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Short-term Density Forecasting of Wave Energy Using 

ARMA-GARCH Models and Kernel Density Estimation 

 

Abstract 

Wave energy has great potential as a renewable source of electricity. Installed capacity is 

increasing, and developments in technology mean that wave energy is likely to play an 

important role in the future mix of electricity generation. Short-term forecasts of wave energy 

are required for the efficient operation of wave farms and power grids, as well as for energy 

trading. The intermittent nature of wave energy motivates the use of probabilistic forecasting. 

In this paper, we evaluate the accuracy of probabilistic forecasts of wave energy flux from a 

variety of methods, including unconditional and conditional kernel density estimation, 

univariate and bivariate autoregressive moving average generalised autoregressive 

conditional heteroskedasticity (ARMA-GARCH) models, and a regression-based method. 

The bivariate ARMA-GARCH models are implemented with different pairs of variables, 

such as (1) wave height and wave period, and (2) wave energy flux and wind speed. Our 

empirical analysis uses hourly data from the FINO1 research platform in the North Sea to 

evaluate density and point forecasts, up to 24 hours ahead, for the wave energy flux. The 

empirical study indicates that a bivariate ARMA-GARCH model for wave height and wave 

period led to the greatest accuracy overall for wave energy flux density forecasting, but its 

usefulness for point forecasting decreases as the lead time increases. The model also 

performed well for wave power data that had been generated from wave height and wave 

period observations using a conversion matrix. 
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1. Introduction 

The growing demand for energy and sustained efforts to reduce carbon emissions, in 

light of the threat of global climate change, have led to the development of new technologies 

for harnessing energy from renewable sources. Of the various sources of renewable energy, 

ocean energy has a relatively high energy density in the form of currents, waves, heat and 

tides, with the benefit of a reduced visual impact (Brekken, von Jouanne, & Han, 2009). 

Esteban and Leary (2012) predict that ocean energy could deliver around 7% of the global 

energy production by 2050. Among the different ocean energy sources, which include tidal 

and thermal, wave energy is known to have the greatest capacity (Clément et al., 2002; Falnes, 

2007).  

Wave energy forecasts from a few hours to several days ahead are of interest for the 

management of power grids (Pinson, Reikard, & Bidlot, 2012; Reikard, Robertson, & Bidlot, 

2015). When the technology is fully commercialised, inaccurate wave power forecasts are 

likely to lead to penalties for wave generators that reflect over- or under-production, and 

therefore increase the cost of the spinning reserve that is needed when wave energy 

production is integrated into the power system. To ensure a reliable operation of the grid, 

system operators are interested in probabilistic forecasts, such as probability density forecasts, 

as these deliver a fuller description of the future energy.  

Ocean waves are generated mainly by the wind blowing over the sea surface, which 

propagates its energy horizontally on the surface. The rate of transfer of the energy is called 

the wave energy flux, and is a nonlinear function of the wave height and period. The 

nonlinear dependence of the wave energy flux on meteorological and ocean variables makes 

it challenging to forecast, even for lead times of just a few hours. As no data on the power 

output from wave farms have been available, researchers have focused largely on the wave 

energy flux, which is the energy that theoretically could be obtained. In this paper, we follow 

the literature by taking the wave energy flux as our main focus. However, as the electricity 
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obtained from wave power devices in practice can differ from the wave energy flux 

considerably, we also consider the prediction of wave power data, which we generate from 

wave height and wave period observations using a theoretical conversion matrix. 

In general, studies of wave energy forecasting have involved the modelling of the 

wave height and period using statistical and physics-based approaches. The statistical models 

used for this include time-varying parameter regressions (see Reikard, 2009, 2013), 

unconditional kernel density estimation (see Ferreira & Guedes-Soares, 2002), neural 

networks (see for example Zamani, Solomatine, Azimian, & Heemink, 2008), and 

autoregressive models (see for example Soares & Ferreira, 1996; Soares & Cunha, 2000; 

Fusco & Ringwood, 2010). Physics-based models are used by Hasselmann, Sell, Ross, and 

Müller (1976), Hasselmann, Dunckel, and Ewing (1980), Hasselmann, Hasselmann, Allender, 

and Barnett (1985) and Janssen (1991, 2007). Combined models using both time series and 

physics approaches are used by Roulston, Ellepola, von Hardenberg, and Smith (2005), 

Woodcock and Engel (2005), Woodcock and Greenslade (2006), Durrant, Woodcock, and 

Greenslade (2008), Reikard, Pinson, and Bidlot (2011) and Pinson et al. (2012).  

In terms of probabilistic forecasting for wave energy, we are aware of only one 

published paper. Pinson et al. (2012) model wave energy flux under the assumption that the 

density is log-normal. Using a time-varying recursive regression, they model the errors from 

atmospheric model forecasts of the wave height and wave period up to 48 hours ahead. 

In this paper, we provide an empirical comparison of statistical approaches to the 

production of density forecasts of the wave energy flux. We consider a regression-based 

method, conditional kernel density estimation, and ARMA-GARCH models. Our study is the 

first that we are aware of to use ARMA-GARCH models in the context of wave energy 

forecasting. As statistical models have been found to be more useful than atmospheric models 

for shorter lead times (Reikard & Rogers, 2011; Reikard, 2013), we consider lead times of 1 

to 24 hours.  
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Section 2 describes our data. Section 3 presents the forecasting methods that we then 

consider in our empirical analysis of the wave energy flux in Section 4. In Section 5, we 

present empirical results for wave power. Section 6 summarises and provides concluding 

comments. 

 

2. The data for wave energy forecasting 

The wave energy flux is the average horizontal transport momentum of a wave, per 

unit of wave-crest length. It is a function of the wave height and wave period:  

𝐸𝑡 ⋍ (𝜌𝑔2 64𝜋⁄ )𝐻𝑡
2𝑃𝑡,                 (1) 

where 𝐸𝑡 is the wave energy flux, which is expressed in kilowatts per metre of wave-crest 

length; 𝐻𝑡 is the significant wave height, which is defined as the average height of the highest 

third of the waves, where the height is measured in metres from trough to crest; 𝑃𝑡 is the 

mean wave period in seconds, which is the average of the time taken for two successive wave 

crests to pass a given point; 𝑔 is the acceleration due to gravity; and 𝜌 is the ocean water 

density, which is approximately 1025 kg/m
3
 at the sea surface. 

We used data recorded at the FINO1 research platform, which is located in the North 

Sea approximately 45km north of Borkum, Germany. FINO1 was brought into service to 

facilitate research into offshore wind energy by providing meteorological and oceanographic 

data. Raw wind speed data (m/s) are measured at FINO1 every second, then averaged every 

10 minutes. Raw wave height and wave period data are measured every half-second from a 

buoy, which follows the movement of the sea surface and is located 200 metres away from 

FINO1. The significant wave height and peak wave period, which is defined as the wave 

period at which the highest energy occurs among the individual wave periods, are derived 

every 30 minutes following the definitions below Eq. (1). As no mean wave period data were 

available, we used peak wave period observations instead. In our study, the wind speed, 

                                                           
1
 http://www.fino1.de/. 
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significant wave height and peak wave period data were averaged to give hourly observations. 

We used hourly values of the significant wave height and peak wave period to obtain hourly 

values of the wave energy flux, based on Eq. (1).  

To avoid long periods of missing observations, two periods were chosen: (a) 1 June 

2011 to 30 June 2012, inclusive, and (b) 1 September 2012 to 31 October 2013, inclusive. We 

name these periods FINO1a and FINO1b, respectively. For each period, the last two months 

are used for post-sample evaluation, and the earlier observations are used for model fitting. 

We evaluated forecasts produced using each period of the evaluation sample as the forecast 

origin in turn.  

FINO1a has one observation for wave height and wave period missing from the 

estimation sample, and none from the evaluation sample. FINO1b is missing seven separate 

observations for the wave height and wave period from the estimation sample, and one from 

the evaluation sample. For these periods with missing observations, we generated values 

using linear interpolation, and did not evaluate the forecast accuracy for these periods when 

they occurred in the evaluation sample. We used wind speed observations from a height of 

33m, which was the lowest height available. Around 3.5% of the measurements at this height 

were missing. Any missing wind speed observations were replaced with the measurements 

from heights of 50m, 60m or 70m after level adjustment, which uses linear scaling to 

minimise the bias introduced by the different dynamics of the wind speed at different heights.  

Fig. 1 shows the time series of wind speed, wave height, wave period, and wave 

energy flux for FINO1b. All four series are highly volatile, bounded below by zero, and 

skewed to the right. This is shown in the first column of histograms in Fig. 2. The other 

histograms in Fig. 2 relate to transformations of the series, which we discuss further in 

Section 3.3.1. It is interesting to see from Fig. 1 that the variation in wave height appears to 

be related to the variation in the wind speed. The correlation between these two series is 0.74. 

The wave energy flux seems to be related more to the wave height than to the wave period. It 
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does not appear that the wave period has any similar movement with the wind speed, and this 

is supported by the correlation between the wind speed and wave period, which is –0.04. 

 

3. Density forecasting methods for wave energy flux 

 In this section, we describe the methods that we implement in our empirical study. We 

present a regression approach, kernel density estimators, and ARMA-GARCH models. 

3.1. Regression models 

Reikard (2009) finds that the best approach to the point forecasting of wave energy 

flux, up to four hours ahead, is to use independently estimated least squares regression 

models for the wind speed, wave period and wave height, as shown in Eqs. (2) to (4).  

log 𝑆𝑡 = 𝜃0𝑡 + 𝜃1𝑡 log 𝑆𝑡−1 + 𝜃2𝑡 log 𝑆𝑡−2 + 𝜃3𝑡 log 𝑆𝑡−3 + 𝜃24𝑡 log 𝑆𝑡−24 + 𝜖𝑡  (2) 

log 𝑃𝑡 = 𝜈0𝑡 + 𝜈1𝑡 log 𝑃𝑡−1 + 𝜈2𝑡 log 𝑃𝑡−2 + 𝜈3𝑡 log 𝑃𝑡−3 +  𝜈4𝑡 log 𝑃𝑡−4 + 𝜖𝑡  (3) 

log 𝐻𝑡
2 = 𝛿0𝑡 + 𝛿1𝑡 log 𝐻𝑡−1

2 + 𝛿2𝑡 log 𝐻𝑡−2
2 + 𝛿3𝑡 log 𝐻𝑡−3

2  
+ 𝛿4𝑡 log 𝐻𝑡−4

2 + 𝛿5𝑡 log 𝑃𝑡 + 𝛿6𝑡 log 𝑆𝑡 + 𝜖𝑡 .  (4) 

𝑃𝑡 and 𝐻𝑡 were defined in Section 2, and 𝑆𝑡 denotes the wind speed at time t. 𝜃𝑖𝑡, 𝜈𝑖𝑡 and 𝛿𝑖𝑡 

are parameters that are estimated separately for each expression and for each forecast origin 

using ordinary least squares. 𝜖𝑡  is assumed to be Gaussian white noise, implying that the 

energy flux 𝐸𝑡 in Eq. (1) follows a conditional log-normal distribution, as was also assumed 

by Pinson et al. (2012). The resulting forecasts of the wave period and wave height are then 

plugged into Eq. (1) to deliver a wave energy flux forecast.  

 

3.2. Kernel density estimation  

Kernel density estimation is a nonparametric approach, which has the appeal of 

avoiding the need for a distributional assumption. We have used both unconditional and 

conditional kernel density estimation in our modelling. In both approaches, the kernel 

bandwidth parameters were chosen by minimising the mean continuous ranked probability 

score (CRPS) calculated for the in-sample period. The CRPS, which is described by Gneiting, 
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Balabdaoui, and Raftery (2007), assesses the calibration and sharpness properties of density 

forecasts. They explain that calibration measures the statistical consistency between the 

predicted density and the observed value, while sharpness refers to the concentration of the 

density forecast, which is a property of the density forecast alone. In contrast to the other 

methods that we consider, we applied the kernel density estimation methods to untransformed 

data. 

 

3.2.1. Unconditional kernel density estimation (UKDE) 

As a relatively simple benchmark method, we used kernel density estimation. The 

unconditional kernel density estimator of wave energy flux (E-UKDE) is defined as:  

𝑓(𝑒) = ∑ 𝐾ℎ𝑒
(𝐸𝑡 − 𝑒)𝑛

𝑡=𝑛−𝑘+1 𝑘⁄  , 

where 𝑒 is a value of the wave energy flux for which a density is to be estimated; 𝑛 is the 

forecast origin; 𝑘 is the length of the sliding window used for the estimation; and 𝐾 is a 

Gaussian kernel function, with bandwidth ℎ𝑒, which dictates the smoothness of the estimated 

density. Having observed that relatively small sliding windows perform better for short-term 

forecasting of the wave energy flux, we considered two versions of the E-UKDE approach 

using sliding window lengths 𝑘 of (a) four hours and (b) 24 hours. 

 

3.2.2. Conditional kernel density estimation (CKDE) 

Given that wind passing over the sea surface generates wave energy, we also 

considered the kernel density estimation of the wave energy flux conditional on wind speed. 

We implemented the two-step conditional kernel density estimation approach of Jeon and 

Taylor (2012), which allows for a stochastic conditioning variable. As Fig. 3(a) shows, for 

our data, the wave energy flux was correlated most highly with the third lag of wind speed, 

and so we conditioned on this lag. Miller (1958) and Rieder (1997) found the time lag 

between an increase in the wind speed and the rise in wave height to vary between several 
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hours and twenty hours, depending on the location and the persistence of wind speed and 

direction. Using an exponential decay parameter  (0 <   ≤ 1) and an additional kernel for 

wind speed with bandwidth ℎ𝑠, the density estimate of the wave energy flux, conditional on 

the wind speed (E-CKDE), is given as: 

𝑓(𝑒|𝑠) =
∑ 𝜏𝑛−𝑡𝐾ℎ𝑠

(𝑆𝑡−3 − 𝑠)𝐾ℎ𝑒
(𝐸𝑡 − 𝑒)𝑛

𝑡=1

∑ 𝜏𝑛−𝑡𝐾ℎ𝑠
(𝑆𝑡−3 − 𝑠)𝑛

𝑡=1

. 

This estimator can be viewed as a weighted average of the kernels 𝐾ℎ𝑒
(𝐸𝑡 − 𝑒), where the 

weights are larger for more recent data and for observations for which the wind speed at time 

t was closer to the conditioning wind speed 𝑠. The approach requires density forecasts of the 

wind speed. We generated these using a univariate ARMA-GARCH model, of the type 

discussed in Section 3.3.2, with no exogenous variable, fitted to the wind speed series.  

 

3.3. Univariate and multivariate ARMA-GARCH models 

3.3.1. Data transformation 

Fig. 2 and Table 1 show that positive skewness is a feature of the unconditional 

distributions of the wind speed, wave height and wave period, and especially the wave energy 

flux. In Table 1, the kurtosis values for the wave height, wave period and wave energy flux 

indicate fat tails relative to a Gaussian distribution. For time series models, transformations 

are often used prior to model fitting. We considered the log, square root and Box-Cox 

transformations. 

Previous studies of wave energy forecasting have involved the use of log 

transformations for the wave energy flux, wave height, wave period and wind speed. We 

were able to apply log transformations to our time series because none of them contained 

zero values. Table 1 and Fig. 2 show that the wave height, wave period and wave energy flux 

are each closer to being Gaussian when the log transformation is applied. 
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Taylor, McSharry, and Buizza (2009) found the square root transformation to be 

useful for modelling hourly wind speed data. This transformation has the benefit that it can be 

used for data with zero values. Table 1 and Fig. 2 show that the square root transformation is 

more useful than the log transformation for the wind speed, but clearly not for the wave 

period and energy flux. For the wave height, the square root transformation is slightly better 

for kurtosis, but not for skewness. 

A third transformation that we considered is the single-parameter form of the Box-

Cox transformation (Box & Cox, 1964), which is written as: 

𝐵𝐶(𝑦, 𝜆) = (𝑦𝜆 − 1) 𝜆  ⁄ (if  𝜆 ≠ 0, 𝑦 > 0)    (5) 

                = log(𝑦)            (if  𝜆 = 0, 𝑦 > 0).     (6) 

This transformation has been used for modelling the wave height and period (see for 

example Galiatsatou & Prinos, 2007; Ferreira & Soares, 2002). The 𝜆  parameter can be 

optimised using maximum likelihood. Table 1 shows that the optimised value of 𝜆 was close 

to zero for the wave height, wave period and wave energy flux, implying that the 

transformation is very similar to the log transformation. 

In summary, the log transformation seems to be suitable for the wave height, wave 

period and wave energy flux, and is also reasonable for the wind speed. In Section 4, we 

present post-sample forecasting results comparing the four different transformations.  

 

3.3.2. Univariate ARMA-GARCH  

ARMA-GARCH models are used widely for capturing autocorrelation in the 

conditional mean and variance. In this paper, we model the wave energy flux using the 

ARMA(r,m)-GARCH(p,q) model with exogenous variables, presented in Eqs. (7)–(9):  

𝑦𝑡 = 𝑠(𝝁, 𝑡) + ∑ 𝜑𝑖𝑌𝑡−𝑖
𝑟
𝑖=1 + ∑ 𝜓𝑗𝜀𝑡−𝑗

𝑚
𝑗=1 ,      (7) 

𝜎𝑡
2 = 𝑠(𝝎, 𝑡) + ∑ 𝛼𝑖𝜎𝑡−𝑖

2𝑝
𝑖=1 + ∑ 𝛽𝑗𝜀𝑡−𝑗

2𝑞
𝑗=1 ,      (8) 

𝜀𝑡 = 𝜎𝑡𝜂𝑡,          (9) 
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where yt is an observation of the wave energy flux at time t; 𝜀𝑡 is an error term; 𝜂𝑡 is white 

noise; 𝜎𝑡  is the conditional standard deviation (volatility); 𝜑𝑖 , 𝜓𝑖 , 𝛼𝑖  and 𝛽𝑖  are the 

coefficients of the AR, MA, GARCH and ARCH components, with orders are defined by the 

non-negative integer valued constants r, m, p and q, respectively; 𝝁 and 𝝎 are vectors of 

parameters; and 𝑠(𝝁, 𝑡) and 𝑠(𝝎, 𝑡) are functions of exogenous variables that affect the mean 

and the volatility, respectively. We imposed restrictions on 𝛼𝑖 and 𝛽𝑖 to ensure the positivity 

of 𝜎𝑡
2. For 𝜂𝑡 , we considered Gaussian, Student t, and skewed t distributions, which have 

been considered frequently in the GARCH modelling of daily financial returns data, since 

Table 1 shows that some of the variables have a degree of skewness and a high kurtosis.  

Given that wave energy flux is a function of the wave height and wave period, it will 

naturally have an annual seasonality (see for example Jardine & Latham, 1981; Soares & 

Cunha, 2000). However, since our time series are not long enough to capture this, the only 

cyclicality that we model is the diurnal cycle. We allow for this in the level and volatility 

using Eqs. (10) and (11), respectively: 

𝑠(𝝁, 𝑡) = 𝜇0 + ∑ [𝜇𝑖,1 sin (2𝑖𝜋
ℎ(𝑡)

24
) + 𝜇𝑖,2 cos (2𝑖𝜋

ℎ(𝑡)

24
)]

𝑁𝜇

𝑖=1
,  (10) 

𝑠(𝝎, 𝑡) = 𝜔0 + ∑ [𝜔𝑖,1 sin (2𝑖𝜋
ℎ(𝑡)

24
) + 𝜔𝑖,2 cos (2𝑖𝜋

ℎ(𝑡)

24
)]

𝑁𝜔
𝑖=1 ,  (11) 

where ℎ(𝑡) is the hour of the day; and 𝑁𝜇 and 𝑁𝜔 are positive integers. To emphasise our use 

of the wave energy flux as the target variable yt, we denoted the model as E-ARMA-GARCH. 

We also built a wave energy flux model with only AR components, namely E-AR, to test the 

usefulness of the MA and GARCH terms. We used AR lags of one to four in this simple 

model. 

 

3.3.3. ARFIMA-FIGARCH 

When a time series shows a slowly decaying persistence in the autocorrelation, this 

pattern is referred to as ‘long memory’ dependence, and can be modelled using a fractional 

integrated model. Reikard (2009) observed that wave energy flux is characterised by long 
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memory, and this pattern appears more clearly in deep water locations than at coastal sites. 

Fig. 3(b) indicates that our wave energy flux data possess long memory, because they show a 

significant autocorrelation at long lags. This prompted us to consider a fractionally integrated 

model. 

Long memory in the level of a series can be modelled using the autoregressive 

fractionally integrated moving average (ARFIMA) model proposed by Granger and Joyeux 

(1980) and Hosking (1981). Long memory in the volatility can be captured via the 

fractionally integrated generalized autoregressive conditionally heteroscedastic (FIGARCH) 

model of Baillie et al. (1996). Before presenting the ARFIMA-FIGARCH, we rewrite the 

ARMA-GARCH model of Eqs. (7) and (8) as follows: 

𝜑(𝐿)𝑦𝑡 = 𝑠(𝝁, 𝑡) + 𝜓(𝐿)𝜀𝑡,        (12) 

𝛼(𝐿)𝜎𝑡
2 = 𝑠(𝝎, 𝑡) + 𝛽(𝐿)𝜀𝑡

2,        (13) 

where 𝜑(𝐿), 𝜓(𝐿), 𝛼(𝐿) and 𝛽(𝐿) are polynomial functions of the lag operator L. Using the 

fractional differencing parameter d, the ARFIMA and FIGARCH processes are defined in 

Eqs. (14) and (15), respectively: 

𝜑(𝐿)(1 − 𝐿)𝑑1𝑦𝑡 = 𝑠(𝝁, 𝑡) + 𝜓(𝐿)𝜀𝑡,      (14) 

𝛼(𝐿)𝜎𝑡
2 = 𝑠(𝝎, 𝑡) + [1 − 𝛼(𝐿) − 𝜁(𝐿)(1 − 𝐿)𝑑2]𝜀𝑡

2,    (15) 

(1 − 𝐿)𝑑 = ∑
Γ(d+1)

Γ(i+1)Γ(d−i+1)
(−1)𝑖𝐿𝑖∞

𝑖=0
,      (16) 

where 𝜁(𝐿) is a polynomial function of L, Γ(∙) is the gamma function, and d1 and d2 are the 

fractional differencing parameters, which determine the degrees of long memory dependence 

in the level and volatility processes, respectively. If di = 0, the process follows short memory 

dependence. The time series has long memory dependence if 0 < di < 0.5, and moderate long 

memory dependence if –0.5 < di < 0. When di = 1, the ARFIMA process is non-stationary. 

 

3.3.4. VARMA-MGARCH 
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Soares and Cunha (2000) observed a correlation between the wave height and wave 

period, and fitted a bivariate vector autoregressive model in order to preserve the covariance 

structure. In this paper, we model the wave height and wave period jointly, then convert the 

resulting forecasts into predictions of the wave energy flux using Eq. (1). (We consider the 

conversion of wave height and wave period forecasts to wave power forecasts in Section 5.) 

We were also curious to investigate a joint model involving the wave energy flux 

variable. It makes no sense to include either the wave height or wave period in such a model 

here, because this paper uses these two variables to construct the wave energy flux series 

itself. Instead, we implemented a joint model for the wave energy flux and wind speed.  

We therefore implemented a bivariate model for two pairs of variables: (a) wave 

energy flux and wind speed, and (b) wave height and wave period. The benefit of modelling 

the wave height and wave period is that their forecasts can conveniently be plugged into Eq. 

(1) for conversion to wave energy flux, or converted to wave power as described in Section 5. 

For modelling the dynamics of the conditional variance and covariance of the pairs of 

variables, we applied vector ARMA models with multivariate GARCH terms (VARMA-

MGARCH). Although Cripps and Dunsmuir (2003) and Jeon and Taylor (2012) used similar 

models to model the wind velocity, we are not aware of any previous application of ARMA-

GARCH models to the context of wave energy. 

We used the VEC-type VARMA-MGARCH model of Bollerslev, Engle, and 

Wooldridge (1988) with diurnal cyclical terms, as given by:  

𝒚𝑡 = 𝑠(𝝁, 𝑡) + ∑ 𝑹𝑖𝒚𝑡−𝑖
𝑟
𝑖=1 + ∑ 𝑴𝑗𝜺𝑡−𝑗

𝑚
𝑗=1 ,       (17) 

𝑣𝑒𝑐ℎ(𝑽𝑡) = 𝑠(𝝎, 𝑡) + ∑ 𝑷𝑖𝑣𝑒𝑐ℎ(𝑽𝑡−𝑖)
𝑝
𝑖=1 + ∑ 𝑸𝑗𝑣𝑒𝑐ℎ(𝜺𝑡−𝑗𝜺𝑡−𝑗

′ )𝑞
𝑗=1 ,   (18) 

𝜺𝑡 = 𝜼𝑡,           (19) 

where 𝒚𝑡 is a vector of either (1) wave height and wave period or (2) wave energy flux and 

wind speed; 𝜺𝑡 is a vector of error terms; 𝑽𝑡 is the conditional covariance matrix of 𝜺𝑡; 𝜼𝑡 is a 

vector of white noise, for which our empirical study considers the multivariate Gaussian, 
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Student t and skewed t distributions; 𝑣𝑒𝑐ℎ(∙) denotes the column stacking operator of the 

lower triangular part of its argument symmetric matrix; 𝑹𝑖 and 𝑴𝑖  are (2 × 2) matrices of 

parameters; 𝑷𝑖 and 𝑸𝑖 are (3 × 3) matrices of parameters; and r, m, p and q are the orders of 

𝑹𝑖, 𝑴𝑖, 𝑷𝑖 and 𝑸𝑖 respectively, as selected by the SBC. Of the various forms of multivariate 

skewed t distributions, we used the definition of Azzalini and Genton (2008). In our empirical 

study, we imposed restrictions on 𝑷𝑖 and 𝑸𝑖 using the sufficient condition for the positivity of 

𝑽𝑡  proposed by Gourieroux (1997). We also implemented the Baba-Engle-Kraft-Kroner 

VARMA-MGARCH model (see Engle & Kroner, 1995), but we do not discuss it further as it 

did not lead to improved post-sample forecasting results.  

In addition to the standard VEC approach, which we refer to as MGARCH, we also 

implemented the approach with 𝑷𝑖 and 𝑸𝑖 restricted to be diagonal matrices. We refer to this 

as MGARCH-DG, and used it to model the wave height and wave period (H-P-MGARCH-

DG), and the wave energy flux and wind speed (E-S-MGARCH-DG). The diagonal matrices 

ensure that 𝑽𝑡 is positive definite for all t (Bollerslev et al., 1988), though this is may be 

overly restrictive, as it does not allow any interactions between the conditional variances and 

covariances. For the joint model of wave energy flux and wind speed, we restricted 𝑷𝑖 and 𝑸𝑖 

to be upper triangular in order to avoid having the wind speed modelled in terms of the wave 

energy flux or its lags. We refer to this as E-S-MGARCH-UP.  

As a relatively simple VAR benchmark model, we constructed a model of the wave 

energy flux and wind speed with lags of one to four, assuming a constant variance. We refer 

to this as E-S-VAR. Similarly, H-P-VAR is the same model fitted to the wave height and 

wave period.  

 

3.3.5. Orders of the various (V)ARMA-(M)GARCH models 

For the (V)ARMA-(M)GARCH models, we used the SBC to select both the orders 

and the terms (values of i) to use in the summations of Eqs. (10) and (11), which capture the 
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diurnality. Table 2 summarises the resulting orders and values for models with Gaussian 

noise terms fitted to the in-sample FINO1b data. In what follows, we consider only the 

Gaussian models, because the post-sample results for models fitted with the Student t and 

skewed t distributions were no better.  

Table 3 presents the 𝑑1 and 𝑑2 parameters estimated for the ARFIMA-GARCH and 

ARFIMA-FIGARCH models applied to the log transformation of wave energy flux for the 

two in-sample periods. As was explained in Section 3.3.3, a parameter between –0.5 and 0.5 

indicates the existence of long memory. The level parameter 𝑑1  indicates that the level 

process does not have long memory, while the volatility parameter 𝑑2 indicates that there are 

long memory effects when the models are fitted to FINO1a, but not when they are fitted to 

FINO1b. 

 

4. Empirical post-sample results for wave energy flux 

As was explained in Section 2, we produced 1- to 24-hour-ahead post-sample density 

forecasts of the wave energy flux for the final two months of the FINO1a and FINO1b 

periods, using each period of the evaluation sample as the forecast origin in turn. For the 

VARMA-MGARCH models, we felt that it was not practical to re-optimise the parameters 

repeatedly for a sliding window of observations; thus, we estimated the parameters only once 

for each period (FINO1a and FINO1b). For the sake of consistency, we followed the same 

approach with the other methods, although we acknowledge that the rankings of the methods 

might change if the parameters were re-optimised. In Sections 4.1 and 4.2, we use the mean 

of the CRPS to evaluate the density forecasting accuracy, which is the main focus of this 

paper. In Section 4.3, we consider point forecasting. As statistical methods have been shown 

to be more competitive with atmospheric models for shorter forecast horizons, our analysis 

provides more detail for the earlier horizons.  
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4.1. Evaluation of the transformations for use with ARMA-GARCH 

Table 4 presents post-sample CRPS density forecasting results, averaged over the 

FINO1a and FINO1b periods, for the univariate ARMA-GARCH models in Section 3.3.2 

fitted to wave energy flux using the transformations described in Section 3.3.1. The table 

indicates that any one of the transformations was preferable to using none. The square root 

was not as useful as the log and Box-Cox transformations, which is consistent with the results 

for wave energy flux in Table 1. The log and Box-Cox transformations delivered similar 

results, and therefore, as the log transformation is simpler, the rest of the paper reports results 

for the (V)ARMA-(M)GARCH models applied to variables that were logged prior to model 

fitting.  

 

4.2. Density forecasting results for wave energy flux 

Table 5 compares the accuracies of the density forecasts from the ARMA-GARCH, 

ARFIMA-GARCH and ARFIMA-FIGARCH models applied to log transformed wave energy 

flux data. The table shows that the models with fractional integration were outperformed 

slightly by the ARMA-GARCH model. It is likely that the forecast lead times that we 

consider are not long enough for models with fractional integration to be of benefit. In view 

of this, the rest of the paper does not report results for the fractionally integrated models. 

Table 6 and Fig. 4 compare the density forecast accuracies of the regression-based 

approach, the KDE methods, and the ARMA-GARCH models. Table 6 shows that the 

regression method produced density forecasts that were less accurate than those from any of 

the ARMA-GARCH models beyond four hours ahead. Both the UKDE and CKDE methods 

performed poorly, particularly for the shorter lead times. The CKDE approach allows 

exponential weighting, but the weight decay is limited, as the optimal values of the 

exponential decay factor 𝜏 were 0.998 and 1.000 for FINO1a and FINO1b, respectively. We 

experimented with weight decay in the UKDE, but the optimised decay parameter was close 
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to zero, implying very a large weight on the most recent period. This had little appeal, so we 

did not consider the method further. 

The (V)ARMA-(M)GARCH models used three different combinations of data, 

namely wave energy flux (E) alone, wave energy flux and wind speed (E-S), and wave height 

and wave period (H-P). Table 6 shows no great differences between the results of the various 

methods, though the H-P models performed slightly better than the others. For both the E-S 

and H-P combinations of data, the MGARCH-DG model, which is a diagonal form of the 

multivariate GARCH, delivered slight improvements over the standard MGARCH. This is a 

useful result, because this simplified model has fewer parameters, and therefore is easier to 

estimate. 

To evaluate the density forecasts further, histograms of the probability integral 

transform (PIT) (see Gneiting et al., 2007) for FINO1b are provided in Fig. 5. For lead times 

of 1, 4, 12 and 24 hours ahead, the graphs show results for the following four methods: the 

regression-based method, E-UKDE (4-hour), E-CKDE, and H-P-VARMA-MGARCH-DG. 

The ideal shape of a PIT histogram is a uniform distribution. For the regression-based method, 

E-UKDE (4-hour) and E-CKDE, the PIT histograms are far from uniform. As the lead time 

increases, the peaks in the tails become larger, indicating that the density forecasts are overly 

wide. The PIT histograms for H-P-VARMA-MGARCH-DG are closer to uniform. 

 

4.3. Point forecasting results for wave energy flux 

Although our primary concern is density forecasting, the evaluation of point forecasts 

is also of interest. Table 7 and Fig. 6 present the root mean squared error (RMSE) results, 

averaged over the FINO1a and FINO1b periods, for point forecasts produced by the different 

methods. The table shows that H-P-VARMA-MGARCH-DG produced the best results 

overall. Indeed, this method was not outperformed by any of the methods at any lead time. 

The regression method also performed very well. These findings show that modelling the 
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wave height and wave period, albeit separately, led to better results than modelling the wave 

energy flux directly.  

For the longer lead times, the regression method and CKDE were much more 

competitive in terms of point forecasting than they were for density forecasting in Table 6. 

The UKDE methods did not perform well in terms of point forecasting. 

With regard to the relative performances of the (V)ARMA-(M)GARCH models in 

Table 7, we can make a number of points. Firstly, the bivariate (E-S) models for wave energy 

flux and wind speed seem to offer very little benefit over the univariate (E) models for wave 

energy flux. Secondly, overall, all of the bivariate (H-P) models for wave height and wave 

period are more accurate than either the univariate (E) models for wave energy flux or the 

bivariate (E-S) models for wave energy flux and wind speed. Thirdly, with regard to the (H-P) 

models for wave height and wave period, there does seem to be benefit, up to about 8 hours 

ahead, from the increased complexity of the VARMA-MGARCH-DG model relative to the 

much simpler H-P-VAR model, and the diagonal (DG) version of the VARMA-MGARCH 

model does seem preferable to the more highly parameterised VARMA-MGARCH model.  

 

5. Empirical post-sample results for wave power 

We generated wave power density and point forecasts by converting the wave height 

and wave period into wave power using a conversion matrix for the Pelamis P2 device (see 

Henderson, 2006; Retzler, 2006; Yemm, Pizer, Retzler, & Henderson, 2012), which is an 

established wave power technology. The matrix is presented and used by Reikard (2013, Fig. 

1). The Pelamis P2 wave energy converter consists of multiple semi-submerged cylindrical 

sections. As waves pass along the length of the device, the differences in buoyancy make the 

joints of the cylinders bend; this induces hydraulic cylinders to pump high pressure oil 

through hydraulic motors, which drives electrical generators to produce electricity.  
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Since our wave period data include values of up to 20 seconds, which is higher than 

the upper limit of the conversion matrix, we extrapolated the conversion matrix using the 

inpaint_nan function of D’Errico (2012), which is based on sparse linear algebra and PDE 

discretizations, to give the conversion function in Fig. 7. It is notable in this figure that the 

wave power from the Pelamis P2 device has an upper bound, and that, regardless of the value 

of the wave height, the wave power is highest when the wave period is approximately 7.5 

seconds, which is consistent with the finding of Retzler (2006, Fig. 4) that the power capture 

of the device is highest when the frequency is around 0.13 Hz. The shape of the nonlinear 

conversion function means that the resulting wave power time series for the FINO1b data 

series in Fig. 8 exhibits spikes that are less extreme than those of the wave energy flux series 

in Fig 1.  

Fig. 9 shows that none of the transformations applied here are able to change the 

strong skewness in the wave power. Consequently, there was no appeal to modelling the 

wave power directly using a univariate ARMA-GARCH model, or using this variable along 

with another in a bivariate VARMA-MGARCH model.  

In terms of modeling the wave power directly, we applied the kernel density 

estimation methods of Section 3.2 to the wave power. In addition, we also generated wave 

power density forecasts by using the function in Fig. 7 to convert the wave height and wave 

period density forecasts produced by (a) the regression method of Section 3.1, and (b) the 

bivariate VARMA-MGARCH models of wave height and wave period, discussed in Section 

3.3.4.  

Figs. 10 and 11 present the CRPS and RMSEs for the wave power density and point 

forecasts, respectively, for a selection of the methods. Both figures show the KDE approaches 

to perform relatively poorly. In contrast, the results of the CKDE approach are competitive, 

and comparable with the regression approach. Overall, the best CRPS results are those from 

the H-P-VARMA-MGARCH-DG method, although the regression method is equally 
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accurate for lead times of less than about eight hours. Fig. 11 shows that the point forecasting 

results for these two methods and the CKDE method were similar. 

 

6. Summary 

In this paper, we evaluated density forecasts of wave energy flux and wave power 

produced by a regression method, UKDE methods, a CKDE approach, and univariate and 

multivariate ARMA-GARCH models. Our results showed the following: 

(i) Although the regression method performed well in terms of point forecasting for the 

longer lead times, the most accurate point and density forecasts overall were produced by the 

ARMA-GARCH models. We found that the GARCH component was useful only for lead 

times of up to about eight hours ahead. Our results do not support the use of a Student t or 

skewed t distribution instead of a Gaussian distribution. 

(ii) Bivariate ARMA-GARCH modelling of the log transformed wave height and wave 

period produced the best results for both wave energy flux in Section 4 and wave power in 

Section 5. For energy flux, it was interesting that this was preferable to forecasting the energy 

flux directly.   

(iii) Despite evidence of long memory in the wave data, we could not find any clear evidence 

to support the use of fractionally integrated models. 

(iv) Kernel density estimation was not particularly competitive.  
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Fig. 1.  Time series of wind speed, wave height, wave period and wave energy flux from 

the FINO1b dataset. 
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Fig. 2.  Histograms of wind speed, wave height, wave period and wave energy flux, 

together with their log, square root and Box-Cox transformed distributions from the 

FINO1b dataset. 

 

 

 

 
 

Fig. 3.  (a) Correlations between wave energy flux and lags of wind speed of up to 24 

hours from FINO1b. (b) Autocorrelations in wave energy flux from the FINO1b dataset. 

The 95% significance level is indicated as a dotted line. 
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Fig. 4.  CRPS evaluated for wave energy flux forecasts and averaged over FINO1a and 

FINO1b. Lower values are better. 

 

 
Fig 5.  PIT histograms of 1-, 4-, 12- and 24-hour-ahead wave energy flux forecasts for FINO1b 

using (a) regression, (b) E-UKDE (4-hour), (c) E-CKDE and (d) H-P-VARMA-MGARCH-DG 

(Gaussian) methods.  
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Fig. 6.  For wave energy point forecasts, RMSEs averaged over FINO1a and FINO1b. 

 

 

 

 
Fig. 7.  Extended wave power conversions from wave period and wave height based on 

the conversion matrix for the Pelamis P2 device provided by Reikard (2013) and sparse 

linear algebra and PDE discretizations by D'Errico (2012). 

 

 

 

 

 
Fig. 8.  Time series of wave power from the FINO1b dataset. 
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Fig. 9.  Histograms of wave power, together with its log, square root and Box-Cox 

transformed distributions from the FINO1b dataset. 

 

 
Fig. 10.  CRPS evaluated for wave power forecasts and averaged over FINO1a and 

FINO1b. Lower values are better. 

 

 

 
Fig. 11.  RMSEs evaluated for wave power forecasts and averaged over FINO1a and 

FINO1b. 
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Table 1.  Skewness and kurtosis for the wind speed, wave height, wave period and wave 

energy flux, together with the log, square root and Box-Cox transformations of each 

variable.  

 

  Original Log Square root Box-Cox 

Wind speed 
    

    skewness 0.48 –0.85 –0.11 –0.05 (λ = 0.54) 

    kurtosis 2.94 3.89 2.58 2.56 (λ = 0.54) 

Wave height 
    

    skewness 1.07 –0.32 0.35 –0.02 (λ = 0.22) 

    kurtosis 4.76 2.65 2.79 2.52 (λ = 0.22) 

Wave period 
    

    skewness 1.27 0.15 0.70 0.00 (λ = –0.14) 

    kurtosis 5.51 3.32 3.95 3.30 (λ = –0.14) 

Wave energy flux 
    

    skewness 5.11 –0.25 1.52 –0.01 (λ = 0.07) 

    kurtosis 49.46 2.79 7.16 2.68 (λ = 0.07) 

Notes: The statistics are calculated for the in-sample period of FINO1b. In each row, the 

value that is closest to Gaussian (skewness = 0, kurtosis = 3) is in bold. 

 
 

 

 

 

Table 2.  Lags, and terms in the diurnal Eqs. (10) and (11), selected by the SBC for 

(V)ARMA-(M)GARCH models fitted to the in-sample period of FINO1b.  

 

Lags AR MA 
Diurnal 

in mean 
ARCH GARCH 

Diurnal in 

volatility 

Univariate models for log wave energy flux 

    E-AR  [1,2,3,4] no no no no no 

    E-ARMA-GARCH  [1,2,3,4] [1,2,24] no [1,2,24] [1,24] [2] 

    E-ARFIMA-GARCH  [1,2,3,24] no no [1,2,3] [1,24] [2,4,8] 

    E-ARFIMA-FIGARCH  [1,2] [1,2,24] no no [1] [2,4,8] 

Bivariate models for log wave energy flux and log wind speed 

    E-S-VAR [1,2,3,4] no no no no no 

    E-S-VARMA-MGARCH  [1,2,3,4] no [2,4,8] [1,2,3,24] [1] [2,4,6] 

    E-S-VARMA-MGARCH-UP  [1,2,3,24] [1,2] no [1] [1] [2] 

    E-S-VARMA-MGARCH-DG [1,2,3,4] [1,2] [2,4] [1,24] [1] no 

Bivariate models for log wave height and log wave period 

    H-P-VAR  [1,2,3,4] no no no no no 

    H-P-VARMA-MGARCH  [1] [1,2,3,4,5,6] [2,4,6] [1] [1] no 

    H-P-VARMA-MGARCH-DG  [1,2,3,4] [1,2,24] [2,4,6] [1,2] [1,2,3] [2] 
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Table 3.  Coefficients of the fractional integration models fitted to the log-transformed 

wave energy flux for the in-sample periods of FINO1a and FINO1b. 

 

  ARFIMA 𝑑1 FIGARCH 𝑑2 

FINO1a 
  

    E-ARFIMA-GARCH 0.62 
 

    E-ARFIMA-FIGARCH 0.62 0.17 

FINO1b 
  

    E-ARFIMA-GARCH 0.92 
 

    E-ARFIMA-FIGARCH 0.92 0.58 

 

 

 

 

 

Table 4.  Evaluation of transformation methods in terms of the post-sample wave 

energy flux density forecast accuracy using CRPS (in kW/m), averaged over FINO1a 

and FINO1b.  

 

Lead time (hours): 1 2 3–4 5–6 7–8 9–12 
13–

18 

19–

24 
1–24 

ARMA-GARCH type with Gaussian for wave energy flux   

No transformation 0.9 1.4 2.1 2.8 3.4 4.1 5.1 5.8 4.2 

Log transformation 0.9 1.3 1.9 2.5 3.1 3.6 4.4 5.1 3.7 

Square root transformation 0.9 1.3 1.9 2.6 3.2 3.8 4.8 5.7 4.0 

Box-Cox transformation 0.9 1.3 1.9 2.5 3.1 3.6 4.4 5.1 3.7 

NOTE:  Smaller values are better. The best performing method at each horizon is in bold. 

 

 

 

 

 

Table 5.  Evaluation of the fractional integration models in terms of the post-sample 

wave energy flux density forecast accuracy using CRPS (in kW/m), averaged over 

FINO1a and FINO1b.  

 

Lead time (hours): 1 2 3–4 5–6 7–8 9–12 
13–

18 

19–

24 
1–24 

Univariate models for log wave energy flux   

E-ARMA-GARCH 0.9 1.3 1.9 2.5 3.1 3.6 4.4 5.1 3.7 

E-ARFIMA-GARCH 0.9 1.3 1.9 2.6 3.1 3.7 4.5 5.3 3.8 

E-ARFIMA-FIGARCH 0.9 1.3 1.9 2.6 3.2 3.8 4.6 5.4 3.9 

NOTE:  Smaller values are better. The best performing method at each horizon is in bold. 
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Table 6.  Evaluation of the post-sample wave energy flux density forecast accuracy 

using CRPS (in kW/m), averaged over FINO1a and FINO1b.  
 

Lead time (hours): 1 2 3–4 5–6 7–8 9–12 
13–

18 

19–

24 
1–24 

Regression 0.9 1.3 1.9 2.7 3.3 4.1 5.1 6.0 4.2 

Kernel density estimation for log wave energy flux 

E-UKDE (4-hour) 3.1 3.5 3.9 4.5 5.0 5.6 6.5 7.4 5.8 

E-UKDE (24-hour) 5.9 6.0 6.2 6.3 6.5 6.7 7.0 7.2 6.7 

E-CKDE 3.2 3.4 3.8 4.2 4.7 5.2 5.9 6.7 5.3 

Univariate models for log wave energy flux 

E-AR  0.9 1.3 1.9 2.6 3.1 3.6 4.3 5.0 3.7 

E-ARMA-GARCH  0.9 1.3 1.9 2.5 3.1 3.6 4.4 5.1 3.7 

Bivariate models for log wave energy flux and log wind speed 

E-S-VAR 0.9 1.3 1.9 2.5 3.0 3.6 4.3 4.9 3.6 

E-S-VARMA-MGARCH  0.8 1.3 1.8 2.5 3.0 3.6 4.4 5.1 3.7 

E-S-VARMA-MGARCH-DG 0.8 1.2 1.8 2.4 3.0 3.6 4.3 5.0 3.6 

E-S-VARMA-MGARCH-UP  0.9 1.3 1.9 2.5 3.0 3.6 4.3 5.0 3.7 

Bivariate models for log wave height and log wave period 

H-P-VAR  0.9 1.3 1.9 2.4 2.9 3.5 4.2 4.9 3.6 

H-P-VARMA-MGARCH  0.8 1.3 1.8 2.4 2.9 3.5 4.3 4.9 3.6 

H-P-VARMA-MGARCH-DG  0.8 1.2 1.8 2.4 2.9 3.5 4.2 4.8 3.5 

NOTE:  Smaller values are better. The best performing method at each horizon is in bold. 

 

 

 

Table 7.  Evaluation of the post-sample wave energy flux point forecast accuracy using 

RMSEs (in kW/m), averaged over FINO1a and FINO1b. 
 

Lead time (hours): 1 2 3–4 5–6 7–8 9–12 
13–

18 

19–

24 
1–24 

Regression 2.6 4.3 6.2 7.9 8.9 9.9 11.0 12.0 9.6 

Kernel density estimation for log wave energy flux 

E-UKDE (4-hour) 4.9 6.2 7.6 8.9 9.9 10.9 12.4 13.8 11.0 

E-UKDE (24-hour) 11.8 12.0 12.2 12.5 12.8 13.1 13.6 14.0 13.2 

E-CKDE 4.3 5.3 6.6 7.8 8.7 9.6 10.8 12.1 9.6 

Univariate models for log wave energy flux 

E-AR  2.8 4.3 6.2 7.8 8.9 9.9 11.3 12.6 9.8 

E-ARMA-GARCH  2.7 4.3 6.1 7.8 8.9 9.9 11.2 12.5 9.8 

Bivariate models for log wave energy flux and log wind speed 

E-S-VAR 2.7 4.2 6.1 7.7 8.9 9.9 11.1 12.4 9.7 

E-S-VARMA-MGARCH  2.7 4.2 6.0 7.7 9.0 10.2 11.9 14.0 10.3 

E-S-VARMA-MGARCH-DG 2.6 4.0 5.9 7.6 8.8 9.9 11.4 13.1 9.9 

E-S-VARMA-MGARCH-UP  2.7 4.2 6.1 7.8 8.9 9.9 11.3 12.7 9.8 

Bivariate models for log wave height and log wave period 

H-P-VAR  2.7 4.1 5.8 7.4 8.5 9.4 10.6 11.8 9.3 

H-P-VARMA-MGARCH  2.6 4.1 5.9 7.5 8.6 9.7 11.1 12.3 9.6 

H-P-VARMA-MGARCH-DG  2.5 3.9 5.7 7.2 8.4 9.4 10.6 11.8 9.2 

NOTE:  Smaller values are better. The best performing method at each horizon is in bold. 


