regression model, presented so 

far, was unable to adequately model the autocorrelation in their series. This was also the case 

for our series. To address this problem, Tych et al. fitted to the residuals of the basic model, a 

separate dynamic harmonic regression model for each day of the week. This involves treating 

all residuals, for any given day of the week, as a single series, and then estimating a dynamic 

harmonic regression model for this series. In our implementation of the weekday sub-models, 

we used the following frequencies in expression (7): 2πj/s1 for j=1 to 4. In our view, the need 

for weekday sub-models, in a second modeling stage, rather weakens the intuitive appeal of a 

method that, even in its basic form, is already relatively complex.  

 Tych et al. also present two further extensions of the method; the use of decimated 

data and modulated cycles. Decimation is the process by which the frequency of the data is 

reduced to enable the empirical spectrum to contain information on all the periodic behavior 

in the time series. In our analysis, we found that decimation had a detrimental effect on 

accuracy. Modulated cycles essentially enable cycles corresponding to the intraday and 

intraweek seasonality to be multiplied, rather than simply added as in the model of 

expression (7). The empirical spectra for our series did not exhibit the necessary features, 

described by Tych et al., to warrant consideration of modulated cycles.  

 

3.7.  Summary of Methods Included in the Empirical Study 

We implemented six methods suitable for seasonal data, the first two of which are 

simplistic benchmark methods.  

Method S1 - Seasonal random walk. The forecast for each lead time is the most recently 

observed value for the same half-hour of the week as the period to be predicted. 
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Method S2 - Seasonal mean. The forecast for each lead time is the mean of the arrivals for 

the same half-hour of the week as the period to be predicted. We used only arrivals in a 

moving window immediately prior to the forecast origin. We set the moving window to be of 

length equal to the initial estimation sample of 24 weeks.  

Method S3 - Seasonal ARMA.  

Method S4 - Periodic AR.  

Method S5 - Exponential smoothing for double seasonality.  

Method S6 - Dynamic harmonic regression.  

As we discussed in Section 3.1, time series are often deseasonalized to enable the use 

of non-seasonal forecasting methods, with the resultant forecasts being reseasonalized prior 

to being used. One form of this approach is the widely used ‘top down’ approach, which we 

described in Section 3.1. After deseasonalizing the series using the standard approach for 

additive seasonality (see Harvey 1990, p. 30), we applied five methods that are applicable to 

data with no seasonality, the first three of which were simplistic benchmark methods.  

Method D1 - Random walk. The forecast for each lead time is the value at the forecast origin. 

Method D2 - Mean. The forecast for each lead time is the mean of all periods in a moving 

window of 24 weeks immediately prior to the forecast origin.  

Method D3 - Median. The forecast for each lead time is the median of all periods in a moving 

window of 24 weeks immediately prior to the forecast origin.  

Method D4 - Simple exponential smoothing. We derived the parameter value by the standard 

procedure of minimizing the sum of squared one step-ahead forecast errors. 

Method D5 - Robust exponential smoothing. This is the EWLAD regression method 

discussed in Section 3.5 with just a constant and no regressors, and with λ optimized.  
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4.  Results for the UK Bank Series 

4.1.  Results for the Central Telephony Series 

We calculated the mean absolute error (MAE) and root mean squared error (RMSE) 

for the post-sample forecast errors from the 11 methods for each of the 448 forecast lead 

times (one half-hour ahead to 14 days ahead). We do not discuss here the RMSE results 

because the relative performances of the methods were similar to those found using the 

MAE. Table 5 summarizes the MAE results. Note that each column summarizes the MAE for 

64 lead times. For example, the column with heading “1-2” days contains the average of the 

MAE for lead times of one to 64 half-hours ahead. The final column presents the average of 

the MAE across all lead times. The values in bold highlight the best performing method for 

each category of lead times.  

----------  Table 5  ---------- 

The final column in Table 5 indicates that the best method overall was the relatively 

simple benchmark method, Method S2, which involves averaging past observations 

occurring on the same day of the week as the forecast period. This method outperformed all 

others at all lead times beyond six days ahead. Similar results were produced by Method D2, 

which is based on averaging all in-sample deseasonalized observations. The other methods 

based on deseasonalized data were not as competitive. The results for robust exponential 

smoothing are disappointing, but, in defense of this method, the main motivation for its 

inclusion was the volatile and skewed channel series.  

Turning to the more sophisticated methods, we can see that the seasonal ARMA and 

exponential smoothing method for double seasonality performed very well for the early lead 

times. This is illustrated more clearly in Figure 6, where we have plotted the MAE results for 

all 448 forecast lead times for four of the methods. The figure shows that, although 

exponential smoothing for double seasonality performed poorly for the longer lead times, it 

was the best performing method up to about three days ahead. Tych et al. (2002) found their 
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dynamic harmonic regression method to be more accurate than seasonal ARMA when 

evaluated using the cumulative absolute error for lead times from one hour to one week 

ahead. Although our results do show that the two methods were similar beyond a week 

ahead, the dynamic harmonic regression method was clearly weaker for shorter lead times. 

Table 5 shows that the periodic AR model was slightly poorer than the seasonal ARMA 

model at all lead times.  

----------  Table 6 and Figures 6 and 7  ---------- 

We also evaluated the methods using the mean absolute percentage error (MAPE) and 

root mean squared percentage error (RMSPE). For these measures, the relative performances 

of the methods were similar to those for the MAE results of Table 5. Table 6 summarizes the 

MAPE results, and Figure 7 graphically compares the MAPE results for the same four 

methods plotted in Figure 6 for the MAE. The figure shows that exponential smoothing for 

double seasonality was the most accurate up to approximately four days ahead. 

 

4.2.  Results for the Four Channel Series 

 As the four channel series each possessed periods with zero arrivals, we were unable 

to evaluate the forecasts for these series using percentage measures. We, therefore, focused 

solely on the MAE and RMSE. As with the Central Telephony series, the relative 

performances of the methods were similar for these two measures. In Table 7, we present the 

mean of the MAE results for Channels 1, 2 and 3. This averaging of the MAE results seems 

reasonable, as the results for the three were of a similar order of magnitude. We have had to 

report the MAE results for Channel 4 separately, in Table 8, because this channel operates 

for only six days a week.  

----------  Tables 7 and 8  ---------- 

 Understandably, the MAE values in Tables 7 and 8 are substantially smaller than 

those in Table 5 for the much higher volume Central Telephony series. Nevertheless, it is still 
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interesting to evaluate the relative rankings of the methods for these rather different series. 

Table 7 shows that, for Channels 1, 2 and 3, the results are similar for all but the two random 

walk methods. In Section 4.1, we described how the simplistic benchmark method S2 and D2 

were two of the more accurate methods for the Central Telephony series. It is, therefore, 

interesting to see in Table 8 the relatively poor performance of these methods for the Channel 

4 series. The notable feature of this series, that is absent in the other four series, is that the 

magnitude of the seasonality changes substantially over the sample period. Consequently, as 

we can see from Table 8, methods that do not adapt over time performed poorly. Although 

robust exponential smoothing, Method D5, was competitive for Channels 1 to 3, it was 

outperformed by standard simple exponential smoothing method, Method D4, for Channel 4. 

The best results for the Channel 4 series correspond to seasonal ARMA and exponential 

smoothing for double seasonality, with dynamic harmonic regression also performing well. 

 

5.  Analysis of the Israeli Bank Series 

5.1.  Description of the Time Series and Implementation of the Methods 

In this section, we investigate the robustness of our findings for the UK bank data by 

comparing the accuracy of the forecasting methods for the Israeli bank data analyzed by 

Brown et al. (2005). This data is taken from a small call center that is open from 7am to 

midnight on weekdays (Sunday to Thursday in Israel), from 7am to 2pm on Fridays, and 

from 8pm to midnight on Saturdays. Following Brown et al., our analysis focuses on the 

single time series of total arrivals minus internet assistance calls for the final five months of 

1999. More specifically, we used arrivals from 1 August to 25 December, inclusive, with the 

first 14 weeks used for method estimation, and the remaining seven weeks used for post-

sample evaluation. We smoothed out the ‘special days’ in the series prior to method 

estimation. We analyzed half-hourly arrivals, in order to be consistent with our analysis of 

the UK bank data.  
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The more sophisticated methods included in our analysis of the UK bank data were 

designed specifically for application to data with intraday and intraweek seasonal cycles. The 

implementation of these methods is not straightforward for series in which the number of 

periods is not the same on each day of the week, which is the case for the Israeli bank series. 

Although it is an interesting issue how best to adapt the methods for such data, in this paper, 

our aim is to evaluate the methods in their standard form, and so, for simplicity, we 

combined the two weekend days into one consisting of the same number of periods as the 

weekdays. The result was a series with five weekdays plus a single day for the weekend, 

which consisted of Friday arrivals from 7am to 2pm, zero values from 2pm to 8pm, and 

Saturday arrivals from 8pm to midnight. Figure 8 presents the final four weeks of the series. 

Using half-hourly data, the intraday seasonal cycle contains s1=34 periods, and the intraweek 

cycle contains s2=6×34=204 periods.  

-----------  Figure 8 and Tables 9 and 10  ----------- 

As with the UK bank channel series, we applied a square-root transformation to the 

data to reduce heterokedasticity. We implemented the methods summarized in Section 3.7. 

The selected seasonal ARMA model is presented in Table 9, and the parameters of the 

exponential smoothing method for double seasonality are given in Table 10. We used 14 

weeks in the moving windows of Methods S2, D2 and D3. 

 

5.2.  Results for the Israeli Bank Series 

Table 11 presents the MAE results for all 11 methods, and Figure 9 is a plot of the 

MAE results for the same four methods presented in Figures 6 and 7. In calculating the 

MAE, errors were recorded only for periods of the week when the call center was open. In 

essence, the relative performances of the methods are similar to those we found for the UK 

bank Central Telephony series. Figure 9 shows that the exponential smoothing method for 

double seasonality was the most accurate method for prediction up to a day ahead, but was 
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disappointing for longer lead times. The seasonal ARMA method also performed well for 

prediction up to a day ahead. The results show that beyond the early lead times, as with the 

UK bank series, the simple benchmark method S2 was hard to beat. By contrast with the 

results for the UK data, it is interesting to note that the dynamic harmonic regression was 

noticeably more competitive at all lead times. 

-----------  Figure 9 and Table 11  ----------- 

 

6.  Summary and Concluding Comments 

The main focus of this paper has been an empirical comparison of univariate time 

series forecasting methods for arrivals data recorded at five call centers of a UK bank. Of the 

five more sophisticated methods considered, seasonal ARMA modeling and dynamic 

harmonic regression have previously been applied to call center data, but this is not the case 

for the other three: periodic AR, exponential smoothing for double seasonality and robust 

exponential smoothing based on EWLAD regression.  

The results showed that the exponential smoothing method for double seasonality was 

the most accurate method for short-term prediction of the high volume Central Telephony 

series. Beyond a week ahead the best results were achieved with a relatively simple method 

that is based on averaging past observations occurring on the same day of the week as the 

forecast period. However, the poor performance of this method for one of our series, the 

Channel 4 series, highlights the danger of using simplistic historical averages for series for 

which the magnitude of the seasonality changes substantially over the sample period. A 

similar comment can be made for series with trend. For such series, our results suggest the 

use of seasonal ARMA or exponential smoothing for double seasonality. We were interested 

to see how dynamic harmonic regression would perform, given the promising results of Tych 

et al. (2002). Our results showed that the method performed poorly for the early lead times, 

but that it was more competitive beyond about a week ahead. An obstacle to the 
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implementation of this method is its relative complexity, with its use of state space modeling 

and the Kalman filter, and parameter estimation in the frequency domain.  

We tested the robustness of our findings by comparing the accuracy of the methods 

for the Israeli bank call center arrivals series analyzed by Brown et al. (2005). Our results for 

this data were similar to those for the UK bank Central Telephony series, with the main 

difference being that the seasonal ARMA and exponential smoothing method for double 

seasonality outperformed the simple benchmark methods only up to a lead time of two days.  

In practical terms, it seems sensible to ask whether the forecasting methods that we 

have considered are sufficiently accurate for call center staffing purposes. There can be little 

doubt that greater accuracy would deliver substantial cost savings. This is apparent, for 

example, from Figure 7, which shows the average size of the percentage error to be greater 

than 8% for prediction beyond a day-ahead. As for whether greater forecast accuracy is 

achievable, our view is that it is. However, the message from our results is that to use more 

advanced methods may not be the solution. The relatively simplistic exponential smoothing 

method for double seasonality performed well for short horizons with the simple benchmarks 

dominating thereafter. Refinement of the exponential smoothing method would be an 

interesting line of research. When faced with two or more competing methods, an alternative 

to method selection is to combine the forecasts from the methods using some form of 

weighted average. This could certainly be considered for some of the methods in our study. 

Perhaps a more interesting synthesis of methods is the proposal of Avramidis et al. (2004) to 

try to incorporate their stochastic models within a time series method. Although we have 

concentrated on univariate methods, we should acknowledge that if covariates are available, 

their inclusion may well lead to improved forecast accuracy.  

In this paper, we have focused on point forecasting. Gans et al. (2003) emphasize the 

importance of assessing the uncertainty in call volumes. Our intention is to focus on this 

issue in future work. For example, prediction intervals and density forecasts can be 
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calculated for ARIMA models using theoretical error variance formulae. In order to capture 

heteroskedasticity, these models can be extended to include a seasonal GARCH expression. 

A density forecast could be produced for the arrival rate, which could then be used within a 

doubly stochastic Poisson process (see Avramidis et al. 2004; Jongbloed and Koole 2001). 

Alternatively, if empirical analysis does not support such a process, the density forecast 

would be needed for the individual arrivals.  
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Table 1 Summary of the Series of Arrivals at the Call Centers of the UK Bank.  

 

 
Average 
calls per 

week 

Number of 
days open 
per week 

Opening 
hours 

Half-hours in 
estimation 

sample 

Half-hours in 
evaluation 

sample 

Central Telephony 282,146 7 7am-11pm 5,376 2,688 

Channel 1 2,817 7 7am-11pm 5,376 2,688 

Channel 2 7,804 7 7am-11pm 5,376 2,688 

Channel 3 4,003 7 8am-10.30pm 4,872 2,436 

Channel 4 1,042 6 9am-7.30pm 3,024 1,512 

 
 
 
 
 
 
 
 
Table 2 Orders of the Fitted ARMA

21
),(),(),( 2211 ss QPQPqp ××  Models For Each 

of the Five Transformed Series of Arrivals at the Call Centers of the UK 
Bank.  

 
 p q P1 Q1 s1 P2 Q2 s2 

Central Telephony 2 [2,3] 3 [3] 32 3 [2,3] 224 

Channel 1 3 [3] 0 0 32 [2,3] 3 224 

Channel 2 3 [3] 3 0 32 3 [2,3] 224 

Channel 3 3 [3] [1,3] [1,3] 29 3 [2,3] 203 

Channel 4 [1,2] 2 [1,3] [1,3] 21 3 [2,3] 126 
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Table 3 Parameters of the Seasonal ARMA Model, Given in Expression (1), for 
the Log of the UK Bank Central Telephony Series. Standard Errors are 
in Parentheses. 

 
Lag, i  1 2 3 32 64 96 224 448 672 

φi  0.530 
(0.022) 

0.409 
(0.024)  0.174 

(0.022) 
0.070 

(0.021) 
0.331 

(0.071) 
0.206 

(0.023) 
0.443 

(0.046) 
0.336 

(0.044) 
           

θi   0.256 
(0.029) 

0.053 
(0.024)   0.298 

(0.076)  0.332 
(0.044) 

0.329 
(0.040) 

           

c 6.868 
(0.989)          

 
 
 
 
 
 
 
 
 
 
 
Table 4  Parameters of the Exponential Smoothing for Double Seasonality 

Method, Given in Expressions (2) to (6), for Each of the Five 
Transformed Series of Arrivals at the Call Centers of the UK Bank.  

 
 α γ δ ω φ 

Central Telephony 0.020 0.000 0.062 0.193 0.779 

Channel 1 0.024 0.000 0.035 0.000 0.163 

Channel 2 0.070 0.000 0.000 0.000 0.181 

Channel 3 0.010 0.000 0.072 0.266 0.321 

Channel 4 0.021 0.001 0.058 0.292 0.162 
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Table 5 MAE for the UK Bank Central Telephony Series. 
 

Forecast Horizon (days) 1-2 3-4 5-6 7-8 9-10 11-12 13-14  All 

Methods for seasonal data 

  S1 - Seasonal random walk 119 119 118 131 148 145 139  131 

  S2 - Seasonal mean 108 109 108 108 109 106 100  107 
  S3 - Seasonal ARMA 94 104 107 111 119 116 110  109 

  S4 - Periodic AR  99 111 113 116 126 123 115  115 

  S5 - ES for double seasonality 90 105 118 127 142 148 144  125 

  S6 - Dynamic harmonic regression 118 117 116 117 121 119 115  118 

Methods for deseasonalized data 

  D1 - Random walk 132 150 152 149 176 175 165  157 

  D2 - Mean 108 109 109 109 110 107 101  108 

  D3 - Median 112 114 114 113 115 112 105  112 

  D4 - Simple ES 124 142 144 143 169 168 158  150 

  D5 - Robust ES 123 141 143 141 168 167 156  148 

 
 
 
 
 
 
 
Table 6 MAPE for the UK Bank Central Telephony Series. 
 

Forecast Horizon (days) 1-2 3-4 5-6 7-8 9-10 11-12 13-14 All 

Methods for seasonal data 

  S1 - Seasonal random walk 11.4 11.3 11.3 12.2 13.1 13.0 12.8 12.1 

  S2 - Seasonal mean 9.7 9.8 9.8 9.7 9.7 9.6 9.2 9.6 
  S3 - Seasonal ARMA 8.5 9.5 9.8 10.1 10.7 10.6 10.4 10.0 

  S4 - Periodic AR  9.3 10.1 10.2 10.4 11.1 11.0 10.6 10.4 

  S5 - ES for double seasonality 8.0 9.1 10.1 10.7 11.5 12.0 11.9 10.5 

  S6 - Dynamic harmonic regression 11.0 10.9 10.9 10.9 11.1 11.1 11.1 11.0 

Methods for deseasonalized data 

  D1 - Random walk 11.1 12.7 13.1 13.1 14.5 14.8 14.5 13.4 

  D2 - Mean 9.7 9.8 9.9 9.8 9.8 9.7 9.4 9.7 

  D3 - Median 9.9 9.9 10.0 9.9 9.9 9.8 9.4 9.8 

  D4 - Simple ES 10.5 12.1 12.5 12.5 14.0 14.3 14.0 12.8 

  D5 - Robust ES 10.4 12.0 12.4 12.4 13.9 14.2 13.9 12.7 
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Table 7 Mean MAE for the UK Bank Channel 1, 2 and 3 Series. 
 

Forecast Horizon (days) 1-2 3-4 5-6 7-8 9-10 11-12 13-14 All 

Methods for seasonal data 

  S1 - Seasonal random walk 5.5 5.5 5.5 5.5 5.6 5.6 5.6 5.5 

  S2 - Seasonal mean 4.5 4.5 4.4 4.4 4.5 4.5 4.5 4.5 

  S3 - Seasonal ARMA 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 
  S4 - Periodic AR  4.4 4.4 4.4 4.4 4.5 4.4 4.4 4.4 

  S5 - ES for double seasonality 4.2 4.3 4.3 4.4 4.5 4.6 4.6 4.4 

  S6 - Dynamic harmonic regression 4.4 4.4 4.4 4.4 4.5 4.5 4.5 4.4 

Methods for deseasonalized data 

  D1 - Random walk 5.9 6.0 6.0 6.0 6.1 6.1 6.0 6.0 

  D2 - Mean 4.4 4.5 4.4 4.4 4.5 4.5 4.4 4.4 

  D3 - Median 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 

  D4 - Simple ES 4.5 4.7 4.7 4.7 4.8 4.8 4.7 4.7 

  D5 - Robust ES 4.4 4.6 4.6 4.5 4.7 4.7 4.6 4.6 
 
 
 
 
 
 
 
Table 8 MAE for the UK Bank Channel 4 Series. As The Center Operates for Six 

Days Each Week, 12 Day-Ahead Prediction Corresponds to Two Weeks 
Ahead. 

 
Forecast Horizon (days) 1-2 3-4 5-6 7-8 9-10 11-12  All 

Methods for seasonal data 

  S1 - Seasonal random walk 1.9 1.9 1.9 2.0 2.0 1.9  1.9 

  S2 - Seasonal mean 2.8 2.8 2.9 3.0 3.0 3.1  2.9 

  S3 - Seasonal ARMA 1.5 1.5 1.5 1.5 1.5 1.5  1.5 
  S4 - Periodic AR  2.0 2.1 2.2 2.6 2.9 3.0  2.5 

  S5 - ES for double seasonality 1.5 1.5 1.5 1.5 1.5 1.5  1.5 
  S6 - Dynamic harmonic regression 1.6 1.6 1.6 1.6 1.6 1.6  1.6 

Methods for deseasonalized data 

  D1 - Random walk 3.1 3.1 3.0 3.1 3.1 3.0  3.1 

  D2 - Mean 5.0 5.0 5.1 5.2 5.3 5.3  5.1 

  D3 - Median 1.9 1.9 1.9 1.9 1.9 2.0  1.9 

  D4 - Simple ES 2.0 2.0 1.9 2.1 2.0 2.0  2.0 

  D5 - Robust ES 2.8 2.8 2.7 2.8 2.8 2.7  2.8 
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Table 9  Parameters of the Seasonal ARMA Model for the Square Root of the 
Israeli Bank Series. Standard Errors are in Parentheses. 

 
Lag, i  1 2 3 34 68 102 204 408 612 

φi  0.943 
(0.017)   0.107 

(0.029) 
0.086 

(0.029)  0.312 
(0.028) 

0.355 
(0.041) 

0.239 
(0.036) 

           

θi  0.567 
(0.037) 

0.134 
(0.034)      0.136 

(0.047) 
0.184 

(0.042) 
           

c 5.805 
(1.139)          

 
 
 
 
 
Table 10  Parameters of the Exponential Smoothing for Double Seasonality 

Method, Given in Expressions (2) to (6), for the Square Root of the Israeli 
Bank Series. 

 
α γ δ ω φ 

0.045 0.000 0.023 0.246 0.378 

 
 
 
 
Table 11 MAE for the Israeli Bank Series. As Each Weekend is Treated as One 

Day, 12 Day-Ahead Prediction Corresponds to Two Weeks Ahead. 
 

Forecast Horizon (days) 1-2 3-4 5-6 7-8 9-10 11-12  All 

Methods for seasonal data 

  S1 - Seasonal random walk 11.2 11.1 11.1 10.8 10.9 11.0  11.0 

  S2 - Seasonal mean 9.0 8.9 8.7 8.9 8.7 8.5  8.8 
  S3 - Seasonal ARMA 8.6 9.1 8.9 9.1 9.0 8.9  8.9 

  S4 - Periodic AR  9.0 9.6 9.4 9.5 9.4 9.4  9.4 

  S5 - ES for double seasonality 8.6 10.3 9.7 10.2 10.4 9.9  9.8 

  S6 - Dynamic harmonic regression 8.8 9.4 9.1 8.6 9.0 8.8  8.9 

Methods for deseasonalized data 

  D1 - Random walk 10.7 12.2 12.0 11.9 12.0 11.8  11.8 

  D2 - Mean 9.3 9.3 9.1 9.2 9.0 8.9  9.1 

  D3 - Median 8.9 9.0 8.8 8.9 8.7 8.7  8.8 
  D4 - Simple ES 9.1 10.8 10.5 10.5 10.5 10.2  10.3 

  D5 - Robust ES 8.9 10.5 10.2 10.1 10.2 9.8  10.0 
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Figure 1 Half-Hourly Arrivals at the UK Bank Central Telephony Call Centers 
from Saturday 14 August to Friday 10 September 2004. The Centers are 
Open for 224 Half-Hours Each Week. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Half-Hourly Arrivals at the UK Bank Channel 3 Call Center from 

Saturday 14 August to Friday 10 September 2004. The Center is Open for 
203 Half-Hours Each Week. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3  Half-Hourly Arrivals at the UK Bank Channel 4 Call Center from 

Saturday 3 January to Friday 10 September 2004. The Center is Open for 
126 Half-Hours Each Week. 
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Figure 4  For the Log of the UK Bank Central Telephony Series, Lag 224 
Autocorrelation at the 224 Half-Hours of the Week, Calculated using 
Observations from only the 24-Week Estimation Sample. The First 
Period on the X-Axis Corresponds to the First Half-Hour on Saturdays. 
Dotted Lines Indicate 95% Confidence Interval. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Empirical Spectrum for the Log of the UK Bank Central Telephony 

Series. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

100

200

300

400

500

600

700

800

0 32 64 96 128 160 192 224
Period length (half-hours)

-1

-0.5

0

0.5

1

0 32 64 96 128 160 192 224
Period of w eek

`



 32

Figure 6 MAE for the UK Bank Central Telephony Series for Lead Times from 
One Half-Hour to 14 Days. 
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Figure 7 MAPE for the UK Bank Central Telephony Series for Lead Times from 

One Half-Hour to 14 Days. 
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Figure 8 Half-Hourly Weekday Arrivals at the Israeli Bank Call Center from 
Sunday 28 November to Saturday 25 December 1999. Each Weekend is 
Treated as One Day, So One Week is Considered to Consist of 6×34=204 
Half-Hours. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 MAE for the Israeli Bank Series for Lead Times from One Half-Hour to 

12 Days. As Each Weekend is Treated as One Day, 12 Day-Ahead 
Prediction Corresponds to Two Weeks-Ahead. 
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