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Exponentially Weighted Information Criteria for Selecting Among Forecasting Models 

 

Abstract 

Information criteria (IC) are often used to select between forecasting models. Commonly 

used criteria are Akaike’s IC and Schwarz’s Bayesian IC. They involve the sum of two terms: 

the model’s log likelihood and a penalty for the number of model parameters. The likelihood 

is calculated with equal weight given to all observations. We propose that greater weight 

should be put on more recent observations in order to reflect more recent accuracy. This 

seems particularly pertinent when selecting among exponential smoothing methods, as they 

are based on an exponential weighting principle. In this paper, we use exponential weighting 

within the calculation of the log likelihood for the IC. Our empirical analysis uses 

supermarket sales and call centre arrivals data. The results show that basing model selection 

on the new exponentially weighted IC can outperform individual models and selection based 

on the standard IC. 

 

Keywords: Information criteria; Model selection; Exponential weighting; Exponential 

smoothing; SARMA. 
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1.  Introduction 

Model selection is an important issue for time series forecasting applications. The 

choice of a poor model can have substantial financial implications. Selection procedures can 

benefit from judgemental input, but often this is either not available or its use is impractical. 

This is the case, for example, when the aim is to select a model for each of a large number of 

series. In this situation a purely statistical approach must be used.  

A common statistical approach to model selection is to use an information criterion 

(IC), such as Akaike’s IC (AIC) or Schwarz’s Bayesian IC (BIC). These measures involve 

the summation of two terms. The first is the model’s log likelihood, which provides a natural 

assessment of the quality of the fit of the model. The second is a penalty term, which is a 

function of the number of parameters in the model and has the aim of avoiding over-fitting. 

In a recent study, Billah et al. (2005) present a novel new class of empirically based IC in 

which the data dictates the form of the penalty term. In this paper, we also present empirically 

based IC. However, by contrast with Billah et al. (2005), we use the standard penalty terms, 

and instead let the data dictate the form of the log likelihood measure of fit.  

In the existing IC, the likelihood is calculated with equal weight given to all 

observations. We propose that greater weight should be put on more recent observations in 

order to reflect more recent accuracy. This principal underlies exponential smoothing 

methods because they involve exponentially decreasing weight being placed on older 

observations. With this in mind, in this paper, we propose the use of exponential weighting 

within the calculation of the log likelihood for the IC. More specifically, for our empirical 

work, we rewrite the likelihood in terms of the model’s residual variance, and then use 

exponential weighting within the calculation of this variance. The exponential decay 

parameter is derived empirically using the in-sample data. Although the new class of IC 

would seem to have particular appeal for selecting among exponential smoothing methods, it 
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is not restricted to this application, and indeed could be used for selection between various 

different types of models. 

 In Section 2, we briefly review IC and their use in model selection. In Section 3, we 

introduce our new exponentially weighted IC. Section 4 provides an empirical evaluation of 

the use of the new criteria for a case study involving the forecasting of daily supermarket 

sales data. In Section 5, we provide further empirical evidence using a time series of half-

hourly call centre arrivals. The final section provides a summary and concluding comments. 

 

2.  Model selection using IC 

The selection of a statistical model is often based on IC. The theoretical basis is the 

Kullback-Leibler discrimination information (KL) (see Kullback, 1959), which is presented 

in expression (1).  

( )( ) ( )( )( )yy 1lnln ffEKL −=       (1) 

where y is a vector of observations of the dependent variable; f is the true unknown joint 

density; f1 is the joint density given by the model; and the expectation is taken with respect to 

f. The essential idea is to rank candidate models according to their KL value. As the first term 

on the right hand side of expression (1) is a constant for all models, it is equivalent to rank 

models according to -E(ln(f1(y)). However, this expectation cannot be evaluated because f is 

unknown. This has prompted the development of IC, which are asymptotically unbiased 

estimators of this expression (Irizarry, 2001). 

Formally, the use of an IC assumes that the model has been estimated by maximum 

likelihood. The IC is usually written as 
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where n is the number of observations used to fit the model; Li is the contribution from the ith 

observation to the likelihood function for the fitted model; k is the number of parameters in 
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the model; and g is the penalty term aimed at avoiding over-fitting. The preferred model is 

the one for which the value of the IC is lowest. Making the assumption of an additive 

Gaussian model error term leads to a Gaussian likelihood and an IC expression in terms of 

the residual variance, which is commonly simplified to the following: 
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      (3) 

where ei is the residual from the fitted model. A variety of IC have been proposed that differ 

only in their choice of penalty term (see Billah et al., 2006). Most popular amongst these are 

the AIC (Akaike, 1973, 1974) and the BIC (Schwarz, 1978).  

For the AIC:     g(n,k) = 2k/n 

For the BIC:    g(n,k) = kln(n)/n 

From these functions, it is evident that the BIC carries a much stiffer penalty for the 

number of parameters than the AIC. Inoue and Kilian (2006) provide recent theoretical 

analysis for using IC to select from among forecasting models. Empirical evidence for their 

use in selecting among exponential smoothing methods is provided by Hyndman et al. (2002) 

and Billah et al. (2006). Interestingly, Gardner (1985, 2006) concludes both of his reviews of 

exponential smoothing by commenting on the need for greater practical guidance on how to 

select between exponential smoothing methods and other time series methods. 

Billah et al. (2005) introduce a new class of empirically based IC, which involves the 

use of in-sample data to derive the penalty term. They allow the penalty to be a simple 

function of the number of model parameters. For applications such as inventory control, 

where a collection of time series is available, they construct a common penalty function 

based on all the series. For cases involving just one series, the authors describe a form of 

bootstrapping. They use the standard likelihood or residual variance term to assess the fit 

within their criteria. Their study prompted our development of a new class of empirically 

based IC. By contrast with the IC of Billah et al. (2005), we use the standard penalty terms, 
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and instead let the data dictate the form of the measure of fit. We present the new criteria in 

the next section. 

 

3.  Model selection using exponentially weighted IC 

In this section, we first consider the estimation of model parameters using maximum 

weighted likelihood. We then discuss a number of studies that have used weighted likelihood 

within IC. Finally, we introduce exponentially weighted IC, which is the focus of this paper. 

 

3.1.  Weighted likelihood estimation 

There is a well established literature on the estimation of statistical model parameters 

using maximum weighted likelihood. In reviewing this area, Hu and Zidek (2002) cite one of 

the earliest contributions as being that of Tibshirani and Hastie (1987) who, in a regression 

context, use zero weights for data points outside a window around a given point in regressor 

space, and unit weights for all points within the window. This idea has been developed in the 

literature on nonparametric regression, where weighted likelihood estimation is presented as a 

form of kernel estimation (see Staniswalis, 1989).  

A somewhat earlier discussion of weighted likelihood estimation is provided by 

Gilchrist (1967) in the context of smoothing and forecasting time series. Gilchrist considers 

an exponentially discounting weighting scheme, and links the idea to Brown’s (1963) work 

on exponentially weighted least squares estimation and exponential smoothing (see the 

discussion of general exponential smoothing by Gardner, 1985). It is worth noting that, when 

viewed in the context of nonparametric estimation, exponentially weighted likelihood 

corresponds to the case where the kernel is defined as being one-sided with exponentially 

declining weight on past data (see Gijbels et al., 1999). There are recent examples of the use 

of exponentially weighted likelihood estimation in the area of value at risk in finance (see 

Mittnik and Paolella, 2000; Guermat and Harris, 2002; Fan and Gu, 2003).  
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3.2.  Weighted IC 

 In addition to their use in estimation, weighted likelihood expressions have also been 

used within IC for model selection. Most of these uses have focused on the development of 

robust forms of model selection. Drawing on robust estimation methods, Ronchetti (1985, 

1997) proposes that the log likelihood measure of fit in the IC be replaced by alternative 

measures involving robust functions of the residuals, including a weighted average of squared 

residuals that downweights outlying observations. Agostinelli (2002) presents a robust IC 

based on a weighted likelihood employing the weight function of Markatou et al. (1997).  

 A weighted likelihood is used within an IC by Hens et al. (2006), who propose a 

weighting scheme to help account for the deletion of incomplete cases from a multivariate 

sample of data. Irizarry (2001) addresses the problem of selecting between different locally 

approximating models to use within a local likelihood nonparametric regression procedure. 

He develops modified IC, which incorporate a local weighting scheme within the likelihood 

expression. In the next section, we propose the use of an exponentially weighted likelihood 

within an IC. As exponential weighting is a form of kernel weighting, in a sense our proposal 

can be viewed as an extension of Irizarry’s use of a locally weighted likelihood within an IC. 

 

3.3.  Exponentially weighted IC 

In the standard IC expressions (2) and (3), equal weight is given to all observations. In 

this paper, we suggest that when comparing two or more time series forecasting models 

greater weight should be put on more recent observations in order to reflect more recent 

accuracy. This seems particularly pertinent when selecting among exponential smoothing 

methods, as they are based on the principle of applying greater weight to more recent data. 

Although our proposal is not restricted to selecting among exponential smoothing methods, 

these methods do suggest a rather simple and intuitive weighting scheme. Our proposal is to 

use exponential weighting within the calculation of the IC. With regard to the theoretical 
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basis of the IC, discussed at the beginning of Section 2, this exponential weighting amounts 

to estimating the KL, or more specifically the expression -E(ln(f(y)), using a conditional 

estimate, rather than an unconditional estimate that is used in the standard IC.  

Incorporating exponential weighting within the IC expression (2), we get the 

following exponentially weighted IC (EWIC) expression:  

( ) ( )kngLEWIC
n

i
i

in
n ,ln

1
12

1
+⎟

⎠
⎞

⎜
⎝
⎛

−
−

−= ∑
=

−λ
λ
λ      (4) 

The speed of the exponential decay is governed by the decay parameter λ∈[0,1]. As in 

expression (2), Li is the contribution from the ith observation to the likelihood function for 

the fitted model. By contrast with the standard IC of expression (2), which involves the 

simple average of the Li, expression (4) involves an exponentially weighted average of the Li. 

It is worth noting that, in a sense, we apply the same exponential weighting principle to both 

the log likelihood calculation and the penalty term. This can see in the following expressions, 

where we rewrite expression (4): 
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In expression (3), we presented the standard IC in terms of residual variance. 

Imposing exponential weighting on expression (3) delivers the following form for the EWIC:  
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In the IC of expression (3), the residual variance is estimated as the mean squared 

residual. By contrast, in expression (5), it is estimated as an exponentially weighted average 

of the squared residuals. Using the same penalty functions from the AIC and BIC delivers 

new exponentially weighted criteria, EWAIC and EWBIC, respectively. In our empirical 

studies of Sections 4 and 5, we consider only models with a Gaussian additive error term, and 
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so we use the forms of the IC and EWIC in expressions (3) and (5). In those sections, we 

describe how we empirically derive the exponential decay parameter using in-sample data. 

For simplicity, in our work, for each time series, we have used a common value of the decay 

parameter for all lead times. However, derivation of a different parameter for each lead time 

would be straightforward to implement. 

At the beginning of this section, we suggested that exponentially decaying weights 

seems a particularly natural concept for IC when selecting between exponential smoothing 

methods. Conversely, it could be suggested that, because these methods already have 

exponential weighting within their state equations, exponentially weighting the IC is 

unnecessary and unappealing. It is certainly true that the exponential smoothing state 

equations deliver a fitted value for a particular period that is constructed from an exponential 

weighting of data prior to that period. However, in selecting among forecasting models, our 

proposal is that a new weighting scheme should be introduced that weights the fit for that 

period in proportion to the distance of the period from the forecast origin. By contrast, a 

standard IC applies no weighting, and assesses average fit across the estimation sample. In 

summary, we are proposing exponential weighting of the fit of each model, and it is 

unimportant how the fitted values were constructed. 

 

4.  Empirical analysis of daily supermarket sales 

4.1.  Description of the study  

In this section, we compare the forecast accuracy resulting from model selection 

based on the standard IC with selection based on the new exponentially weighted IC. Our 

empirical study used the same dataset employed by Taylor (2007), which consists of 256 time 

series of daily observations of sales of different items from an outlet of a large UK 

supermarket chain. The series vary in length from 72 to 1436 observations with a median of 

764 observations. Figure 1 is a plot of one of the series. Prior to the forecasting study, bank 
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holidays and the days of the Christmas periods were replaced by the average of the 

corresponding day of the week from the week before and the week after the day in question. 

This is consistent with the approach taken by the company, as they do not use their time 

series forecasting approach for these periods. 

----------  Figure 1  ---------- 

The final 20% of each series was used for post-sample forecast evaluation. For each 

series, we rolled the forecast origin forward through the post-sample evaluation period to 

produce a collection of forecasts from each model for each horizon. We considered forecast 

horizons of one to 14 days in our study. For each new forecast origin, model parameters were 

re-estimated using a moving window of length equal to 80% of the total number of 

observations in each series. 

  

4.2.  Individual forecasting models 

The supermarket sales application requires an automated forecasting process because 

predictions are required at frequent intervals for many different products. Exponential 

smoothing is widely used for such inventory control applications due to its simplicity, 

robustness and accuracy (see Gardner, 2006). We included in our study the company’s own 

exponential smoothing approach and simple exponential smoothing applied to data 

deseasonalised using multiplicative seasonal decomposition. For each series, we calculated 

afresh the seasonal factors for each new forecast origin using only data prior to that origin. Of 

the methods considered by Taylor that involve exponential smoothing of the level of the 

series, the company’s approach and simple exponential smoothing were the most accurate in 

that study. The company’s approach involves smoothing the total weekly sales, Wt, and the 

split, Lt, of the weekly sales across the days of the week. With sales expressed as yt, the 

formulation is given as 
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The forecasts are given by 

7)(ˆ −+= mttt LWmy  for m = 1 to 7 

14)(ˆ −+= mttt LWmy  for m = 8 to 14  

Following the approach of Hyndman et al. (2002), both simple exponential smoothing 

and the company’s approach can be expressed in state space form to deliver innovations 

models for which parameters can be estimated using maximum likelihood. The innovations 

form of the single source of error state space model for the company’s method is given by the 

observation equation in expression (8) along with the state equations of expressions (6) and 

(7). For simplicity, in our analysis, we employed an additive Gaussian error term, εt, which 

means that the IC expressions (3) and (5) can be used.  

    tttt LWy ε+= −− 71        (8) 

Following common practice, we constrained the parameters to lie between zero and 

one, and we used simple averages of the first few observations to calculate initial values for 

the smoothed components (see, for example, Hyndman et al., 2002). Because we are not 

estimating the initial values in the same optimisation as the parameters, our optimisation 

amounts to maximising a conditional likelihood function. 

 

4.3.  Model selection based on IC 

 At each forecast origin, we used the AIC, BIC, EWAIC and EWBIC to select between 

the two individual forecasting models. For some series, the same model was selected at all 

forecast origins, whilst for others the IC dictated considerable switching between the two 

models. For each of the two EWIC, the parameter, λ, was optimised once for each series 
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using just the subsample consisting of the first 80% of the series. Of this subsample, the final 

20% was used to evaluate the forecasting performance of the EWIC approach for different 

values of λ. We rolled the forecast origin forward through this final 20% to produce a 

collection of one day-ahead predictions. For each new origin, parameters were re-estimated 

for both individual models using a moving window of length equal to 80% of the number of 

observations in the subsample. The optimal value of λ was deemed to be the value that led to 

the lowest mean absolute one day-ahead prediction error for the final 20% of the subsample. 

Our choice of the mean absolute error was made arbitrarily, and alternative error summary 

measures could certainly be used. As in the work of Billah et al. (2005), we used a grid 

search to find the optimal value of λ because the objective function is somewhat complex. 

We considered values of λ from 0.8 to 1 with an increment of 0.005.  

Figure 2 presents a histogram of the optimal EWAIC λ values for the 256 series. The 

figure shows that for about 30% of the series, the optimal value was found to be one, 

implying no exponential decay. By contrast, the low values of λ for many of the series 

implies very rapid exponential decay. We were concerned that the optimal values derived for 

the shorter length series were not as reliable as for the longer series. With this in mind, we 

implemented a second version of the EWIC approach; this time using for all 256 series a 

common value of λ, which we chose to be the mean of the optimised values displayed in 

Figure 2. Our use of a collection of time series to derive the value of λ is similar to the 

approach taken by Billah et al. (2005) to define the form of the empirically based penalty 

term within their new IC. It is also similar to the approach followed by Fildes et al. (1998) in 

their selection of exponential smoothing parameters. They find that using a commonly 

occurring value for all series can be preferable to using the value optimised for each series. 

For the EWAIC, the mean of the 256 optimised λ values was 0.9388. The mean value for the 

EWBIC was similar. Indeed, the results for the BIC and EWBIC were broadly similar to 
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those for the AIC and EWAIC, respectively. In view of this, in Section 4.4, for simplicity we 

present only the results for the following three IC: AIC, EWAIC with λ optimised for each 

series, and EWAIC with λ set as the mean of the 256 optimised parameter values. 

----------  Figure 2  ---------- 

 

4.4.  Results 

We evaluated post-sample forecasting performance using the mean absolute error 

(MAE), median absolute error (MedAE) and the root mean squared error (RMSE). 

Percentage error measures were not appropriate as the sales values were often close to zero 

for many of the series. Since the order of magnitude of the forecast errors varied across the 

series, it was not appropriate to average the error measures across the 256 series. Therefore, 

we used the same measure employed by Taylor (2007) to summarise performance across all 

the series. For the MAE results, the calculation proceeded by computing, for each series and 

each forecast horizon, the ratio of the MAE for that model to the MAE for simple exponential 

smoothing. We then calculated the weighted geometric mean of this measure across the 256 

series, where the weighting was proportional to the number of post-sample observations in each 

series. Expression (9) presents the measure: 
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where MAEi and SES
iMAE  are the MAE for the method being considered and for simple 

exponential smoothing, respectively; and Ni is the number of post-sample observations for 

series i. Lower values of the measure are better, with negative values indicating that the method 

outperforms simple exponential smoothing, and positive values indicating the opposite. Figure 3 

plots the results for the measure of expression (9), and Figure 4 presents the results for the 
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measure based on the MedAE. We do not present the results for the measure based on the 

RMSE, because the ranking of methods for this measure was similar to those for the MAE 

results shown in Figure 3.    

----------  Figures 3 and 4  ---------- 

 Let us consider first the MAE results in Figure 3. The figure shows no clear 

dominance between the company’s model and simple exponential smoothing, and that both 

are outperformed by model selection based on the AIC for all lead times except two to five 

days ahead and 10 days ahead. Interestingly, up to about 12 days ahead, the results for model 

selection based on the AIC are not as good as those for selection based on the EWAIC with λ 

optimised separately for each series. The figure shows further improvement resulting from 

the use of the EWAIC approach with λ set as the mean of the 256 optimised values.  

The results in Figure 4 for the MedAE show the company’s model outperforming 

simple exponential smoothing up to 10 days ahead. By contrast with the results for the MAE, 

Figure 4 shows the AIC only improving on the company’s model at seven days ahead and 

beyond 10 days ahead. However, the plot shows that model selection is improved by using 

EWIC with λ optimised separately for each series, and that this approach is further improved 

by using EWIC with the common choice of λ. Indeed, overall, this version of the EWIC 

approach outperforms both of the individual models. 

Closer inspection of the IC approaches revealed that the IC penalty terms generally 

did not have a substantial impact on model selection, and that selection tended to be governed 

by the residual variance term (which is replaced in the EWIC approaches by exponentially 

weighted estimates of residual variance). This is perhaps not surprising given that there is a 

small difference in the number of parameters in the two models; one parameter for simple 

exponential smoothing and two for the company’s model. This is not the case in the next 

section, where there is a substantial difference in the number of parameters in the two models 

considered. 
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5.  Empirical analysis of half-hourly call centre arrivals 

5.1.  Description of the study  

In this section, we evaluate model selection based on the new IC using a time series of 

half-hourly arrivals at the call centre of a major retail bank in the UK. The data is used in the 

study of Taylor (2008). It covers the 36-week period from 3 January 2004 to 10 September 

2004, inclusive. The series corresponds to calls received by the bank’s four large call centres 

dealing with general customer enquiries. These centres are open on all seven days of the 

week, from 7am to 11pm, and together receive more than a quarter of a million calls each 

week.  

Figure 5 shows the first four weeks of the series, which are very representative of the 

behaviour of the series throughout our full sample of data. The series exhibits no apparent 

trend and very clear seasonality. Indeed, an interesting feature of the series is the presence of 

both an intraday seasonal cycle and an intraweek seasonal cycle. Although the intraday cycle 

is less obvious, closer inspection reveals that, at least on weekdays, there is a peak around 

11am followed by a second, lower peak around 2pm. Gans et al. (2003) explain that such an 

intraday pattern is reasonably typical.  

----------  Figure 5  ---------- 

As with the supermarket sales data, prior to fitting and evaluating models, we 

smoothed out the ‘special days’, such as bank holidays, as their inclusion is likely to be 

unhelpful in our comparison of models. We replaced all special days by the average of the 

corresponding period in the two adjacent weeks. The variance in the arrivals appeared to be 

changing over time, and approximately proportional to the volume of arrivals, which is 

consistent with the common assumption that call centre arrivals obey a time-inhomogeneous 

Poisson process (see, for example, Brown et al. 2005). In order to reduce this 

heteroskedasticity, we applied a log transformation to this series before model fitting.  
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We used the final 12 weeks of data for post-sample forecast evaluation. As with the 

supermarket series, we rolled the forecast origin forward through the post-sample evaluation 

period to produce a collection of forecasts from each model for each horizon. We considered 

all forecast horizons from one half-hour ahead to two weeks ahead. Model parameters were 

re-estimated for each new forecast origin using a moving window of 24 weeks of data.  

 

5.2.  Individual forecasting models 

We included two individual models in the study: a multiplicative double seasonal 

ARMA model and an innovations model based on Taylor’s (2003) double seasonal 

exponential smoothing. We followed the Box-Jenkins methodology to identify the most 

suitable SARMA model based on the first estimation sample of 24 weeks. No differencing 

was performed because the series did not appear to have a unit root in the level or seasonality. 

We considered lag polynomials up to order three, and this resulted in the following model. 
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where yt is the log of the arrivals, εt is an error term, L is the lag operator, and φi, θi and c are 

parameters, which are re-estimated at each forecast horizon using maximum likelihood based 

on the standard Gaussian assumption. The SARMA terms are represented by powers of the 

lag operator that are multiples of 32 and 224, which are the lengths of the intraday and 

intraweek seasonal cycles, respectively. 

Taylor’s (2003) double seasonal exponential smoothing formulation for intraday data 

is presented in the following expressions: 

122432 )1()( −−− −+−−= ttttt lwdyl αα                 (10) 
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where lt is the smoothed level; dt and wt are the seasonal indices for the intraday and 

intraweek seasonal cycles, respectively; α, δ and ω are the smoothing parameters (which 

were constrained to lie between zero and one); and )(ˆ kyt is the k step-ahead forecast made 

from forecast origin t, where k ≤ 32. It is straightforward to rewrite the forecast function for 

longer lead times. The term involving the parameter φ, in expression (13), is a simple 

adjustment for first-order autocorrelation. We used simple averages of the first few 

observations to calculate initial values for the smoothed components. As we commented in 

Section 4.2, this implies that our optimisation can be viewed as maximising a conditional 

likelihood function. The method can be expressed in state-space form to deliver a model for 

which parameters can be estimated using maximum likelihood. The innovations form of the 

single source of error state space model is given by the formulation of expressions (10) to 

(12) with the forecast function of expression (13) replaced by expressions (14) and (15). 

tttttt ewdly εφ ++++= −−−− 1224321                (14) 
( )224321 −−− ++−= ttttt wdlye                 (15) 

 

5.3.  Model selection based on IC 

As in the supermarket sales study, at each forecast origin, we used the AIC, BIC, 

EWAIC and EWBIC to select between the two individual forecasting models. In both studies, 

our implementation of the IC for selection at each forecast origin can also be termed model-

switching. The SARMA model and exponential smoothing method contained 14 and four 

parameters, respectively, implying a substantial difference in their respective IC penalty 

terms.  

The weighting parameter λ for the EWIC was optimised using a very similar 

procedure to that described for the supermarket application. The optimisation used just the 

subsample consisting of the first 24 weeks of the series. Of this subsample of observations, 

the final six weeks was used to evaluate the forecasting performance of the EWIC approach 
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for different values of λ. For each new origin, parameters were re-estimated for both 

individual models using a moving window of length equal to 18 weeks. The optimal value of 

λ was deemed to be the value that led to the lowest mean absolute percentage one day-ahead 

forecast error for the final six weeks of the subsample. We considered values of λ from 0.8 to 

1 with an increment of 0.0005. In comparison with the supermarket case, we used a finer 

increment for our call centre study because it only involved one time series. The result was 

optimal λ values of 0.9785 and 0.9865 for the EWAIC and EWBIC, respectively. These 

relatively high values seem reasonable when one considers the high frequency nature of the 

data, which has a seasonal cycle consisting of a relatively large number of periods. It is worth 

noting that these values correspond to half-lives of 32 and 51 half-hour periods, respectively. 

As in our reporting of the supermarket study, in the next section, for simplicity, we present 

only the results for model selection based on the AIC and EWAIC. 

 

5.4.  Results 

In Figures 6 and 7, we present the post-sample mean absolute percentage error 

(MAPE) and median absolute percentage error (MedAPE), respectively. Comparing the two 

individual models, the figures show that for prediction up to about a week ahead, exponential 

smoothing performed the better, but that the superiority was reversed for the longer lead times.  

----------  Figures 6 and 7  ---------- 

Turning to the IC, we found that the AIC selected the SARMA model at all forecast 

origins, which explains why the AIC model selection results coincide with those of the SARMA 

model in Figures 6 and 7. In Figure 6, the MAPE results for the EWAIC approach are very 

encouraging, as they match or outperform the better of the individual models for lead times up to 

a week ahead. For longer lead times, the EWAIC approach compares well with the SARMA 

model, which was the better of the individual models for these longer lead times. The relative 
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performance of the EWAIC approach is similar for the MedAPE to that for the MAPE, with 

particularly good results for prediction up to five days ahead.  

 

6.  Summary and concluding comments 

In this paper, we have introduced a new class of IC for selecting among forecasting 

models. It involves the use of exponential weighting within the measure of fit in the standard 

IC, such as the AIC and BIC. The implication is greater weight being placed on more recent 

observations in order to reflect more recent accuracy. The criteria can be viewed as 

empirically based as the exponential weighting parameter is derived using the in-sample data. 

We demonstrated the use of model selection based on the new IC using two case studies, one 

involving supermarket sales data and the other using a series of call centre arrivals. The 

results showed that overall selection based on the new IC was able to outperform use of the 

individual models, as well as selection based on the standard IC. 

In terms of future research, it would be interesting to have further empirical results for 

different datasets. With regard to developing the method, one possibility is to investigate the 

potential for a synthesis of our EWIC with the empirically based IC of Billah et al. (2005). 

The resultant hybrid IC would involve an exponential weighting within the measure of fit, 

and an empirically driven penalty term.  
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Figure 1 Daily supermarket sales of a single item. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Histogram for optimised values of exponential weight parameter λ for the 256 

series. 
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Figure 3 Relative MAE measure of expression (9), calculated for all 256 series. 
Accuracy measured relative to simple exponential smoothing. Lower values 
are better. 
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Figure 4 Relative MedAE measure calculated for all 256 series. Accuracy measured 
relative to simple exponential smoothing. Lower values are better. 
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Figure 5 Half-Hourly call centre arrivals from Saturday 3 January to Friday 30 January 
2004. The centres are open for 224 half-hours each week. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 MAPE for the call centre arrivals series for lead times from one half-hour to 

14 days. 
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Figure 7 MedAPE for the call centre arrivals series for lead times from one half-hour to 
14 days. 
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