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Forecasting Daily Supermarket Sales Using Exponentially Weighted Quantile 

Regression 

 

Abstract 

Inventory control systems typically require the frequent updating of forecasts for many 

different products. In addition to point predictions, interval forecasts are needed to set 

appropriate levels of safety stock. The series considered in this paper are characterised by 

high volatility and skewness, which are both time-varying. These features motivate the 

consideration of forecasting methods that are robust with regard to distributional 

assumptions. The widespread use of exponential smoothing for point forecasting in inventory 

control motivates the development of the approach for interval forecasting. In this paper, we 

construct interval forecasts from quantile predictions generated using exponentially weighted 

quantile regression. The approach amounts to exponential smoothing of the cumulative 

distribution function, and can be viewed as an extension of generalised exponential 

smoothing to quantile forecasting. Empirical results are encouraging, with improvements 

over traditional methods being particularly apparent when the approach is used as the basis 

for robust point forecasting. 
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1.  Introduction 

When forecasting for inventory control, predictions are very often required at 

frequent intervals for many different products or parts. This motivates the automation of 

some or all of the forecasting process. The case that we consider is one of forecasting daily 

observations of supermarket sales. The data is taken from an outlet of a large UK 

supermarket chain, which typically stocks more than 10,000 different items in each of its 

stores. The 256 time series in our sample are characterised by high volatility, strong intra-

week seasonality and, for most of the series, fairly low volume. Few of the series exhibit 

trend. The high volatility is evident in Figure 1, which is a plot of one of the series. The 

figure also shows that sales is positively skewed for many of the days, which is 

understandable, given that the series is obviously bounded below by zero.  

----------  Figure 1  ---------- 

Exponential smoothing is a simple and pragmatic approach to point forecasting 

whereby the forecast is constructed from an exponentially weighted average of past 

observations. The impressive performance of exponential smoothing methods, when applied 

across a variety of different series (see, for example, Makridakis and Hibon, 2000), has led to 

their widespread use in applications, such as ours, where a large number of series necessitates 

an automated procedure. Indeed, our collaborating company currently uses exponential 

smoothing, albeit a non-standard method.  

Interval forecasting is important for inventory control because it enables the setting of 

appropriate levels of safety stock. A common approach to interval forecasting is to use a 

point forecast with an estimate of the forecast error distribution. For the widely used 

exponential smoothing methods, Hyndman et al. (2005) provide theoretical forecast error 

variance formulae, which they derive by referring to the equivalent state-space models. A 

Gaussian assumption is then used to deliver prediction intervals. However, the Gaussian 

assumption is often not realistic. Indeed, the shape of the distribution may not even be 
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constant over time. This appears to be the case in Figure 1, where the skewness is more 

evident when the series is closer to zero. The variance is very often also not constant over 

time, and may possess a seasonal pattern independent of seasonality in the mean. A problem 

with the use of theoretical error variance formulae is that they are not readily available for 

non-standard exponential smoothing approaches, such as the one used by our collaborating 

company. In reviewing the prediction interval literature, Chatfield (1993) observes that when 

theoretical formulae are not available, or there are doubts about model assumptions, empirically 

based methods should be considered. Gardner (1988) and Taylor and Bunn (1999) provide such 

methods, but, unfortunately, these methods are not able to accommodate a distribution with 

changing shape or variance. 

 In essence, the supermarket sales case presents the challenge of trying to produce, in 

an automated way, interval forecasts for distributions that have changing location, variance 

and shape. Rather than base estimation on a point forecast, in this paper, we address the 

problem by directly forecasting the sales quantiles. The θ quantile of a variable, yt, is defined 

as the value, Qt(θ), for which P(yt≤Qt(θ))=θ. Interval forecasts can be constructed from 

forecasts of symmetric quantiles, Qt(θ) and Qt(1-θ). Directly forecasting quantiles avoids the 

need for assumptions regarding the spread and shape of the distribution. In view of the 

success of exponential smoothing methods for point forecasting within automated 

applications, there is strong appeal to developing the approach for interval forecasting. We 

do this through the use of exponentially weighted quantile regression (EWQR), which is 

equivalent to exponential smoothing of the cumulative distribution function (cdf). Our 

application of EWQR provides new insight into the method because the only previous use of 

the approach was for the somewhat different application of value at risk estimation in finance 

(see Taylor, 2006).  

The non-Gaussian nature of the sales series also motivates consideration of point 

forecasting methods that are robust to the distributional shape. We propose that robust point 
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forecasts be constructed from the weighted average of EWQR forecasts of several quantiles, 

such as the 0.25, 0.50 and 0.75 quantiles. 

 Section 2 reviews the existing approaches to univariate quantile modelling. In Section 3, 

we discuss EWQR and its use for univariate quantile forecasting and robust point forecasting. In 

Section 4, we use the method for point forecasting of the supermarket series, and in Section 5 

we consider interval forecasting. Section 6 provides a summary and concluding comments. 

 

2.  Quantile modelling methods 

The value at risk (VaR) literature is concerned with estimating the tail quantiles of 

distributions of financial returns. By contrast with our sales series, a series of financial returns 

tends to have a mean that is almost constant. Nevertheless, some of the VaR methods can at 

least provide insight for our case. Boudoukh et al. (1998) describe their approach as being the 

analogy of exponentially weighted moving averages for quantiles. Their method involves 

allocating to the most recent year of daily returns, exponentially decreasing weights, which 

sum to one. The returns are then placed in ascending order and, starting at the lowest return, 

the weights are summed until θ is reached. The θth quantile estimate is set as the return that 

corresponds to the final weight used in the previous summation. Linear interpolation is used 

if the estimate falls between two returns.  

Engle and Manganelli’s (2004) conditional autoregressive value at risk (CAViaR) is a 

class of quantile modelling methods. The following is the adaptive CAViaR method: 

[ ]))(()()( 111 θθβθθ −−− <−+= tttt QyIQQ  

where yt is the return; β is a constant parameter; and I(·) is the indicator function, which takes 

a value of one if the expression within the parenthesis is true, and zero otherwise. The 

indicator function has the effect of reducing the estimate of the next quantile if the current 

quantile estimate is greater than the return. If the return exceeds the quantile estimate, the 
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next estimate is increased. If we assume that the probability of the error falling below the θ 

quantile estimator is θ, then the expected value of the expression within the square 

parentheses is zero. It then follows that the multiperiod forecasts are equal to the one step-

ahead prediction. CAViaR method parameters are estimated using the quantile regression 

minimisation, which we present in Section 3.2. The other CAViaR methods are unsuitable 

for our supermarket sales series because, for these methods, stationarity is assumed and 

multiperiod forecasting is not straightforward. 

Expressions (2.1) and (2.2) present the method of Gorr and Hsu (1985), which was 

developed for non-financial data. The formulation is similar to the adaptive CAViaR method, 

except that in expression (2.2), the Gorr and Hsu method softens the impact of the indicator 

function through the use of exponential smoothing. If α=1, the two methods are identical.  

]ˆ[)()( 11 −− −+= ttt QQ θθβθθ              (2.1) 

where              ( )( ) 2111
ˆ)1(ˆ

−−−− −+<= tttt QyI θαθαθ              (2.2) 

 

3.  Exponentially weighted quantile regression 

3.1.  Exponentially weighted quantile regression and the cdf  

It is well known that the simple exponential smoothing estimator is identical to the 

result of an exponentially weighted (discounted) least squares (EWLS) regression for a 

model with constant term but no regressors (see, for example, Harvey, 1990, p. 28). Taylor 

(2006) proposes EWQR as the analogous approach for quantile forecasting.  

Koenker and Bassett (1978) present theoretical results for the use of quantile 

regression to estimate, for a dependent variable yt, linear quantile models, Qt(θ) = xtβ, where 

xt is a vector of regressors and β is a vector of parameters. For a specified value of the 

weighting parameter, λ, Taylor’s EWQR minimisation has the form:  
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where T is the sample size, and λ∈[0,1] is a weighting parameter. The case of λ=1 

corresponds to the standard form of quantile regression, which Koenker and Bassett (1978) 

show can be modelled as a linear program, provided the quantile model is linear. In a similar 

way, for a linear quantile model, the EWQR minimisation of expression (3.1) can also be 

formulated as a linear program. Taylor explains that the resulting quantile estimator, )(ˆ θtQ , 

that minimises expression (3.1), obeys expression (3.2), which involves an exponentially 

weighted summation of an indicator function. 
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The EWQR quantile estimator, )(ˆ θtQ , is thus defined as the estimator that partitions 

the yt observations so that the sum of the weights on those observations less than the 

corresponding quantile estimator, as a proportion of the sum of all the weights, is θ. If we 

note that θ is a realisation of Ft, the cdf of yt, expression (3.2) can be rewritten as an estimator 

of the cdf: 
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If T is large, such an expression can be rewritten in recursive form: 

 ( ) ( ) ( ))(ˆˆ)1()(ˆ)(ˆˆ
11 θαθαθ −−−+<= TTTTTT QFQyIQF             (3.4) 

where α = 1-λ. This shows that EWQR amounts to simple exponential smoothing of the cdf. 

The connection between this finding and quantile modelling is that the inverse of the cdf is 

the quantile function, ( )θθ 1)( −= TT FQ .  
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A convenient recursive formula does not exist for updating the quantile estimate. 

Therefore, the EWQR linear program must be solved afresh as each new observation 

becomes available. With the development of computational power, this should not be a 

significant obstacle to implementation. For the case of EWQR on a constant with no 

regressors, expression (3.3) becomes expression (3.5), which provides an estimate of the cdf 

for a specified value, y. Although this is a cdf estimator, it can be used to estimate quantiles 

by iteratively evaluating the right hand side of the expression for different values of y until 

the desired value for the cdf estimator, ( )yFT
ˆ , is achieved to a required degree of tolerance. 
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Estimating the quantile using expression (3.5) is exactly equivalent to the VaR 

method of Boudoukh et al. (1998), described in Section 2. Their method, therefore, is 

equivalent to EWQR with a constant term and no regressors. In Section 2, we also briefly 

described the Gorr and Hsu (1985) adaptive quantile method. Expression (2.2) of their 

method is similar to the cdf exponential smoothing expression (3.4).  

 

3.2.  Applying EWQR to the univariate time series context 

For the univariate forecasting of the quantiles of a time series, the use of EWQR with 

a constant and no regressors is one possibility. As with simple exponential smoothing, the 

multiperiod forecasts would be identical to the one step-ahead prediction. In Taylor’s (2006) 

application of the approach to financial returns, the only regressor considered in EWQR was 

a dummy variable, which was used to capture the asymmetric leverage effect in the volatility. 

The application of the method to sales data motivates consideration of other regressors.  

For a trending time series, a trend term can be included in the EWQR. Using EWLS 

to fit models that are functions of time is termed ‘general exponential smoothing’ (GES) (see 
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Gardner, 1985). The inclusion of functions of time in the EWQR is, therefore, the extension 

of GES to quantile forecasting. The use of a linear forecast function in exponential 

smoothing methods has been criticised because it tends to overshoot the data beyond the 

short-term. Gardner and McKenzie (1985) address this problem by including an extra 

parameter in Holt’s method to dampen the projected trend. Empirical studies show that this 

tends to lead to improvements in accuracy (e.g. Makridakis and Hibon, 2000). The EWQR 

minimisation with a damped linear trend is shown in expression (3.6). The values of the 

damping parameter, φ, and weighting parameter, λ, must be specified before the 

minimisation is performed. We discuss optimisation of these parameters in Sections 4 and 5. 
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If the data is seasonal, it could be deseasonalized prior to the EWQR. The resulting 

quantile forecasts would then need to be reseasonalized. A more direct approach to 

seasonality, which has been used in GES, is to include dummy variables or sinusoidal terms. 

Note that, if the seasonality is multiplicative, these terms must be multiplied by the trend. 

 

3.3.  Using EWQR for robust point forecasting 

 In Section 1, we explained that the sales series that we consider in this paper are 

characterised by high volatility and skewness, and that these features may be varying over 

time. Furthermore, Figure 1 shows that the series occasionally have large values. These 

features motivate consideration of point forecasting methods that are robust to non-Gaussian 

distributions and outlying observations. 

Dunsmuir et al. (1996) present expression (3.5) in a study that introduces the idea of 

an exponentially weighted moving median (EWMM), which they propose as a robust point 

forecasting alternative to the standard exponentially weighted moving average. They use the 

expression to determine the cdf estimator, ( )yFT
ˆ , for a range of values of y. The EWMM 
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estimate is then set as the smallest y value for which ( )yFT
ˆ ≥ 0.5. We would suggest that a 

simpler way to derive the EWMM estimate is by running the EWQR for θ = 0.5, with a 

constant and no regressors. Using θ = 0.5 is equivalent to weighted least absolute deviations 

regression, which was proposed by Cipra (1992) as a robust form of exponential smoothing. 

Koenker and Bassett (1978) describe how estimators of different quantiles can be 

combined to form a robust estimator of the central location of a distribution. It, therefore, 

seems natural to combine the EWQR quantile estimators in a similar way to provide robust 

point forecasts. Koenker and Bassett propose the use of Tukey’s (1970) trimean and the 

Gastwirth (1966) estimator. Judge et al. (1988) suggest an alternative five-quantile estimator. 

We present these estimators in the following expressions: 

Trimean:  )75.0(ˆ25.0)5.0(ˆ5.0)25.0(ˆ25.0ˆ tttt QQQy ++=   

Gastwirth :  )(ˆ3.0)5.0(ˆ4.0)(ˆ3.0ˆ 3
2

3
1

tttt QQQy ++=  

Five-quantile:  )9.0(ˆ05.0)75.0(ˆ25.0)5.0(ˆ4.0)25.0(ˆ25.0)1.0(ˆ05.0ˆ tttttt QQQQQy ++++=  

A Winsorised estimator involves trimming a dataset of its upper and lower 100α % of 

values (Tukey, 1962). In the time series context, all in-sample observations below their 

corresponding in-sample fitted EWQR α quantile would be set equal to this value, and all in-

sample observations above their corresponding in-sample fitted EWQR (1- α) quantile would be 

set equal to this value. A standard point forecasting method, such as simple exponential 

smoothing, would then be applied to the resulting series, with forecasts produced from the 

simple exponential smoothing method in the usual way. As each new observation becomes 

available, the EWQR estimated α and (1-α) quantiles would be updated, the trimming would be 

performed for the new observation, and then the point forecast updated for the next period.  

We are not aware of the previous use of any of the estimators described in this section 

for univariate forecasting, apart from the EWMM.  
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4.  Empirical comparison of point forecasting methods 

4.1.  Description of the study  

In this section, we compare the accuracy of established point forecasting methods 

with the EWQR-based robust point forecasting methods discussed in the previous section. 

The study used time series of daily observations of sales of different items from an outlet of a 

large UK supermarket chain. As greater interest and benefit lies with improved forecasting 

for higher volume series, we considered only those series with median daily sales greater or 

equal to 5. We felt that none of the forecasting methods that we wished to compare, including 

the company’s own method, would be suitable for series that contained a large number of 

successive days with zero sales. Therefore, we did not include series that consisted of long 

periods of zeros or series that contained only intermittent observations. This resulted in 256 

series, which varied in length from 72 to 1436 observations with a median of 764 

observations. Figure 2 presents the histogram for the lengths of the series.  

----------  Figures 2 to 5  ---------- 

In Figures 3 to 5, we present summary information for the deseasonalised series using 

the same measures and histograms considered by Fildes et al. (1998) for different 

deseasonalised data. To deseasonalise the series, we used multiplicative seasonal 

decomposition, which is based on ratio-to-moving averages and was used in the M3-

Competition (Makridakis and Hibon, 2000). The histogram in Figure 3 shows that the 

correlation between the deseasonalised series and a deterministic linear trend is high for few 

of the series. The measure summarised in Figure 4 is the adjusted R2 for the regression of 

deseasonalised sales on a deterministic linear trend and autoregressive terms of orders one, 

two and three. This is used by Fildes et al. as an approximate measure for the “systematic 

variation which can be forecast using simpler methods”. The results in Figure 4 are 

consistent with our earlier suggestion that the series are characterised by high volatility. 

Figure 5 summarises the proportion of outliers in the series, where an outlier is defined, as in 
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Fildes et al. They define an outlier to be any observation for which the corresponding 

observation in the differenced series is outside the inter-quartile range of the differenced 

series by a distance that is at least 1.5 times the width of the inter-quartile range.   

As we explained in Section 1, the series were characterised by intra-week seasonality 

and high volatility, with few displaying trend. Intra-year seasonality is also apparent in some 

of the series but, with at most four years of observations for any series, we followed the 

practice of the company and did not try to incorporate it in any method.  

The company’s outlets are open seven days a week, but not bank holidays. We 

replaced bank holidays by the average of the corresponding day of the week from the week 

before and the week after the day in question. Using a similar approach, we removed the 

Christmas period from the data because the methods considered in this study are not designed 

for such unusual periods. This is consistent with the approach taken by the company, as they 

do not use their exponential smoothing approach for the Christmas period. 

We estimated method parameters using the first 80% of observations in each series. 

We used the final 20% for post-sample forecast evaluation. For many of the products in our 

dataset, a forecast lead time of 5 to 7 days was of most importance to the company. However, 

this varied across the range of products, and so, in consultation with the company, we 

considered forecast horizons of one to 14 days in our study. For each series, we rolled the 

forecast origin forward through the post-sample evaluation period to produce a collection of 

forecasts from each method for each horizon. For the one-day horizon, this resulted in each 

method being evaluated on a total of 42,633 post-sample sales observations. We employed 

the statistical programming language Gauss for all computational work in this paper. 

 

4.2.  Point forecasting methods based on smoothing the level 

We included in the study eight methods that involve exponential smoothing of the 

level of each series. These methods are listed below. We derived parameter values for all 
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methods, except P2 and P7, by the common procedure of minimising the sum of squared in-

sample one-step-ahead forecast errors, with parameters constrained to lie between zero and 

one. We used simple averages of the first few observations to calculate initial values for the 

smoothed components (see Williams and Miller, 1999). Using multiplicative seasonal 

decomposition, we deseasonalised the data prior to using Methods P1 to P5, as these methods 

are appropriate for series with no seasonality. The resultant forecasts were reseasonalised 

before comparison with the raw sales data. We also implemented random walk forecasts, but 

the results were very poor due to the highly volatile nature of the series. 

Method P1. Simple exponential smoothing. 

Method P2. Simple exponential smoothing using least absolute deviations (LAD). Gardner 

(1999) proposes that the smoothing parameter is optimised by minimising the sum of the 

absolute value of the one-step-ahead forecast errors. This has the appeal of robustness, and so 

is a useful benchmark for the robust EWQR-based methods, which we present in Section 4.3. 

Method P3. Holt’s exponential smoothing. 

Method P4. Damped Holt’s exponential smoothing. 

Method P5. Brown’s double exponential smoothing. 

Method P6. Holt-Winters exponential smoothing for multiplicative seasonality. 

Method P7. Company’s method. This involves smoothing the total weekly sales, Wt, and the 

split, Lt, of the weekly sales across the days of the week. The parameters are set at the same 

subjectively chosen values for all series; α = 0.7 and γ = 0.1.  

1
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Method P8. Optimised company’s method. We optimised values for the parameters α and γ. 

  

4.3.  Robust point forecasting methods based on EWQR 

We implemented the following robust methods, which were described in Section 3.5:  

Method P9. Median. This is equivalent to the EWMM approach of Dunsmuir et al. (1996).  

Method P10. Trimean. 

Method P11. Gastwirth. 

Method P12. Five-quantile. 

Method P13. Winsorised with α = 0.05. For Methods P13 to P15, simple exponential 

smoothing was applied to the Winsorised series. For simplicity, the values of the trimming 

percentage, α, were chosen arbitrarily. An alternative is to optimise α based on in-sample fit. 

Method P14. Winsorised with α = 0.10.  

Method P15. Winsorised with α = 0.25. 

For all seven methods, we estimated quantiles using EWQR with a constant and no 

regressors. As this approach clearly cannot capture seasonality, we deseasonalised the data 

prior to using EWQR. Apart from the appeal of simplicity, we opted for the use of only a 

constant term in the EWQR because, as we show in Section 5, it led to better quantile 

forecasts, for our data, than those produced by EWQR with regressors.  

For the series with fewer than 364 observations (one year of data) in the estimation 

sample, we performed EWQR with the whole estimation sample. For the series with at least 

364 observations, we used a moving window of just the most recent 364 observations. This 

saved computational running time, without noticeably affecting quantile forecast accuracy. In 

Section 3.1, we commented that the method of Boudoukh et al. (1998) is the same as EWQR 

with just a constant term. They also used a moving window of the most recent year of 

observations, which for their finance application amounted to 250 trading days.  
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Optimisation of the weighting parameter λ, in the EWQR minimisation of expression 

(3.1), proceeded by the use of a rolling window of 364 observations to estimate one step-

ahead quantile forecasts for each of the remaining observations in the estimation sample. The 

value of λ deemed to be optimal was the value that produced one-step-ahead quantile 

forecasts leading to the minimum value of the summation in the standard quantile regression 

minimisation (QR Sum), which is given in expression (4.1). We computed this summation 

over a grid of values for λ between 0.7 and 1, with a step size of 0.005. We performed the 

optimisation separately for each of the different values of θ (i.e. for each different quantile). 

We did not perform the optimisation for series for which there were fewer than 548 

(=364+182) observations in the estimation sample. We felt that 182 observations (six months 

of data) was a reasonable minimum from which to evaluate the in-sample quantile forecasts. 

QR Sum  = ( )
( )( )

∑ ∑
≥ <

−−+−
θ θ

θθθθ
tt ttQy|t Qy|t

tttt QyQy )(1)(            (4.1) 

The resulting optimised values for λ varied quite substantially across the series. In 

view of this instability, and given that we did not have optimised values of λ for the shorter 

series, we elected to use for all series, for estimation of the θ quantile, the median of the 

optimised values of λ corresponding to the same θ quantile. A similar approach to optimising 

exponential smoothing parameters is considered by Fildes et al. (1998), who find that using a 

commonly occurring value for all series can be preferable to using the value optimised for 

each series. The median λ values for a range of values of θ are presented in Figure 6. Larger 

values of λ imply that the older observations in the moving window of 364 are given a larger 

weighting. Giving a sizeable weight to all 364 observations would seem to be more important 

for the tail quantiles because these quantiles require more observations for their estimation. It 

is, therefore, intuitive that in Figure 6 the values of λ are greater for the tail quantiles.  

----------  Figure 6  ---------- 
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4.4.  Point forecasting results 

We evaluated post-sample forecasting performance at each forecast horizon for each 

series using the mean absolute error (MAE) and the root mean squared error (RMSE). Since 

the order of magnitude of the forecast errors varied across the series, it was not appropriate to 

average the error measures across the 256 series. Percentage error measures can be averaged, 

but using a percentage error measure is not recommended when the value of the series can be 

close to zero, which was often the case for our sales data. In order to summarise performance 

across all the series, we calculated a measure of average performance relative to simple 

exponential smoothing. For the MAE results, the calculation proceeded by computing, for each 

series and each forecast horizon, the ratio of the MAE for that method to the MAE for simple 

exponential smoothing, Method P1. We then calculated the weighted geometric mean of this 

measure across the 256 series, where the weighting was proportional to the number of post-

sample observations in each series. Expression (4.2) presents the measure: 
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where MAEi and 1P
iMAE  are the MAE for the method being considered and for Method P1, 

respectively; and Ni is the number of post-sample observations for series i. Lower values of 

the measure are better, with negative values indicating that the method outperforms Method P1. 

For conciseness, Table 1 reports the average of the accuracy measure for pairs of forecast 

horizons. The values in bold highlight the best performing method at each horizon. The final 

column of the table presents the average of the accuracy measure across the 14 horizons. We 

also calculated the relative measure using RMSE instead of MAE in expression (4.2), but we 

do not report the results in detail here because they were similar to those in Table 1.  

----------  Table 1  ---------- 
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Let us first consider the results in Table 1 for the standard point forecasting methods, 

Methods P1 to P6. Perhaps of greatest surprise is the poor performance of the multiplicative 

Holt-Winters method. This is likely to be due to the unstable ratios that result within the 

method when the time series takes values close to or equal to zero. The superior results for 

Methods P1 to P5 indicate that multiplicative seasonal decomposition is a more robust 

approach to handling the seasonality. We elected not to implement the additive version of 

Holt-Winters because our belief was that the seasonality was not additive. This view is 

supported by the choice of multiplicative seasonal modelling within the company’s method. 

Comparing the results for Methods P1 and P2 indicates that there is no gain in using LAD to 

optimise the simple exponential parameter. The fact that simple exponential smoothing was 

more accurate than Holt’s, damped Holt’s and Brown’s supports our earlier comment that 

few of the sales series contain trend.  

Comparing the results for Methods P7 and P8 shows that optimising the parameters in 

the company’s method provides a clear improvement over the company’s subjective choice 

of parameters. This finding is consistent with the literature on exponential smoothing 

methods (e.g. Fildes et al. 1998). The company’s method with optimised parameters, Method 

P8, performs well for the early lead times, but the positive value in the final column of the 

table shows that, overall, it is outperformed by simple exponential smoothing, Method P1.  

Turning to the methods based on EWQR, Methods P9 to P15, we see from the final 

column in Table 1 that overall they all outperformed all the level smoothing methods, 

Methods P1 to P8. The best results were achieved using the Winsorised approach with 

trimming α set at 25%, which implies trimming of all observations outside the interquartile 

range. Table 2 aims to provide a little more insight into the results. It shows the percentage of 

the 256 series for which the MAE for this method is lower than the MAE for the optimised 

company’s method. The Winsorised method can be seen to dominate beyond the early horizons.  

----------  Tables 2 and 3  ---------- 
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 In Section 4.1, we commented that the 256 series vary in length quite considerably. In 

order to establish whether the relative performances of the methods depends on the length of the 

series, we calculated the relative percentage measure separately for the following four categories 

of series lengths: fewer than one year of observations, between one and two years of 

observations, between two and three years, and more than three years. Table 3 provides the 

results for the optimised company’s method and the EWQR-based Winsorised approach with 

trimming α set at 25%. The only noticeable difference in the rankings of the two methods across 

the four categories is for one and two day-ahead prediction, where the EWQR-based method 

seems to be slightly preferable for the shorter series and a little worse for the longer series. 

 

5.  Empirical comparison of quantile forecasting methods 

5.1.  Description of the study  

In this section, we compare methods for forecasting the following four quantiles: 

0.025, 0.25, 0.75 and 0.975. As in Section 4, we compare post-sample forecasts for lead 

times from one to 14 days for the final 20% of observations in each of the 256 sales series. 

We deseasonalised the data prior to forecasting with all the methods, except Method Q7.  

 

5.2.  Quantile forecasting methods based on a point forecast 

 Of the standard point forecasting methods in Section 4, the method that overall was the 

most accurate was simple exponential smoothing. In view of this, we constructed quantile 

forecasts as the simple exponential smoothing point forecast plus the quantile of the forecast 

error distribution estimated using the following two different approaches: 

Method Q1. Empirical. For each lead time, we used the distribution of the forecast errors, for 

that lead time, in a moving window of the most recent 364 periods. 

Method Q2. Theoretical variance. We used a Gaussian assumption with the simple exponential 

smoothing multi step-ahead theoretical error variance formula:  
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( ) ( )( )22 11)(ˆvar ασ −+=− − kkyy ektt  

where )(ˆ ky kt − is the k step-ahead forecast; 2
eσ  is the one step-ahead variance calculated 

from a moving window of the most recent 364 days; and α is the smoothing parameter. 

 

5.3.  Adaptive quantile forecasting methods 

 We implemented the adaptive CAViaR method and the method of Gorr and Hsu (1985), 

which we presented in Section 2. For both methods, multiperiod forecasts are identical to the 

one day-ahead prediction. We performed parameter optimisation for each method. 

Method Q3. Adaptive CAViaR. 

Method Q4. Gorr and Hsu. 

 

5.4.  Quantile forecasting methods based on EWQR 

We considered the following three different versions of the EWQR approach:  

Method Q5. EWQR with a constant and no regressors. 

Method Q6. EWQR with a constant and a linear trend term.  

Method Q7. EWQR with a constant and the sinusoidal seasonal terms in expression (5.1). The 

bi are constant parameters, and d(t) is a repeating step function that numbers the days of the 

week from 1 to 7. Preliminary analysis for our data indicated that two sine and two cosine 

terms was preferable to one or three. 

( ) ( ) ( ) ( )7
)(

47
)(

37
)(

27
)(

1 4cos4sin2cos2sin tdtdtdtd bbbb ππππ +++            (5.1) 

We also considered the damped trend formulation of expression (3.6). However, the 

median value of the optimised damping parameter was one, which implied no damping. We 

suspect that this is due to there being trend in few of the series.  

We implemented the three EWQR methods in the same way as described for our 

point forecasting study of Section 4. The median optimised values of λ for the four quantiles 
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are presented for the three methods in Table 4. It is interesting to see that the values of λ are 

higher for the EWQR implementations that included regressors. The implication of this is 

that giving a sizeable weight to all 364 observations is more important when regressors are 

included. This is intuitive because it indicates that fitting regressors requires more 

information than simply fitting a constant term. Note that, although a λ value of 0.995 may 

seem high, it does result in noticeable discounting over a reasonable size window. For 

example, over a four-week period, the weight reduces to 0.99528=0.869, and over a one-year 

period, the weight reduces to 0.995364=0.161.  

----------  Table 4  ---------- 

 

5.5.  Quantile forecasting results 

The unconditional coverage of a θ quantile estimator is the percentage of 

observations falling below the estimator. Ideally, the percentage should be θ. To summarise 

unconditional coverage across the four quantiles, we calculated chi-squared goodness of fit 

statistics for each method, at each lead time, for each of the 256 series. We calculated the 

statistic for the total number of post-sample observations falling within the following five 

categories: below the 0.025 quantile estimator, between each successive pair of quantile 

estimators, and above the 0.975 quantile estimator. Assuming independence of the resulting 

chi-squared statistics for the different series, we then summed these statistics for all the 256 

series. The only two of the resulting summed chi-squared statistics that were not significant, 

at the 5% level, were those for one day-ahead prediction from the two adaptive quantile 

modelling methods, Methods Q3 and Q4. The chi-squared statistics, from different lead times 

for the same method, are not independent. Therefore, statistical testing would be invalid if 

these statistics were summed or averaged. Nevertheless, for conciseness, Table 5 reports the 

average of the chi-squared statistics for pairs of forecast horizons, and the average across the 

14 horizons. Lower values of the measure are better.  
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----------  Table 5  ---------- 

Table 5 shows that the best performing method at all lead times is the adaptive 

CAViaR method. The fact that it outperforms the Gorr and Hsu method suggests that the 

smoothing in expression (2.2) of the Gorr and Hsu method is not beneficial. The use of 

EWQR with a constant but no regressors, Method Q5, also performed well. By contrast, the 

results are very poor for the EWQR method with trend or seasonal terms. As we have already 

discussed, few of the supermarket series contain trend, so we should not have expected 

benefit in including the trend term. The poor results in Section 4 for the Holt-Winters method 

indicated that modelling seasonality was difficult for this data, and that seasonal 

decomposition prior to modelling was preferable. The same seems to be the case with regard 

to the use of the EWQR method.  

Testing for unconditional coverage is insufficient, as it does not assess the dynamic 

properties of each quantile estimator (Christoffersen, 1998). The essence of tests of 

conditional coverage is to examine whether there is autocorrelation in the hit variable, 

defined as ( ) θθ −≤= )(ˆ
ttt QyIHit . Unfortunately, when evaluating tail quantiles, the hit 

variable can sometimes contain no variation, in which case the test cannot be performed. For 

our 256 supermarket series, this was frequently the case for one or more of the seven 

methods. A formal testing of conditional coverage was, therefore, not possible. Instead, we 

evaluated the dynamic properties of the methods using the QR Sum, which is presented in 

expression (4.1). This measure can be viewed as the equivalent of the MAE and RMSE for 

evaluating quantile forecast accuracy. It is one of the measures reported by Engle and 

Manganelli (2004) in their VaR study. We calculated the post-sample QR Sum for each 

method applied to each series at each forecast horizon. Replacing the MAE terms in 

expression (4.2) by the QR Sum, we then computed the relative percentage measure, with the 

QR Sum for the Empirical method, Method Q1, in the denominator of the expression. Lower 
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values of the measure are better, with negative values indicating that the method 

outperformed Method Q1.  

Using the relative QR Sum measure, overall, the relative performance of the methods 

was similar to that in Table 5 for the chi-squared statistic. Tables 6 and 7 report the results 

for the 0.025 and 0.975 quantiles. It seems sensible to focus on the three methods that 

performed reasonably in Table 5: adaptive CAViaR, Gorr and Hsu and EWQR with a 

constant and no regressors. The results in Tables 6 and 7 show that, of these three methods, 

the EWQR method has the best dynamic properties for both quantiles at all lead times.  

----------  Tables 6 and 7  ---------- 

 

6.  Summary and concluding comments 

The daily sales series considered in this paper are characterised by high volatility and 

skewness, which are both time-varying. In addition, the series have occasional outlying 

observations. These features motivate consideration of point and interval forecasting methods 

that are robust with regard to distributional assumptions. As predictions are required for 

many different items, the method must be suited to implementation within an automated 

procedure. Our proposal is to generate point and interval forecasts from quantile forecasts 

generated using EWQR. We have shown that this can be viewed as simple exponential 

smoothing of the cdf. The EWQR framework has several benefits. First, it enables efficient 

solution through the use of linear programming. Second, it allows regressors, such as a trend 

and seasonal terms, to be included in the quantile model. Third, the regression framework 

provides scope for statistical inference. 

For the sales series, the quantile forecasts from EWQR with only a constant term 

compared favourably with a variety of other methods. Another method that performed well 

was the adaptive CAViaR method, which has previously only been applied to financial data. 
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Including trend or seasonal terms in the EWQR led to poor results, which motivates further 

experimentation with trending and seasonal series.  

Poor accuracy resulted from quantile forecasts based on a Gaussian distribution 

centred at the simple exponential smoothing point forecast with variance calculated using the 

theoretical error variance formula. This suggests that the statistical models underlying the 

standard exponential smoothing methods are not well suited to this data. Indeed, point 

forecasts from these standard methods, as well as the company’s own approach, were 

outperformed by robust point forecasting methods based on the EWQR quantile forecasts.  
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Figure 1 Daily supermarket sales of a single item. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Histogram for number of observations in the daily supermarket sales series. 
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Figure 3 Histogram for strength of deterministic linear trend in the daily supermarket 
sales series. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Histogram for variation explained by deterministic linear trend and AR terms 

in the daily supermarket sales series. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Histogram for proportion of outlying observations in the daily supermarket 

sales series. 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

5

10

15

20

25

30

35

0 
to

 1

1 
to

 2

2 
to

 3

3 
to

 4

4 
to

 5

5 
to

 6

6 
to

 7

7 
to

 8

8 
to

 9

9 
to

 1
0

10
 to

 1
1

11
 to

 1
2

12
 to

 1
3

Proportion of outlying observations (%)

Frequency (%)

0
2
4
6
8

10
12
14
16

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0 
to

 0
.1

0.
1 

to
 0

.2

0.
2 

to
 0

.3

0.
3 

to
 0

.4

0.
4 

to
 0

.5

0.
5 

to
 0

.6

0.
6 

to
 0

.7

Correlation with deterministic linear trend

Frequency (%)

0

5

10

15

20

25

30

-5
 to

 0

0 
to

 5

5 
to

 1
0

10
 to

 1
5

15
 to

 2
0

20
 to

 2
5

25
 to

 3
0

30
 to

 3
5

35
 to

 4
0

40
 to

 4
5

45
 to

 5
0

50
 to

 5
5

55
 to

 6
0

60
 to

 6
5

65
 to

 7
0

70
 to

 7
5

Adjusted R2 (%)

Frequency (%)



 26

Figure 6 Median of the optimised values of the weighting parameter, λ, for the 
exponentially weighted θ quantile regression of expression (3.1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 Evaluation of point forecasting methods using the relative MAE measure of 

expression (4.2), calculated for all 256 series. Accuracy measured relative to 
Method P1. Lower values are better. 

 
 
Forecast Horizon 1-2 3-4 5-6 7-8 9-10 11-12 13-14  All 

Level Smoothing Methods 

  P1.  Simple 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 

  P2.  Simple using LAD  0.7 0.6 0.7 0.6 0.5 0.5 0.6  0.6 

  P3.  Holt’s 0.8 1.1 1.2 1.7 2.5 2.9 3.2  1.9 

  P4.  Damped Holt’s 0.7 0.7 0.7 0.7 0.7 0.7 0.6  0.7 

  P5.  Brown’s 1.4 2.2 2.9 4.1 5.5 6.6 7.7  4.4 

  P6.  Holt-Winters’ 4.7 4.7 5.3 6.4 7.0 7.4 8.1  6.2 

  P7.  Company -0.7 -1.6 -0.6 1.8 3.3 4.0 5.4  1.7 

  P8.  Optimised Company -1.9 -2.4 -1.3 0.7 1.6 2.4 3.6  0.4 

EWQR Methods 

  P9.  Median -1.0 -1.5 -1.1 -1.0 -1.8 -1.8 -1.4  -1.4 

  P10.  Trimean -1.2 -1.8 -1.3 -1.4 -2.1 -2.1 -1.8  -1.7 

  P11.  Gastwirth -1.3 -1.8 -1.4 -1.4 -2.1 -2.1 -1.8  -1.7 

  P12.  Five Quantile -1.0 -1.5 -1.1 -1.2 -2.0 -2.0 -1.7  -1.5 

  P13.  Winsorised α = 0.05 -0.9 -1.1 -1.0 -1.0 -1.2 -1.1 -1.1  -1.0 

  P14.  Winsorised α = 0.10 -1.2 -1.5 -1.3 -1.3 -1.6 -1.5 -1.4  -1.4 

  P15.  Winsorised α = 0.25 -1.6 -2.0 -1.6 -1.7 -2.3 -2.1 -1.9  -1.9 
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Table 2 Percentage of the 256 series for which the MAE for the EWQR-based 

Winsorised Method P15 with α=0.25 is lower than the MAE for the optimised 
company’s Method P8. Bold indicates significantly greater than 50% at the 
5% significance level.  

 
 

Forecast Horizon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

% 50 49 49 54 54 55 60 74 75 75 73 76 76 78 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3 Evaluation of point forecasting Methods P8 and P15 using the relative MAE 

measure of expression (4.2), calculated for series of different lengths. 
Accuracy measured relative to Method P1. Lower values are better. 

 
 
Forecast Horizon 1-2 3-4 5-6 7-8 9-10 11-12 13-14 All 

83 series with observations ≤ 364 
  P8.  Optimised Company -2.5 -2.7 -2.4 0.6 2.5 3.2 4.5 0.5 

  P15.  EWQR Winsorised α = 0.25  -2.6 -2.1 -2.1 -2.2 -2.6 -2.3 -1.7 -2.2 

39 series with 365 ≤ observations ≤ 728  
  P8.  Optimised Company -1.2 -1.3 -0.7 1.5 2.2 2.6 3.4 0.9 

  P15.  EWQR Winsorised α = 0.25  -1.6 -1.8 -1.5 -1.4 -2.0 -2.0 -2.0 -1.7 

28 series with 729 ≤ observations ≤ 1092 
  P8.  Optimised Company -1.6 -2.0 -1.4 0.4 1.8 2.4 3.8 0.5 

  P15.  EWQR Winsorised α = 0.25  -0.9 -1.0 -0.9 -0.9 -1.0 -0.9 -0.9 -0.9 

106 series with 1093 ≤ observations ≤ 1436 
  P8.  Optimised Company -2.0 -2.6 -1.2 0.6 1.5 2.3 3.6 0.3 

  P15.  EWQR Winsorised α = 0.25  -1.6 -2.2 -1.7 -1.8 -2.5 -2.3 -2.1 -2.1 

All 256 series 

  P8.  Optimised Company -1.9 -2.4 -1.3 0.7 1.6 2.4 3.6 0.4 

  P15.  EWQR Winsorised α = 0.25  -1.6 -2.0 -1.6 -1.7 -2.3 -2.1 -1.9 -1.9 
 
 
 



 28

 
 
Table 4 Median of the optimised values of the weighting parameter, λ, for three 

different versions of the exponentially weighted θ quantile regression of 
expression (3.1). 

 
 

θ 0.025 0.25 0.75 0.975 

Q5. EWQR no regressors 0.990 0.950 0.925 0.9725 

Q6. EWQR trend 0.995 0.985 0.970 0.995 

Q7. EWQR seasonal 0.995 0.990 0.980 0.995 

 
 
 
 
 
 
 
 
 
 
 
 
Table 5 Evaluation of quantile forecasting methods using unconditional coverage chi-

square statistic summarising performance across all four quantiles. Lower 
values are better. 

 
 
Forecast horizon 1-2 3-4 5-6 7-8 9-10 11-12 13-14  All 

Methods Based on a Point Forecast 

   Q1.  Empirical 2459 2648 2734 2952 3267 3489 3797  3049 

   Q2.  Theoretical variance 4142 4360 4540 4666 4902 5128 5420  4737 

Adaptive Methods 

   Q3.  Adaptive CAViaR 1018 1371 1587 1822 2073 2413 2744  1861 
   Q4.  Gorr and Hsu 1193 1537 1712 1956 2163 2474 2804  1977 

EWQR Methods 

   Q5.  EWQR no regressors 1528 1708 1907 2156 2505 2812 3136  2250 

   Q6.  EWQR trend 3609 4249 4902 5720 6690 7572 8471  5888 

   Q7.  EWQR seasonal 3145 3124 3222 3492 3820 3890 3938  3519 
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Table 6 Evaluation of 0.025 quantile forecasts using relative QR Sum measure. 

Accuracy measured relative to Method Q1. Lower values are better. 
 
 
Forecast horizon 1-2 3-4 5-6 7-8 9-10 11-12 13-14  All 

Methods Based on a Point Forecast 

   Q1.  Empirical 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 

   Q2.  Theoretical variance 2.7 2.0 1.4 0.9 0.0 -0.1 0.0  1.0 

Adaptive Methods 

   Q3.  Adaptive CAViaR -20.1 -22.0 -23.5 -24.8 -26.6 -27.4 -28.0  -24.6 

   Q4.  Gorr and Hsu -19.6 -21.5 -23.0 -24.4 -26.1 -26.9 -27.4  -24.1 

EWQR Methods 

   Q5.  EWQR no regressors -21.1 -23.0 -24.5 -25.8 -27.6 -28.4 -28.9  -25.6 
   Q6.  EWQR trend -19.4 -20.9 -22.1 -23.3 -24.7 -25.3 -25.7  -23.0 

   Q7.  EWQR seasonal -18.4 -20.6 -22.3 -23.6 -25.2 -26.1 -26.7  -23.3 
 
 
 
 
 
 
 
 
 
 
 
Table 7 Evaluation of 0.975 quantile forecasts using relative QR Sum measure. 

Accuracy measured relative to Method Q1. Lower values are better. 
 
 
Forecast horizon 1-2 3-4 5-6 7-8 9-10 11-12 13-14  All 

Methods Based on a Point Forecast 

   Q1.  Empirical 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 

   Q2.  Theoretical variance -0.1 -0.1 -0.3 -0.4 -0.5 -0.8 -1.1  -0.5 

Adaptive Methods 

   Q3.  Adaptive CAViaR 10.6 9.6 9.8 9.8 9.5 9.2 9.6  9.7 

   Q4.  Gorr and Hsu 11.0 10.1 10.3 10.3 9.9 9.6 9.9  10.2 

EWQR Methods 

   Q5.  EWQR no regressors 5.0 4.7 5.3 5.6 5.6 5.7 6.1  5.4 

   Q6.  EWQR trend 13.0 13.2 14.6 15.3 15.3 15.8 16.6  14.8 

   Q7.  EWQR seasonal 11.5 8.9 8.3 8.2 7.1 5.4 4.5  7.7 
 
 
 


