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Exponential Smoothing with a Damped Multiplicative Trend 

 

Abstract 

Multiplicative trend exponential smoothing has received very little attention in the literature. 

It involves modelling the local slope by smoothing successive ratios of the local level, and 

this leads to a forecast function that is the product of level and growth rate. By contrast, the 

popular Holt method uses an additive trend formulation. It has been argued that more real 

series have multiplicative trends than additive. However, even if this is true, it seems likely 

that the more conservative forecast function of the Holt method will be more robust when 

applied in an automated way to a large batch of series with different types of trend. In view of 

the improvements in accuracy seen in dampening the Holt method, in this paper, we 

investigate a new damped multiplicative trend approach. An empirical study, using the 

monthly time series from the M3-Competition, gave encouraging results for the new approach at 

a range of forecast horizons, when compared to the established exponential smoothing methods. 
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1.  Introduction 

The robustness and accuracy of exponential smoothing forecasting has led to its 

widespread use in applications where a large number of series necessitates an automated 

procedure, such as inventory control. Although Holt’s method has tended to be the most 

popular approach for trending series, its linear forecast function has been criticised for 

tending to overshoot the data beyond the short-term. Gardner and McKenzie (1985) address 

this problem by including an extra parameter in Holt’s method to dampen the projected trend. 

Empirical studies show that the damped method tends to offer improvements in accuracy 

(e.g. Makridakis et al., 1993; Makridakis and Hibon, 2000). If the extra parameter is 

permitted to be greater than one, the method can also produce an exponential forecast 

function, which would seem to be useful for series with exponential trend. An alternative 

method for dealing with such series is multiplicative trend exponential smoothing, which is 

described by Pegels (1969) and Hyndman et al. (2002). It involves modelling the local growth 

rate by smoothing successive ratios of the local level, and leads naturally to a forecast 

function that is the product of the growth rate and level. The trend is thus modelled in a 

multiplicative way. By contrast, all the established exponential smoothing methods assume 

an additive trend. 

The multiplicative trend method has received very little attention in the literature. 

This is a little surprising, given the preference for multiplicative, rather than additive, 

modelling of seasonality in the Holt-Winters approach. Pegels (1969) suggests that more real 

series have multiplicative trends than additive. Regardless of whether this is true, it seems 

likely that the more conservative forecast function of Holt’s method will be more robust 

when applied in an automated way to a large batch of series with different types of trend. 

Motivated by the improvements seen in dampening the Holt method, in this paper, we 

introduce a damped Pegels exponential smoothing method. The method has the appeal of 
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modelling trends in a multiplicative fashion but includes a dampening term, which should 

lead to more robust forecasting performance.  

In Section 2 of the paper, we review the literature on exponential smoothing methods 

for additive and multiplicative trends, and in particular the methods of Holt and Pegels. 

Section 3 introduces our new damped multiplicative trend exponential smoothing method. In 

Section 4, we use a large data set of real time series to compare the new method with existing 

approaches. The final section provides a summary and concluding comments. 

 

2. Exponential Smoothing with Additive and Multiplicative Trends 

 Pegels’ (1969) classification of exponential smoothing methods includes nine different 

methods. Each method is classified as being suitable for series with either constant level, 

additive trend or multiplicative trend, and with either no seasonality, additive seasonality or 

multiplicative seasonality. Hyndman et al. (2002) have recently extended this taxonomy to 

include damped additive trend with either no seasonality, additive seasonality or multiplicative 

seasonality. From among the various methods, simple, Holt’s, damped Holt’s and Holt-Winters’ 

exponential smoothing have been very popular with practitioners and researchers. The Holt-

Winters method with multiplicative seasonality has been widely used. By contrast, with the 

exceptions of Pegels (1969), Makridakis et al. (1998) and Hyndman et al. (2002), the 

multiplicative trend methods have been very largely ignored. Indeed, we are not aware of any 

software packages that include multiplicative trend exponential smoothing. Later in this section, 

we return to the multiplicative trend formulation but let us first consider the standard Holt 

additive trend method, which is given in expressions (1)-(3). The method estimates the local 

growth, Tt, by smoothing successive differences, (St - St-1), of the local level, St. The forecast 

function is the sum of level and projected growth. 

    )()1( 11 −− +−+= tttt TSXS αα     (1) 

11 )1()( −− −+−= tttt TSST γγ      (2) 

ttt TmSmX +=)(ˆ       (3) 
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where Xt is the actual observation, )(ˆ mX t  is the m-step-ahead forecast, and α and γ are 

smoothing parameters. Despite its popularity, empirical evidence has shown that the Holt linear 

forecast function tends to overestimate (Gardner and McKenzie, 1985). In view of this, Gardner 

and McKenzie (1985) describe how a dampening parameter, φ, can be used within Holt’s 

method to give more control over trend extrapolation. The damped Holt method is presented in 

expressions (4)-(6). 

)()1( 11 −− +−+= tttt TSXS φαα     (4) 

11 )1()( −− −+−= tttt TSST φγγ      (5) 

t

m

i

i
tt TSmX ∑+=

=1
)(ˆ φ

      (6) 

Gardner and McKenzie explain that if 0 < φ < 1, the trend is damped and the forecasts 

approach an asymptote given by the horizontal straight line St+Ttφ /(1-φ). If φ = 1, the method 

is identical to the standard Holt method presented in expressions (1)-(3). If φ = 0, the method 

is identical to standard simple exponential smoothing. If φ > 1, the forecast function has an 

exponential trend. Interestingly, Hyndman et al. (2002) suggest a slightly different damped 

formulation where there is no dampening of the trend for the first forecast period.  

Gardner and McKenzie write that φ > 1 is probably a dangerous option in an 

automatic forecasting procedure. However, Tashman and Kruk (1996) show that there can be 

value in allowing φ > 1, if it is applied only to strongly trending series. Indeed, as the method 

has an exponential forecast function, it would seem to be suited to series with exponential 

trends. However, we feel that it is a clumsy way to handle such series as the local slope is 

rather unsatisfactorily modelled as an additive trend by smoothing successive differences of 

the local level. We feel that if the process is exponential, then an appropriate method would 

be one that actually models this sort of trend, such as the method of Pegels (1969), which is 

presented in expressions (7)-(9). The method models the local growth rate, Rt, by smoothing 

successive ratios, (St / St-1), of the local level St. 
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)()1( 11 −−−+= tttt RSXS αα      (7) 

11 )1()/( −− −+= tttt RSSR γγ      (8) 
m
ttt RSmX =)(ˆ        (9) 

The method can be described as modelling the trend in a multiplicative way because the 

forecasts are formed from the product of the level and growth rate. A logarithmic transformation 

is sometimes used to convert a multiplicative trend into an additive trend. The resultant forecasts 

must then be transformed back into the original units, along with prediction intervals. The Pegels 

method has the appeal of simplicity in that the transformation is avoided.  

The fact that the Pegels method expresses the trend in a unitless form can be very 

useful. For example, consider the introduction of a new product that is a variation on an 

existing product. The two products would probably share similar behaviours and could be 

classified together. When the product is first introduced, a forecast method would have to be 

implemented starting with no data. To help initialise the method, it would be reasonable to 

use information about the aggregate product class. Although the sales volume of the new 

product may be quite different to other products in the same class, they may share the same 

behaviour in terms of trend. With the Pegels multiplicative trend formulation, the trend for 

the new product could be initialised using the trend from the application of the method to a 

more aggregated product class, since the trend is unitless. By contrast, it is not possible to use 

an aggregated trend from an additive trend model. 

 

3.  Damped Mulitplicative Trend Exponential Smoothing 

Pegels (1969) suggests that his multiplicative trend method may be more useful than the 

Holt additive trend method, as multiplicative trends “appear more probable in real-life 

applications”. If he is correct, then his method should perform well relative to the standard 

methods, which all use an additive trend. However, an obvious reason for using Holt’s additive 

trend method in preference to Pegels’ multiplicative trend method is that the more conservative 

trend extrapolation, provided by the additive trend method, may be more robust when applied to 
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a variety of different series in a large-scale, automated forecasting application. In view of this, 

there may be value in including an extra parameter in the Pegels formulation to dampen the 

extrapolated trend, in an analogous fashion to the dampening parameter in the damped Holt 

method. Our new damped Pegels multiplicative trend method is given in expressions (10)-(12). 

)()1( 11
φαα −−−+= tttt RSXS                (10) 

φγγ 11 )1()( −− −+= tttt RSSR               (11) 

∑
= =

m

i

i

ttt RSmX 1)(ˆ
φ

                (12) 

 The forecast function in expression (12) is analogous to the forecast function for 

damped Holt’s exponential smoothing. The growth rate undergoes a further dampening for 

each period into the future. Hence, the forecast function is derived as: 

( ) ∑
== =

m

i

i
m

tttttttt RSRRRRSmX 1
32

)(ˆ
φ

φφφφ KK  

If 0 < φ < 1, the multiplicative trend is damped and the forecasts approach an 

asymptote given by the horizontal straight line StRt
φ /(1−φ). If φ = 1, the method is identical to 

the standard Pegels method presented in expressions (4)-(6). If φ = 0, the method is identical 

to standard simple exponential smoothing. If φ > 1, the forecast function has a multiplicative 

inflationary term which exponentially increases over time. Our preference is to use the 

formulation with 0 < φ < 1 in order simply to provide a damped version of Pegels’ method. 

In Fig. 1, we show forecast profiles for the Holt method and for damped Holts with 

three different choices for the dampening parameter (0 < φ < 1). Decreasing the value of 

φ, increases the degree of dampening but it does not alter the concave shape of the forecast 

profile. Fig. 2 presents forecast profiles for the Pegels method and for damped Pegels with 

three different choices for the dampening parameter (0 < φ < 1). As with the Holt method, 

decreasing φ, increases the degree of dampening for the damped Pegels method. However, 

unlike the Holt method, the shape of the damped forecast profile varies. Although the profile 
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will eventually approach a horizontal asymptote, for relatively early forecast lead times, the 

profile can be convex, nearly linear or concave. 

----------  Figs. 1 and 2  ---------- 

Although Hyndman et al. (2002) do consider trend dampening, their taxonomy of 

methods does not include a damped multiplicative trend. In Table 1, we present an extended 

version of their taxonomy, in which we use similar notation to theirs. The method N-N is 

simple exponential smoothing, A-N is Holt’s, DA-N is damped Holt’s, A-A and A-M are the 

Holt-Winters’ seasonal methods, and M-N is Pegels’ multiplicative trend method. M-A and 

M-M are seasonal versions of the multiplicative trend method. The bottom row of the table is 

the extension of the taxonomy of Hyndman et al. The method DM-N is damped Pegels, 

which is the focus of this paper. The methods DM-A and DM-M, also in the bottom row, are 

seasonal versions of damped Pegels. Although these seasonal versions are straightforward to 

formulate, we concentrate in this introductory paper on the non-seasonal method. 

----------  Table 1  ---------- 

 Many users of exponential smoothing methods find it easier to work with error-

correction forms. For the damped Pegels method, the error-correction form is given by 

expressions (13)-(15): 

tttt eRSS αφ += −− 11                 (13) 

11 −− += tttt SeRR αγφ                 (14) 

∑
= =

m

i

i

ttt RSmX 1)(ˆ
φ

                (15) 

where et is the 1-step-ahead forecast error, φ
11 −−−= tttt RSXe . 

 An important issue for many forecasting applications is the estimation of prediction 

intervals to accompany point forecasts. For example, in inventory control, intervals enable the 

setting of appropriate levels of safety stock. Theoretical forecast error variance formulae are 

often derived for exponential smoothing methods by referring to the equivalent ARIMA model. 

However, there is no equivalent ARIMA model for either the Pegels or the new damped Pegels 
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methods. The lack of equivalent ARIMA models for various non-linear exponential smoothing 

methods has led to prediction intervals being based on the equivalent state-space model.  

Hyndman et al. (2001) derive theoretical forecast error variance formulae from the state-space 

models and Hyndman et al. (2002) generate prediction intervals by applying simulation to the 

models. In expressions (16)-(18), we present the state-space formulation for the damped Pegels 

method.  

 
tttt RSX εφ += −− 11                 (16) 

tttt RSS εαφ += −− 11                 (17) 

11 −− += tttt SRR εαγφ                 (18) 

where εt is a Gaussian white noise process. An alternative to the theoretical and model-based 

approaches is to use an empirical approach to estimate prediction intervals, such as that of 

Gardner (1988) or Taylor and Bunn (1999). 

 

4. Empirical Results 

4.1.  Description of the Study 

 We carried out empirical analysis in order to address two main issues. Firstly, we 

wished to investigate whether the inclusion of a dampening term would lead to improvement 

in the accuracy of the Pegels method. Secondly, we wanted to compare the Pegels and 

damped Pegels methods with the established exponential smoothing methods. 

The data used was the 1,428 monthly time series from the recent M3-Competition, 

which is described by Makridakis and Hibon (2000). The data set is a mixture of industry, 

demographic, meteorological, financial, microeconomic and macroeconomic series. The 

series vary in length from 48 to 126 with a median of 115. Since all the series consist of 

monthly observations and we wished largely to compare non-seasonal exponential smoothing 

methods, we deseasonalised the data prior to forecasting. We used the seasonal 

decomposition method based on ratio-to-moving averages, which was used in the M3-
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Competition. By applying exponential smoothing methods in an automated way to a large 

number of series, we replicated common practice in inventory and productions management. 

We did not consider the quarterly or yearly series from the M3-Competition because 

automated forecasting procedures are rarely applied to data of such low frequencies. We 

should acknowledge at this stage that none of the 1,428 monthly series from the M3-

Competition contain zeros. Multiplicative trend methods, such as Pegels and damped Pegels, 

are likely to be less suitable for series with embedded zeros (Hyndman et al., 2002).  

We produced forecasts using seven exponential smoothing methods. We derived 

parameter values by the common procedure of minimising the sum of squared one-step-ahead 

forecast errors, and we employed the constrained non-linear optimisation routine of the 

statistical programming language Gauss.  

Method 1: Simple exponential smoothing with α restricted to lie between zero and one. 

Method 2: Holt’s with α and γ restricted to lie between zero and one. 

Method 3: Damped Holt’s with α, γ and φ restricted to lie between zero and one. 

Method 4: Damped Holt’s with α and γ restricted to lie between zero and one, and 

φ restricted to lie between zero and two. We refer to this as the ‘generalised Holt’ method. 

Method 5: Pegels’ with α and γ restricted to lie between zero and one. 

Method 6: Damped Pegels’ with α, γ and φ restricted to lie between zero and one.  

Method 7: Holt-Winters for multiplicative seasonality with parameters restricted to lie 

between zero and one. As this method is suited to seasonal series, the data was not 

deseasonalised beforehand. 

Chatfield and Yar (1988) describe how the use of different approaches for the 

derivation of initial values for the smoothed level, trend and seasonal components can give 

rise to substantially different optimised parameter values, which can lead to substantially 

different forecasts. Although there are theoretical arguments in favour of backcasting 

(Ledolter and Abraham, 1984), it frequently gave poor initial values in the M-Competition 



 10

(Makridakis et al., 1982). Another approach is to use a simple linear regression on time to 

produce initial slope and trend (Gardner and McKenzie, 1985). Our experience is that this can 

give poor results for series that are notably different to a simple linear trend. 

We feel that a more robust approach is to use simple averages of the first few data 

observations to calculate initial smoothed components, as in the work of Gardner (1999). We 

implemented the procedure of Williams and Miller (1999) who adapt the method of simple 

averages for monthly data. For all the exponential smoothing methods, except Pegels’ and 

damped Pegels’, the initial growth, T0, was chosen as the average of (1) one-twelfth the 

difference between the mean of the first 12 and second 12 deseasonalised observations, and 

(2) the average of the first differences for the first 24 deseasonalised observations. The initial 

level, S0, was chosen as the mean of the first 24 deseasonalised observations minus 12.5 times 

the initial growth. We used the same initial level, S0, for the Pegels and damped Pegels 

methods and we set the initial growth rate, R0, equal to (S0+T0)/S0. 

The initial value for each of the smoothed seasonal indices in the Holt-Winters 

method was set as the average of the ratios of actual observation to 12-point centred moving 

average taken from the corresponding month in each of the first two years of the time series. 

The same ratios were used to deseasonalise the data for the nonseasonal forecasting methods.  

Using each of the seven methods, we produced forecasts for lead times from one to 18 

for each of the 1,428 series. We chose these lead times because they had been used with the 

monthly data in both the M-Competition and M3-Competition.  

 

4.2.  Results for All 1,428 Series 

 Table 2 summarises the ex ante symmetric mean absolute percentage error (SMAPE) for 

each of the seven exponential smoothing methods applied to all 1,428 series. Although the 

SMAPE has received some criticism (see Goodwin and Lawton, 1999), it is the one summary 

error measure reported in numerical detail by Makridakis and Hibon (2000) in their presentation 
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of the results of the M3-Competition. They describe how the measure has the advantage over the 

more traditional MAPE of avoiding large errors when the actual, xi, is close to zero and large 

differences between the absolute percentage error when xi is greater than the forecast, fi, and 

when fi is greater than xi. 

( )∑ +

−
=

i ii

ii

fx
fx

SMAPE
2/

 

 For simplicity, we do not show the SMAPE results for each of the 18 forecast horizons. 

Instead, Table 2 displays the average SMAPE for forecast horizons one to six (the short-term), 

for horizons seven to 12 (the medium-term), for horizons 13 to 18 (the long-term) and for all 18 

horizons. The best results for each forecast horizon category are indicated in bold. The Holt-

Winters method is the worst of all seven methods for all three forecast horizon categories. For 

Holt’s, generalised Holt’s and Pegels’, the results are similar. Given that the Pegels and 

generalised Holt methods are suited to strongly trending series, it is not unexpected to see that 

they perform relatively poorly beyond the short-term, as the 1,428 series have a variety of 

different strength trends. Perhaps it is a little surprising to see that Holt’s is slightly 

outperformed by Pegels’ beyond the short-term. This suggests that the assumption of 

multiplicative trend is not as dangerous as one might have surmised. Holt’s is also outperformed 

by generalised Holt’s. This can, at least partially, be explained by the fact that the optimised φ 

parameter for generalised Holt’s was greater than one for only 203 of the 1,428 series, indicating 

that the method was the same as damped Holt’s for a large proportion of the series. In the next 

subsection, we return to the issue of how well the methods perform on the 203 series for which 

the optimised generalised Holt’s φ parameter was greater than one. Table 2 shows that the best 

methods were simple exponential smoothing, damped Holt’s and damped Pegels’. Interestingly, 

damped Pegels’ outperforms all other methods for all three lead time categories with the 

improvement increasing with the lead time.  

----------  Table 2  ---------- 
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 The median absolute percentage error (MedAPE) is another measure reported by 

Makridakis and Hibon (2000) in their presentation of the results of the M3-Competition. 

Here, the percentage error is defined simply as the ratio of error to actual. In the forecasting 

literature, the median is often preferred to the mean APE because it is more robust to outliers, 

and because the distribution of absolute percentage errors is often skewed. Table 3 summarises 

the median APE results for the seven exponential smoothing methods applied to all 1,428 series. 

Using the MedAPE criterion, the relative performances of the methods are broadly in line with 

those shown in Table 2 for the SMAPE measure. However, there are two notable differences. 

First, the Holt-Winters method is more competitive when judged by the MedAPE and, second, 

the simple exponential smoothing method was the weakest method at all horizons according to 

the MedAPE. The MedAPE results in Table 3 show Pegels’ as being a little more accurate than 

Holt’s. Both of these methods are improved by including the dampening parameter, and, of the 

two damped methods, damped Pegels’ performed slightly better than damped Holt’s. 

----------  Table 3  ---------- 

 The fact that damped Pegels’ was able to match and, indeed, slightly outperform damped 

Holt’s is very encouraging for the new method, given that damped Holt’s is so widely used and 

respected. The similarity of the accuracy summary measures, particularly the MedAPE results, 

for damped Holt’s and damped Pegels’ prompted us to investigate further the estimated 

parameters and resultant forecasts. Comparison of the forecasts produced by damped Holt’s and 

damped Pegels’ indicated that, for many series, the forecasts were very similar. For these series, 

the change in the level of the series (or growth) tended to be much smaller than the level of the 

series. In the appendix, we show analytically that when this is the case, the damped Pegels 

smoothing equations and forecast function, given in expressions (10)-(12), approximate those of 

the damped Holt method, given in expressions (4)-(6). Intuitively, we feel that it is reasonable 

that the two methods are equivalent when the growth is much smaller than the level of the series; 

in this situation, it is probably difficult to decipher whether the trend is additive or 
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multiplicative. We also found that for series with growth much smaller than the level, simple 

exponential smoothing produced forecasts reasonably similar to the damped Holt and damped 

Pegels methods. This is not surprising given that damped Holt’s and damped Pegels’ are 

equivalent to simple exponential smoothing when applied to series with no growth. 

 

4.3.  Results for the Series for which φ > 1 in Generalised Holt’s 

 In large-scale forecasting applications, which require an automated forecasting 

procedure, such as inventory control, it is common to apply the same exponential smoothing 

method to each series. In view of this, there is clear value in empirical studies that compare the 

performance of a number of methods across a wide variety of series, such as our analysis of the 

1,428 monthly series. However, certain methods, that have little value when applied across a 

variety of different series, can be very useful when selectively applied to appropriate series. In 

order to investigate further the standard Pegels and new damped Pegels methods, we felt that it 

would be interesting to analyse their respective performances for series for which they might be 

considered particularly suitable. Pegels (1969) and Gardner (1985) clearly feel that the Pegels 

method is suitable for series with strong trend. 

The method selection protocol of Gardner and McKenzie (1988) provides a simple 

procedure for categorising the strength of the trend component in a series. It involves calculating 

the variance of the original series, the variance of the series differenced once and the variance of 

the series differenced twice. If the variance of the original series is the least of the three, the 

series is considered to have no trend and simple exponential smoothing is recommended; if it is 

least for the series differenced just once, the series is considered to have moderate trend and 

damped Holt’s is recommended; and, if it is least for the series differenced twice, the series is 

considered to have strong trend in which case Holt’s should be used. However, Tashman and 

Kruk (1996) found that the performance of damped Holt’s was best for the series classified by 

the Gardner-McKenzie procedure as strongly trending. They also point out that the procedure 
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does not make a distinction between a linear and exponential trend. Unfortunately, therefore, we 

cannot expect this trend classification approach to be able to identify strongly trending series for 

which the Pegels and damped Pegels methods are more suitable than damped Holt’s. Indeed, we 

found that the results for damped Holt’s and damped Pegels’ were similar for the 63 series, out 

of the 1,428 monthly series, which were classified by the Gardner-McKenzie procedure as 

strongly trending. We also found that some of the 1,428 series, which are clearly trending, are 

classified by the procedure as stationary. This seems to be the result of a reasonably large degree 

of variability in the original series. We agree with Tashman and Kruk that much work remains to 

be done on method selection rules for exponential smoothing. 

 In the previous subsection, we described how the generalised Holt’s φ parameter was 

larger than one for 203 of the 1,428 series. For these series, the constrained optimisation routine 

derived a value of one for the damped Holt’s φ parameter. A value greater that one for the 

generalised Holt’s φ parameter suggests that damped Holt’s will not be able to satisfactorily 

forecast the trend in these series and that other forecasting methods may be preferable. We 

investigated whether the Pegels and damped Pegels methods are more suitable for these series. 

Tables 4 and 5 summarise the SMAPE and MedAPE measures, respectively, for the seven 

exponential smoothing methods applied to the subset of 203 series. The most alarming finding 

in Tables 4 and 5 is that generalised Holt’s performs extremely poorly. Clearly, in Tables 2 and 

3, the success of this method for the other 1,225 series hid the poor performance resulting when 

the φ parameter was greater than one. According to the SMAPE results in Table 4, Pegels’ is a 

little better than Holt’s but the ranking is reversed for the MedAPE results in Table 5. 

Comparing the damped methods, we find that damped Pegels’ comfortably outperformed 

damped Holt’s for all forecast horizon categories according to the SMAPE in Table 4. The 

MedAPE results in Table 5 are less impressive but damped Pegels’ was noticeably better for the 

long-term.  

----------  Tables 4 and 5  ---------- 
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5.  Summary and Conclusions 

 In this paper, we have introduced a new damped exponential smoothing method. The 

method follows the multiplicative trend formulation of Pegels (1969) but includes an extra 

parameter to dampen the projected trend. We used the 1,428 monthly time series from the M3-

Competition to compare the method to the standard Pegels method and the established 

exponential smoothing methods. The performance of the standard Pegels method was similar to 

that of the standard Holt method. This is an interesting result as there have been no previous 

empirical studies comparing the post-sample forecasting accuracy of the standard Pegels method 

with that of other exponential smoothing methods. It suggests that the assumption of a 

multiplicative trend is not as dangerous as might have been expected. We found that the damped 

Pegels method comfortably outperformed the standard Pegels method at all forecast horizons. 

Furthermore, the new damped version of the method also slightly outperformed the popular 

damped Holt method.  

The generalised Holt formulation is identical to damped Holt’s except that the φ 

parameter is permitted to take values greater than one. This occurred for 203 of the 1,428 series. 

An optimised value greater that one for the generalised Holt’s φ parameter suggests that damped 

Holt’s will not be able to satisfactorily forecast the trend in these series and that other forecasting 

methods may be preferable. We investigated whether the multiplicative trend formulation of the 

standard Pegels and damped Pegels methods is preferable for these series. We compared the 

accuracy of these methods to the established exponential smoothing methods for the subset of 

203 series. The standard Pegels method outperformed standard Holt’s according to the 

Symmetric Mean APE summary error measure but not according to the Median APE. Of all the 

seven methods considered, the best results were achieved for both error measures using the 

damped Pegels method. This suggests that the damped Pegels method could at least be useful as 

an alternative to the popular and successful damped Holt method for series for which the latter 

seems unsuitable. In view of this, there would seem to be strong appeal in including the damped 
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Pegels method as a candidate in automated method selection approaches, such as that of 

Hyndman et al. (2002). In conclusion, we feel that the results for the 1,428 series and for the 

subset of 203 suggest that the new damped Pegels method is a considerable improvement on the 

standard Pegels method, and that it is a potentially useful alternative to the established 

exponential smoothing methods.  
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Appendix 

In this appendix, we show that if the growth, Tt, in the series is much less than the 

level of the series, St, the forecasts from the damped Holt and damped Pegels methods will be 

very similar. If we write the growth rate as 
t

t
t S

T
R +=1 , expression (10) in the damped Pegels 

formulation becomes 
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Comparing this with the damped Holt smoothing equation for the local level in expression 

(4), we can see that the two expressions are approximately the same if Tt-1 « St-1.  

If we write 
t

t
t S

T
R +=1 , expression (11) of the damped Pegels formulation becomes 
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Rearranging this, we get 
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If the growth, Tt-1, is less than the level, St-1, we can expand this expression to give 
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Comparing this with the damped Holt smoothing equation for the local growth in expression 

(5), we can see that the two expressions are approximately the same if Tt-1 « St-1. Note that the 

condition Tt-1 « St-1 implies that St ≈ St-1. 

Substituting 
t

t
t S

T
R +=1  in expression (12) of the damped Pegels formulation, we get 
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If the growth, Tt, is less than the level, St, we can expand this expression to give 
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Comparing this with the damped Holt forecast function in expression (6), we can see that the 

two expressions are approximately the same if Tt « St.  
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Fig. 1.  Forecast profiles for the Holt method and three 
damped Holt methods with differing dampening parameters.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Forecast profiles for the Pegels method and three 
damped Pegels methods with differing dampening parameters.  
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Table 1 
Classification of exponential smoothing methods (adapted from Hyndman et al., 2002) 

 

Seasonal Component 
Trend Component 

None (N) Additive (A) Multiplicative (M) 

None (N) N-N N-A N-M 

Additive (A) A-N A-A A-M 

Damped Additive (DA) DA-N DA-A DA-M 

Multiplicative (M) M-N M-A M-M 

Damped Multiplicative (DM) DM-N DM-A DM-M 
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Table 2 
Symmetric Mean APE for the 1,428 Monthly Series from the M3-Competition 
 

 Forecasting Horizon 
Method 1-6 7-12 13-18 Overall 

Simple 12.5 14.1 17.4 14.7 

Holt 12.8 15.3 20.2 16.1 

Damped Holt 12.4 14.2 17.7 14.7 

Generalised Holt 12.8 15.2 19.3 15.7 

Pegels 12.8 15.1 19.5 15.8 

Damped Pegels 12.3 13.8 17.1 14.4 

Holt-Winters 13.3 15.6 20.4 16.4 

 
 
 
 
 
 
Table 3 
Median APE for the 1,428 Monthly Time Series from the M3-Competition    
 

 Forecasting Horizon 
Method 1-6 7-12 13-18 Overall 

Simple 5.3 7.4 9.8 7.5 

Holt 5.1 6.9 9.5 7.2 

Damped Holt 5.0 6.8 8.9 6.9 

Generalised Holt 5.1 7.1 9.3 7.2 

Pegels 5.0 6.8 9.4 7.1 

Damped Pegels 5.0 6.8 8.8 6.8 

Holt-Winters 5.2 7.0 9.4 7.2 
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Table 4 
Symmetric Mean APE for the 203 Monthly Series from the M3-Competition for which φ > 1 in 
the Generalised Holt Method 
 

 Forecasting Horizon 
Method 1-6 7-12 13-18 Overall 

Simple 13.8 15.7 18.0 15.8 

Holt 14.1 16.9 21.1 17.4 

Damped Holt 13.9 16.6 20.5 17.0 

Generalised Holt 16.8 23.9 32.0 24.2 

Pegels 14.2 16.5 20.1 16.9 

Damped Pegels 13.7 15.3 17.8 15.6 

Holt-Winters 13.7 15.4 19.5 16.2 

 
 
 
 
 
Table 5 
Median APE for the 203 Monthly Series from the M3-Competition for which φ > 1 in the 
Generalised Holt Method 
 

 Forecasting Horizon 
Method 1-6 7-12 13-18 Overall 

Simple 5.4 8.9 11.4 8.5 

Holt 4.8 7.1 9.2 7.0 

Damped Holt 4.8 6.9 8.9 6.9 

Generalised Holt 5.8 9.7 14.3 9.9 

Pegels 4.8 7.3 9.7 7.3 

Damped Pegels 4.9 6.8 8.5 6.7 

Holt-Winters 5.2 7.2 8.5 7.0 

 


