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1. Introduction 

 Gardner’s 1985 review has been a tremendous help to my research. For many years, I 

wouldn’t leave home without it. I have no doubt that the sequel will also be of lasting use to 

me, as well as to numerous others, especially those starting out on research in this area.  

The updated review provides comprehensive coverage of a large and rapidly growing 

literature. A fair number of these papers are rather mathematical, and Gardner has done a 

sterling job of summarising their essential message and contribution. Comment and opinion 

is present throughout, which is surely beneficial as it provides us with the perspective of 

someone who seems to have read pretty much every paper that has ever been written on the 

subject. I could merrily comment on numerous sections of the paper that I find interesting, 

but, instead, I have opted to say a few words about the two topics highlighted at the very end 

of the paper, method selection and empirical validation, and then to describe a couple of 

finance applications that were touched on only briefly: volatility and quantile forecasting.  

 

2. Method Selection and Empirical Studies 

Given that in 1985 Gardner emphasised the need for guidance in selecting among 

methods, it is surprising that so little has been done in this area. My own experiments on 

method selection have left me frustrated, as I find aggregate selection of the damped additive 

trend method hard to beat. Empirical studies, dealing with trending data, really should include 

this method as a benchmark. I don’t suppose the damped multiplicative trend method will 

prove to be so broadly useful, but it would certainly be interesting to see some more 

empirical results, as I have only applied it to the M3-Competition data.  

Selection between methods, for individual series, in an automated fashion over time, 

could be termed ‘switching’, and a natural alternative to this is smooth transition between 

methods. The switching and smooth transition combining methods of Deutsch et al. (1994) 
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would seem to be relevant here. Indeed, Gardner’s call for more attention to be given to 

method selection seems to me to prompt research into combining methods, specifically 

designed for exponential smoothing. A further thought regarding selection, switching and 

smooth transition is that it may result in a rather complex predictive distribution. 

Implementation of a simpler method might then be justified on the basis that its predictive 

distribution is more easily estimated, even if its point forecast accuracy is not the best. 

 

3. Volatility Forecasting 

The empirical finding that series of returns often exhibit volatility clustering has led to 

the development of a variety of univariate methods for forecasting conditional volatility. 

Along with GARCH models, exponential smoothing is commonly used. In addition to the 

appeal of simplicity, exponential smoothing has been shown to compete well with 

alternatives in terms of accuracy (see Poon and Granger, 2003). It is presumably these 

features that led to it being recommended in the RiskMetrics technical document 

(RiskMetrics, 1996). 

The use of exponential smoothing for volatility forecasting is rather different to the 

exponential smoothing applications reviewed by Gardner. With daily log returns, rt, the mean 

is very often assumed to be zero or a small constant value, and attention turns to predicting 

the variance, σt
2. As variance is unobservable, exponential smoothing is applied to the 

squared returns or to the squared residuals, where the residual is defined as the return minus 

the mean. With no apparent trend, and little seasonality, the simple exponential smoothing 

method has been used: 

222
1 ˆ)1(ˆ ttt r σαασ −+=+  

The variance forecast for the return over a holding period of h days is given as the 

one-day forecast multiplied by h. This can be quite different to the corresponding multiperiod 
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forecast produced by GARCH models because the latter tend to be mean-reverting. The 

simple exponential smoothing method can be viewed as a special case of the integrated 

GARCH model (IGARCH), which is a non-stationary version of GARCH. Smooth transition 

exponential smoothing for volatility forecasting is a simple development of the smooth 

transition GARCH models (see Taylor 2004a). There is surely scope for transferring other 

ideas from the voluminous GARCH literature to exponential smoothing. The increasing use 

of intraday data also presents opportunities for the use of more ambitious versions of 

exponential smoothing.  

The conditional covariance, σ12,t, between two series of returns, r1t and r2t, can also be 

estimated using exponential smoothing: 

tttt rr ,12211,12 ˆ)1(ˆ σαασ −+=+  

This approach has been popular, as it is somewhat simpler to implement than GARCH-based 

covariance estimation. To ensure that the covariance matrix is positive semi-definite, 

RiskMetrics proposes the use of a common value of 0.06 for α in the estimation of all 

elements in the matrix. This arbitrarily chosen value has often been used regardless of 

whether or not a full covariance matrix is being estimated.  

 

4. Quantile Estimation 

Assessing value at risk (VaR) amounts to estimating tail quantiles of the conditional 

distribution of a series of financial returns. As with volatility, the unobservable nature of 

quantiles means that their prediction is not straightforward. Boudoukh et al. (1998) propose a 

form of exponentially weighted average for quantile estimation. It involves allocating to the 

most recent year of daily returns, exponentially decreasing weights, which sum to one. The 

returns are then placed in ascending order and, starting at the lowest return, the weights are 

summed until a value of θ is reached. The θth quantile estimate is set as the return that 
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corresponds to the final weight used in this summation. Linear interpolation is used if the 

estimate falls between two returns. Dunsmuir et al. (1996) essentially use the same method to 

estimate the median in a robust approach to point forecasting for non-financial data. The 

method of Boudoukh et al. is equivalent to the simplest case of exponentially weighted 

quantile regression (EWQR), which amounts to exponential smoothing of the cumulative 

distribution function (see Taylor, 2004c). There would seem to be the potential for other 

considerations of exponential smoothing for forecasting conditional quantiles, and, indeed, 

conditional probability densities. 
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