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A Comparison of Univariate Methods for Forecasting Electricity Demand Up to a Day 

Ahead 

 

Abstract  

This empirical paper compares the accuracy of six univariate methods for short-term 

electricity demand forecasting for lead times up to a day-ahead. The very short lead times are 

of particular interest as univariate methods are often replaced by multivariate methods for 

prediction beyond about six hours ahead. The methods considered include the recently 

proposed exponential smoothing method for double seasonality and a new method based on 

principal component analysis (PCA). The methods are compared using a time series of hourly 

demand for Rio de Janeiro, and a series of half-hourly demand for England and Wales. The 

PCA method performed well, but, overall, the best results were achieved with the exponential 

smoothing method, leading us to conclude that simpler and more robust methods, which 

require little domain knowledge, can outperform more complex alternatives.  

 

Key words: electricity demand forecasting; exponential smoothing; principal component 

analysis; ARIMA; neural networks.  
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1.  Introduction 

Electricity-supply planning requires efficient management of existing power systems 

and optimisation of the decisions concerning additional capacity. Demand prediction is an 

important aspect in the development of any model for electricity planning. The form of the 

demand depends on the type of planning and accuracy that is required; hence it can be 

represented as an annual demand (GW), a peak demand (MW), or load duration curves like 

daily, weekly or annual. Short-term load forecasts are required for the control and scheduling 

of power systems. The focus varies from minutes to several hours ahead. The predictions are 

required as inputs to scheduling algorithms for the generation and transmission of electricity. 

The load forecasts help in determining which devices to operate in a given period, so as to 

minimise costs and secure demand even when local failures may occur in the system. 

 In the short run, the load is mainly influenced by meteorological conditions, seasonal 

effects (daily and weekly cycles, calendar holidays) and special events. Weather related 

variation is certainly critical in predicting electricity demand for lead times beyond a day-

ahead (Chow and Leung, 1996; Taylor and Buizza, 2003). However, when the interest is in 

shorter lead times, a univariate model will be sufficient. Indeed, univariate models are the 

norm for lead times up to about six hours ahead, and, due to the lack of readily available 

weather forecasts, they are sometimes used for longer lead times. This has been the case in 

Brazil where access to weather variables is often difficult and expensive (Souza and Soares, 

2003). In this paper, we compare the accuracy of two simple benchmarks and four more 

sophisticated univariate methods, including a new regression based method that uses 

principal component analysis. We evaluate the methods using intra-day data for the state of 

Rio de Janeiro in Brazil and for England and Wales. We consider lead times up to a day-

ahead, but given that we consider only univariate methods, prediction for lead times less than 

six hours ahead is of particular interest.  
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Fig. 1 shows hourly demand in Rio for a fortnight in May 1996. A within-day seasonal 

cycle, of duration 24 periods, is apparent from the similarity of the demand profile from one day 

to the next, particularly on weekdays. A within-week seasonal cycle, of duration 168 periods, is 

evident when one compares the demand on the corresponding day of adjacent weeks. Fig. 2 

shows half-hourly demand in England and Wales for a fortnight in late March to early April 

2000. The plot shows a within-day seasonal cycle of duration 48 periods and a within-week 

seasonal cycle of duration 168 periods. The short-term forecasts of National Grid Transco, 

which is the transmission company for England and Wales, are important not only for 

scheduling load, but also because the one hour-ahead forecasts are a key input to the balancing 

market, which operates on a rolling one hour-ahead basis to balance supply and demand after the 

closure of bi-lateral trading between generators and suppliers. 

***** Figs. 1 and 2  ***** 

 In the next section, we review the literature on short-term load forecasting. We then 

describe the two series that we use to compare the different methods. In Section 4, we present 

the methods, and in Section 5 we report on their relative performance for the two load time 

series. In the final section, we provide a summary and conclusion.  

 

2.  Review of Methods for Short-Term Univariate Prediction 

The stochastic nature of demand as a function of time has been frequently modelled 

with seasonal ARIMA and state space models. The latter became very attractive in the 1980’s 

because of the computational efficiency of the Kalman filter (e.g. Campo and Ruiz, 1987) 

and good performance is still reported in more recent work (Infield and Hill, 1998). ARIMA 

modelling is used by many, within a univariate framework, as a sophisticated benchmark for 

evaluating alternative proposals (see, for example, Laing and Smith, 1987; Darbellay and 

Slama, 2000; Abraham and Nath, 2001; Taylor, 2003). Simpler methods, such as 

nonparametric regression (Charytoniuk et al., 1998) and general exponential smoothing 
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(Christiaanse, 1971), are always attractive due to the small number of parameters involved, 

which make them easy to implement.  

The 1990’s brought computer power into load forecasting and with it the opportunity 

to explore the complexity in the load data. Rule-based and fuzzy logic expert systems have 

been used to model the complexity in the data using domain knowledge. Although these 

methods are promising, they rely on rules that are extracted from experts and operators’ 

experience, which are subject to inconsistencies and are thus unreliable. Artificial neural 

networks have made it possible to experiment with theoretically poor, but data rich, models 

that can identify the complex non-linear relationships in the data and infer future behaviour. 

The basic idea is that the networks learn through examples, which consist of the input signals 

and desired output. The result is that neural networks have the potential to model a far greater 

range of relationships than models that have a pre-specified form like ordinary least squares 

linear regressions. 

In forecasting electricity demand with neural networks, most work has used multi-

layer perceptron networks. Early studies concentrated on forecasting the daily peak, valley, 

total load or the whole daily profile at once. Many have involved non-linear adaptations of 

the Box-Jenkins methodology (Hippert et al., 2001). Asar and McDonald (1994) present a 

univariate network for predicting peak loads. Darbellay and Slama (2000) present a neural 

network, built from only historical hourly load, which matched an ARIMA model for 

prediction from an hour ahead to 36 hours ahead. Several studies focused on short-term load 

forecasting and took one of two approaches. In the first, a neural network is constructed for 

each type of day or subset of hours (e.g. 1:00-9:00, 10:00-19:00, 20:00-24:00). The network 

is then fed with the relevant input variables for the corresponding type (Lee, 1992). In the 

second approach, a single neural network is developed, but within the input variables 

information concerning the specific type of day or hour is required (e.g. Daneshdoost et. al., 

1998).  
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Among those who have focused on univariate models, Liu et al. (1996) address very 

short-term load forecasting. They describe three approaches: a fuzzy logic-based method, an 

artificial neural network and an AR model-based approach to predict from one minute to 30 

minutes ahead based on the previous 30 minutes of metered data. They conclude that both the 

fuzzy logic and neural network systems outperformed the AR model. The AR model, 

however, did not require pre-training and was fairly accurate up to five minutes ahead. 

Although some success has been reported with the use of applied neural networks for 

univariate short term load forecasting (e.g. Hippert et al., 2001), there remains little 

systematic evidence in favour of a particular architecture, nor the amount of training data that 

should be used (Rui and El-Keib, 2004). Many recent papers in applying a neural network on 

its own or combined with fuzzy logic present relatively small MAPEs for real and/or 

simulated data, but these are often not compared to the performance of standard approaches 

on the same data. Consequently, it is not clear whether neural networks and more complex 

non-linear models outperform simpler and more standard forecasting procedures, such as 

ARIMA modelling.  

In spite of the numerous methods that have been reported, we have to agree with Piras 

and Buchenel (1999) that no method has been found to be clearly better than others. In this 

paper, we compare the forecast accuracy of six univariate methods. The four main methods 

that we consider are: (1) multiplicative seasonal ARIMA; (2) an exponential smoothing 

alternative because of its robustness that makes it attractive for online demand forecasting; 

(3) an artificial neural network implementation that showed good performance for a similar 

type of data; and (4) a principal component analysis approach, which draws inspiration from 

decomposition and regression alternatives. In addition, we include a seasonal version of the 

standard naïve random walk benchmark model and we develop a benchmark that is better 

suited to the nature of load data.  
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3.  The Two Load Time Series  

To evaluate forecasting performance, we used 30 weeks of hourly observations for 

electricity demand in Rio and 30 weeks of half-hourly observations for demand in England 

and Wales. Hourly data has traditionally been used for short-term forecasting in Brazil, and 

half-hourly in England and Wales. The Rio data covers the period from Sunday 5 May 1996 

to Saturday 30 November 1996. The England and Wales data was from the period Monday 

27 March 2000 to Sunday 22 October 2000. The series are shown in Figs. 3 and 4.  

***** Figs. 3 and 4  ***** 

As in many other studies of electricity demand, prior to fitting and evaluating 

methods, we elected to smooth out the ‘special days’, such as bank holidays, as their 

inclusion is likely to be unhelpful in our comparison of methods. Demand on these days is so 

very unlike the rest of the year that online univariate methods are generally unable to produce 

reasonable forecasts. In practice, interactive facilities tend to be used for special days, which 

allow operator experience to supplement or override the system offline. If a forecasting 

method is unable to tolerate gaps in the historical series, the special days can be smoothed 

over, leaving the natural periodicities of the data intact (Laing and Smith, 1987). An 

alternative to this would be to treat the special days as missing observations. 

For each series, we used the first 20 weeks of data to estimate method parameters and 

the remaining 10 weeks to evaluate post-sample accuracy of forecasts up to 24 hours ahead. 

For the Rio series, this amounted to 3,360 hourly observations for estimation and 1,680 for 

evaluation. For the England and Wales series, this amounted to 6,720 half-hourly 

observations for estimation and 3,360 for evaluation.  

 

 

 

 



4.  Forecasting Methods 

4.1.  Double Seasonal ARMA Modelling 

A short-term forecasting method that has remained popular over the years, and often 

appears as a benchmark approach, is multiplicative seasonal ARIMA modelling. The 

multiplicative double seasonal ARIMA model (see Box et al., 1994, p. 333) can be written as 
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where yt is demand in period t; c is a constant term; s1 and s2 are the number of periods in the 

different seasonal cycles; L is the lag operator; ∇ is the difference operator;  and  are 

seasonal difference operators (e.g. ); d, D
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1, P2, q, Q1, and Q2, respectively. This model can be 

expressed as ARIMA
21

),,(),,(),,( 222111 ss QDPQDPqdp ×× . Applying the model to the 

hourly Rio demand series, we set s1=24 to model the within-day seasonal cycle of 24 hours, 

and s2=168 to model the within-week cycle of 168 hours. For the England and Wales half-

hourly series, we set s1=48 and s2=336. 

The process of model identification is impractical in an online demand forecasting 

system, and so the model is chosen offline. We followed the Box-Jenkins methodology to 

identify the most suitable ARIMA model based on the 20-week estimation sample for each 

series. The autocorrelation function and partial autocorrelation function were used to select 

the order of the model, which was then estimated by maximum likelihood. The residuals were 

inspected for any remaining autocorrelation. Laing and Smith (1987) explain that, in the 

multiplicative double seasonal ARIMA formulation in expression (1), polynomials of order 

greater than two are rarely necessary when fitting a model to half-hourly data for England 

and Wales. We also found for our England and Wales data that polynomials of order two 

were sufficient. However, this was not sufficient for the Rio data because autocorrelation 
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remained significant in the residuals. By using polynomials up to order three, we eliminated 

the residual autocorrelation. We compared the Schwartz Bayesian information Criterion 

(SBC) for an extensive range of different ARIMA models. For the Rio series, the 

methodology resulted in the following ARIMA(3,0,3)×(3,0,3)24×(3,0,3)168 model: 

( )( )( )( )
( )( )( t

t

LLLLLL

yLLLLLLLLL

ε5043367232

50433616872482432

32.027.0136.0109.025.034.11

753,234.045.020.0136.012.022.0123.039.116.21

−−−++−=

−−−−−−−−+−

)
 
Using the same methodology for the England and Wales series, we produced the following 

ARIMA(2,0,1)×(2,0,1)48×(1,0,2)336 model: 

( )( )( )( )
( )( )( t

t

LLLL

yLLLLL

ε67233648

33696482

09.061.0168.0120.01

441,2697.0109.004.1142.040.11

−−−−=

−−+−+−

)  

 

4.2.  Exponential Smoothing for Double Seasonality 

The widespread use of exponential smoothing in automated applications, such as 

inventory control, led Taylor (2003) to consider the use of the approach for the online 

electricity demand forecasting. The application requires an extension of the standard Holt-

Winters exponential smoothing formulation to accommodate the two seasonal cycles in the 

electricity demand series. This involves the introduction of an additional seasonal index and 

an extra smoothing equation for the new seasonal index. The formulation for double 

multiplicative seasonality is given in the following expressions: 

)()1())(( 1121 −−−− +−+= ttststtt TSWDyS αα      (2) 

11 )1()( −− −+−= tttt TSST γγ        (3) 

12
)1())(( ststttt DWSyD −− −+= δδ       (4) 

21
)1())(( ststttt WDSyW −− −+= ωω        (5) 

( )( )( )
2121 11)()(ˆ ststttt

k
kstkstttt WDTSyWDTkSky −−−−+−+− +−++= φ   (6) 

St and Tt, are the smoothed level and trend; Dt and Wt are the seasonal indices for the intraday 

and intraweek seasonal cycles, respectively; α, γ, δ and ω are the smoothing parameters; and 

is the k step-ahead forecast made from forecast origin t. The term involving the )(ˆ kyt
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parameter φ, in the forecast function expression (6), is a simple adjustment for first-order 

autocorrelation. All the parameters in the method, α, γ, δ, ω and φ, are estimated in a single 

procedure by minimizing the sum of squared one step-ahead in-sample errors. The initial 

smoothed values for the level, trend and seasonal components are estimated by averaging the 

early observations. As with the double-seasonal ARIMA model, applying the method to the 

Rio hourly data, we set s1=24 and s2=168, while for the half-hourly England and Wales 

series, s1=48 and s2=336.  

In our implementation of the method, we calculated initial smoothed values for the 

level, trend and seasonal components using the approach described by Taylor (2003), which 

involves averaging the early observations. Table 1 shows the parameters that we estimated by 

minimising the sum of in-sample one step-ahead errors. The parameters for the England and 

Wales series are reasonably similar to those reported by Taylor for a shorter series of England 

and Wales demand. The high value of φ and low value of α, for both series, reflects the fact 

that the adjustment for first-order autocorrelation has, to a large degree, made redundant the 

smoothing equation for the level. The low values for the trend smoothing parameter, γ, were 

accompanied by very small values for the smoothed trend, Tt. This seems reasonable since 

variation in the 20-week estimation periods are dominated by seasonality.  

***** Table 1  ***** 

 An important point to note regarding the double seasonal exponential smoothing 

approach is that, by contrast with ARIMA modelling and the majority of other approaches to 

short-term demand forecasting, there is no model specification involved. This gives the 

method strong appeal in terms of simplicity and robustness.  

 

 

 

 



4.3. Artificial Neural Network  

We felt that it was important to include a neural network in our study because this 

approach has received such a great deal of attention in the load forecasting literature in recent 

years. However, a basic problem that we faced was which form of neural network to use. The 

neural network load forecasting literature contains many different approaches and designs, but 

there is no consensus as to the preferred form. We opted to implement a similar neural network 

modelling approach to the one described relatively recently in this journal by Darbellay and 

Slama (2000) for their forecasting of hourly demand in the Czech Republic. We chose this 

approach because it was used for a univariate application involving similar data to ours. We are, 

therefore, providing more evidence in an area where replication with similar data is rare.  

We used a single hidden layer feedforward network, which is the most widely-used 

neural network for forecasting (Zhang et al., 1998). It consists of a set of k inputs, which are 

connected to each of m units in a single hidden layer, which, in turn, are connected to an output. 

In regression terminology, the inputs are explanatory variables, xit, and the output is the 

dependent variable, yt. In this study, the output is demand and the inputs are lag demand. The 

resultant model can be written as 

     ⎟⎟
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where g1(⋅) and g2(⋅) are activation functions, which we chose as sigmoidal and linear 

respectively, and wji and vj are the weights (parameters). We estimated the weights using the 

following minimisation 
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where n is the number of in-sample observations, and λ1 and λ2 are regularisation parameters 

which penalise the complexity of the network and thus avoid overfitting (see Bishop, 1997, 

§9.2). We established suitable values for λ1 and λ2 and for the number, m, of units in the hidden 
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layer using a hold out method with a third of the estimation sample used for testing (see Bishop, 

1997, §9.8).  

Neural networks will perform poorly if the time series is nonstationary (Cottrell et al., 

1995). In our ARIMA modelling of the estimation samples of data for both the Rio and England 

and Wales data, we found no justification for differencing. Indeed, we found that the best fit, 

assessed in terms of SBC, resulted when no differencing was used. However, Fig. 4 shows that 

the within-year cycle in the England and Wales data appears in our 30-week sample as a trend 

through the data. The plot in Fig. 3 for the Rio data also shows a slight rise in the level of the 

data, which is due to demand rising in response to the need for air conditioning in the warmer 

months. In their ARMA analysis, apparent nonstationarities led Darbellay and Slama (2000) to 

apply to their hourly demand data, yt, the following differencing operator: (1-L)(1-L24)(1-L168)yt. 

Prior to fitting the neural network, we applied the same operator to our hourly Rio data, and for 

the England and Wales half-hourly data, we used (1-L)(1-L48)(1-L336)yt. 

We drew inspiration from the study of Darbellay and Slama (2000) for our choice of 

lagged demand to use as input variables. For the hourly Rio data, we considered the following 

lags: 1 to 6, 23, 24, 25, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264, 288, 312 and 336. The 

hold out method led us to use λ1=λ2=0.005 and m=12, and to use the following lags in our 

model: 1, 2, 24, 25, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264, 312 and 336. For the half-

hourly England and Wales data, we considered the following lags: 1 to 12, 47, 48, 49, 96, 144, 

192, 240, 288, 336, 384, 432, 480, 528, 576, 624 and 672. The hold out method led us to use 

λ1=λ2=0.005 and m=14, and the following lags: 1, 48, 49, 96, 144, 192, 240, 288, 336, 384, 432, 

480, 624 and 672. 

Note that a single model was estimated for each of the two demand series. As with the 

other models fitted in this paper, parameters were estimated using the estimation sample of data 

for each series, and the parameters were not updated after this. One step-ahead forecasts were 

iteratively used as inputs in order to generate multi-step predictions.  
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4.4.  A Regression Method with Principal Component Analysis 

Principal component analysis (PCA) is a standard statistical method that is used for 

reducing the dimension of multivariate data sets, where variables are highly correlated, to a 

smaller set of variables. These are linear combinations of the original variables, which are 

uncorrelated and explain most of the variation in the data and are thus called principal 

components. In a regression context, one can therefore focus on this smaller number of 

independent variables, rather than dealing with the large number of original variables with 

complex interrelationships (Chaterjee et al., 1999). 

Here, we employ PCA to capture the intra-day variation in electricity demand. The 

method can be viewed as a development of the approach of Ramanathan et al. (1997) and 

Carnero et al. (2003) and others who model each hour (or half-hour) separately. The essence 

of our PCA method is that it exploits the similarity between certain hours (or half-hours) in 

order to reduce the number of models to be considered. We note that the approach could 

easily be extended to the multivariate context, if weather related variables were available. 

For each day i that is considered, let the matrix Yij denote the electricity demand on 

day i at intra-day period j, where i=1,…,N and j=1,…,M. Note that M=24 for the hourly 

Brazil data and M=48 for the half-hourly UK data. The matrix Yij is then used to construct a 

matrix C by summing over the time coordinate: C = (N-1)-1/2 YTY. The standard eigenvalue 

decomposition yields C = VΣ2VΤ, where V is an orthonormal matrix satisfying VTV = I = VVT, 

and Σ2 is a positive definite diagonal matrix; the positive square roots σj of its diagonal are 

known as the singular values of C (Strang, 1993). These singular values are typically 

arranged in decreasing order so that σ1 ≥ σ2  ≥ … ≥ σM. The columns of V, vj, are the 

orthogonal basis functions, each of which contributes σj
2 to the total variance. The principal 

components are obtained by projecting the daily electricity demand profiles onto these basis 

functions or reduced dimension space. That is: P = YV, where the ith column of P is the 

component corresponding to the ith basis function. These elements in the column describe 



patterns that are associated with the different days of the week. For example, the lowest loads 

should be associated with Sunday and the highest with midweek.  

 While PCA provides a technique for modelling the intra-day pattern, the weekly 

seasonality has yet to be incorporated. This is achieved by regressing each principal component 

on six dummy variables that indicate the day of the week (Monday to Saturday with Sunday, 

arbitrarily chosen as the baseline) plus a linear and a quadratic term. The latter two terms capture 

the amount of linear and quadratic growth (or decay) of the electricity demand over time and are 

justified within a short range by scatterplots of the data. If we had several years of data for 

estimating this regression, the quadratic term could easily be replaced by a harmonic function 

that could be identified from the time series pattern of each component. The regression model 

for the qth principal component is, therefore, of the following form:    

    ( ) )(... 2
61 610

ierroriiddip qqqqqq ++++++= γβααα

where i is a label for the ith day in the dataset; the dl (for l = 0,…,6) are dummy variables 

indicating the day of the week; and the αql, βq and γq are constant parameters. This model can 

then be used to forecast each of the components, pq(i+1), for up to one day ahead.   

 There are two parameters which are required to specify the model: (i) the number of 

weeks, W, used to compute the principal components, and (ii) the number of principal 

components, Q, that are kept (Q≤ M). The second half of the 20 week estimation sample of data 

for both the England and Wales and Rio data sets was used to estimate the model parameters W 

and Q and the coefficients in the error model. The aim was to find the model with the best mean 

absolute percentage error (MAPE), averaged over all the intra-day samples, for the training data.  

Both W and Q were varied until a minimum value of MAPE was found. The results given in 

Section 5 were obtained using values W=10 and Q=24 for the England and Wales data and 

W=10 and Q=8 for the Rio data. 

 Having selected Q, this model approximates the matrix of demand profiles and the 

forecasts for intra-day period j of day i+1 are given by 
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( ) jq

Q

q
q Vip∑

=

+
1

1 ,  

where the first Q columns of the matrix V contain the most relevant empirical orthogonal 

functions.    

After applying this model, we found that the errors were serially correlated. We, 

therefore, followed a similar approach to that of Taylor (2003) for his exponential smoothing 

method, and adjusted the model by adding an AR model of the error process. As our PCA 

approach is an extension of the approach of Ramanathan et al. (1997), it is interesting to note 

that they also incorporate an error model in order to correct for serial correlation resulting from 

their use of separate models for each hour of the day. In the particular case of the hourly Rio 

data, we define Et(k) as the prediction error associated with a k step-ahead forecast made from 

origin t, which is observed to be highly correlated with both the corresponding prediction error 

that occurred 24 hours before, Et-24(k), as well as the last known prediction error, Et-1(1).  

Consequently, each future prediction error, Et(k), is estimated by an expression of the form: 

)1()()()()()( 122410 −− ++= ttt EkkEkkkE ααα  

where the αl(k) are parameters estimated separately for each lead time, k, using LS regression 

applied to the estimation sample. For the England and Wales data, a similar patter was observed 

and thus the lag 24 term in the model is replaced by a lag 48 term.  

 

4.5.  Two Simplistic Benchmark Methods 

 The random walk is the most widely used and simplest naïve benchmark method used 

in forecasting studies. However, for multi-step-ahead forecasting of seasonal data, the method 

is likely to perform poorly. A more natural benchmark forecast is provided by the seasonal 

version of the random walk, which takes as a forecast the observed value for the 

corresponding period in the most recent occurrence of the seasonal cycle. With two seasonal 

cycles within the data, it seems sensible to focus on the longer cycle, so that the prediction is 
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constructed simply as the observed value for the corresponding period in the previous week. 

For the hourly Rio data, the forecast function is 168)(ˆ −+= ktt yky , where yt is demand in period 

t, and k is the forecast lead time (k≤168). For the half-hourly England and Wales data, 

 (where k≤336). In our discussion of the results in Section 5, we refer to this 

forecasting approach as the ‘naïve benchmark’. 

336)(ˆ −+= ktt yky

 We used this forecasting approach as the basis of a second benchmark method. We 

refined the forecasts from the method by using the error modelling approach that was 

described in Section 4.4 for modelling the errors from the PCA method. In our discussion of 

the results in Section 5, we refer to this forecasting approach as the ‘naïve benchmark with 

error model’. 

 

5.  Results 

Figs. 5 and 6 show the post-sample forecasting accuracy of the six methods for lead 

times up to a day-ahead for each of the two series. The error summary measure reported in the 

figures is the mean absolute percentage error (MAPE), which has been traditionally used to 

measure accuracy in load forecasting. Because the MAPE captures the proportionality between 

the forecast error and the actual load, it is preferred and easily interpreted by those in the 

industry. Hippert et al. (2001) write that, although the MAPE has become an industry standard, 

it is advisable to also consider other summary measures. We also calculated the mean absolute 

error, median absolute percentage error, median absolute error, root mean squared percentage 

error and root mean squared error, but we do not report these results here because the relative 

performances of the methods for these measures were very similar to those for the MAPE. 

*****  Figs. 5 and 6  ***** 

 Turning first to the Rio results in Fig. 5, we can see that the naïve benchmark was 

substantially outperformed by all the other methods at all lead times. Interestingly, however, 

Fig. 5 shows that a substantial improvement resulted from the application of the heuristic 
 14
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‘error model’ to correct for autocorrelation in the forecast errors from this method. Perhaps 

the most surprising aspect of the results was the relatively poor performance of the neural 

network. It was unable to beat the naïve benchmark with error model, and it was comfortably 

beaten by the ARMA, exponential smoothing and PCA methods. Of these three methods, the 

exponential smoothing approach performed particularly well. The plot of the full sample of 

observations in Fig. 3 suggests a partial explanation for this. Between periods 3,360 and 

4,032, there seems to be a slight change in the seasonal pattern. This four-week period is the 

first four weeks of the 10-week post-sample evaluation period, and it is shown in Fig. 7. This 

figure seems to indicate a slight change in the seasonal pattern occurring a fortnight into the 

evaluation period. The change occurred around 6 October 1996, which was the start of 

summer time in Rio, and on this day the clocks were moved forward one hour. (In order to 

maintain 24 periods in this day, the two demand values at 00:00 were averaged.) Therefore, it 

would seem that all the methods have been somewhat challenged by being evaluated on data 

with slightly different characteristics to the data in the estimation sample. In this context, the 

robustness of the methods becomes important. The popularity of exponential smoothing in 

other applications, such as sales forecasting and financial volatility forecasting, is at least 

partly due to its robustness. We, therefore, conclude that this is a reason for the success of 

this approach over the ARMA and PCA methods. For both series, we did see a slight 

deterioration in the performance of each method as the method was passed though the 10-

week evaluation period, which motivates an updating of the methods. However, in our study, 

we opted not to re-specify or re-estimate methods because we felt that in practice it would be 

impractical to update, on a frequent basis, the ARIMA and neural network models. 

 By contrast with the Rio data, the England and Wales series, shown in Fig. 4, does not 

seem to change its characteristics in the post-sample evaluation period. Our results for this 

series, therefore, provide insight into whether the exponential smoothing method is able to offer 

anything more than just simplicity and robustness. The results in Fig. 6 show that the 
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exponential smoothing method did in fact perform well for the England and Wales series. It 

outperformed all the other methods at all lead times, except the PCA method, which has lower 

MAPE for lead times 12 to 32. As with the Rio data, the naïve benchmark was outperformed by 

all the other methods, but was vastly improved by the inclusion of the heuristic error model. For 

the England and Wales data, the neural network was competitive for the early lead times, but 

beyond about 10 steps-ahead (5 hours-ahead), it performed poorly.  

We were surprised that the performance of the neural network relative to the ARMA 

model was so much worse than that reported by Darbellay and Slama (2000) for their very 

similar neural network. Our explanation for this is that their data possessed different 

characteristics to ours. Firstly, an obvious point is that they used data from a different country 

and this data may have had stronger non-linearities than our series, which would have helped the 

neural network. The data in the Czech Republic study certainly looks more ‘noisy’ than the two 

series that we have analysed; some of this apparent ‘noise’ may be non-linearity.  Secondly, they 

only report results for models fitted and evaluated on weekday observations. The omission of the 

weekend data leaves a much simpler modelling task. Thirdly, in contrast to our use of 30 weeks 

of data, Darbellay and Slama used one full year of data to estimate their models and a second 

complete year for evaluation. The additional observations and the exposure to the full within-

year seasonal cycle may have greatly benefited the Darbellay and Slama network. We should 

also comment that if a particular neural network model does not perform well, as in our paper, 

one cannot be certain whether neural networks are, in general, poor predictors because a 

different specification of neural network might have performed better. Another reason for the 

poor performance of the neural network could be that we used forecasted values as inputs for the 

multi-step predictions. Non-linear models can spread errors very dramatically. A neural network 

model developed directly for given horizons (e.g. 24 neural network models or a model with 24 

outputs) could perhaps produce better results. 
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 In the introduction, we explained that univariate methods are mainly used for 

predicting load up to lead times of about six hours. In Figs. 8 and 9, we focus more closely on 

the MAPE results for lead times of one and six hours for the two best performing methods in 

Figs. 5 and 6. Fig. 8 shows the MAPE results for these two lead times plotted against time of 

day for the Rio 10-week post-sample period, and Fig. 9 presents the results for the England 

and Wales series. For six hour-ahead prediction for the Rio series, Fig. 8 shows the 

exponential smoothing method outperforming the PCA method for most hours of the day, and 

particularly so for the early hours of the morning. The results are much closer for the one 

hour-ahead prediction. For the England and Wales series, Fig. 9 shows that the performance 

of the two methods is similar for one hour-ahead prediction, except for those periods when 

the errors are relatively large. For these periods, the PCA method seems to perform 

noticeably worse. The figure shows that, for the six hour lead time, the performance of the 

methods is very similar for approximately half of the periods, but for the other half, 

exponential smoothing is better. 

 To provide a little more insight into the performance of the PCA and exponential 

smoothing methods for the Rio data, in Figures 10 and 11, we present box-plots for the APE 

results from the two methods. The inter-quartile ranges for the two methods do not appear to 

differ greatly. The notable difference between the two figures is in the size of the maximum 

APE at each lead time. The maximum values for the exponential smoothing method are smaller 

and more smoothly evolving across the lead times than those for the PCA method. 

 

6.  Summary and Conclusions 

In this paper we compared the performance of six methods for forecasting electricity 

demand. Of the four sophisticated methods, the seasonal ARIMA and neural network 

approaches have been widely applied. By contrast, the double seasonal exponential 

smoothing and PCA method are newer formulations, which have been specifically designed 
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for high frequency load series. We used series from two different sources, one hourly and the 

other half-hourly. The two series both show the weekly and daily seasonal patterns that are 

common to load data, but the series exhibit different degrees of stability in the seasonality 

and thus present somewhat different forecasting problems.  

A highlight of this study was the success of the exponential smoothing method. In 

addition to its forecasting performance, it is important to note that, of the four sophisticated 

methods that we considered, this method is comfortably the simplest and quickest to 

implement. On the disappointing side, the neural network did not perform well. We do not 

believe that this was due to overfitting or an overly complex architecture, which are two 

common pitfalls in neural network modelling. Instead, the poor performance may have 

resulted because we did not separate the data into weekday and weekend observations and 

then build separate models for each dataset. Other possibilities are that we used less data than 

previous authors or, quite simply, the non-linearity in our data may be negligible.  

The PCA method was certainly competitive for the England and Wales data, which 

prompted us to consider a combination. For this series, slight improvement was achieved by 

combining the exponential smoothing method and the PCA method using a simple average. 

This motivates further consideration of combining (see Smith, 1989; Taylor and Majithia, 

2000), and of the development of a method that is able to synthesise the useful features of the 

exponential smoothing and PCA methods. 
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Table 1 
Parameters estimated from the 20-week estimation samples for double seasonal exponential 
smoothing with AR(1) model for the residuals. 
 
 
 

 Level 
α 

Trend 
γ 

Within-day 
seasonality δ 

Within-week 
seasonality ω 

AR 
λ 

Rio  0.01 0.00 0.09 0.15 0.88 

England and Wales  0.02 0.04 0.32 0.15 0.98 
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Fig. 1.  Hourly electricity demand in Rio de Janeiro 
from Monday 5 May 1996 to Sunday 18 May 1996. 
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Fig. 2.  Half-hourly electricity demand in England and  
Wales from Monday 27 March 2000 to Sunday 9 April 2000. 
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Fig. 3.  Hourly electricity demand in Rio de Janeiro for  
Sunday 5 May 1996 to Saturday 30 November 1996. 
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Fig. 4.  Half-hourly electricity demand in England and Wales for  

Monday 27 March 2000 to Sunday 22 October 2000. 
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Fig. 5.  MAPE results plotted against lead time 
for the Rio 10-week post-sample period. 
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Fig. 6.  MAPE results plotted against lead time for the  
England and Wales 10-week post-sample period. 
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Fig. 7.  First four weeks of the 10-week post-sample period 
of hourly electricity demand in Rio de Janeiro. This period is 

Monday 22 September 1996 to Sunday 19 October 1996. 
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Fig. 8.  MAPE results for lead times of one and six hours, plotted 
against time of day, for the Rio 10-week post-sample period. 
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Fig. 9.  MAPE results for lead times of one and six hours, plotted against 
time of day, for the England and Wales 10-week post-sample period. 
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Fig. 10.  Box-plots for APE results from the regression with PCA method,  
plotted against lead time, for the Rio 10-week post-sample period. 
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Fig. 11.  Box-plots for APE results from the exponential smoothing method,  
plotted against lead time, for the Rio 10-week post-sample period. 
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