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Abstract--In recent years, a large literature has evolved on the use 
of artificial neural networks (NNs) for electric load forecasting. 
NNs are particularly appealing because of their ability to model 
an unspecified non-linear relationship between load and weather 
variables. Weather forecasts are a key input when the NN is used 
for forecasting. This study investigates the use of weather 
ensemble predictions in the application of NNs to load 
forecasting for lead times from 1 to 10 days ahead. A weather 
ensemble prediction consists of multiple scenarios for a weather 
variable. We use these scenarios to produce multiple scenarios 
for load. The results show that the average of the load scenarios 
is a more accurate load forecast than that produced using 
traditional weather forecasts. We use the load scenarios to 
estimate the uncertainty in the NN load forecast. This compares 
favourably with estimates based solely on historical load forecast 
errors. 
 

Index Terms-- Load forecasting; neural networks; weather 
ensemble predictions. 

I.  INTRODUCTION 
CCURATE load forecasts are required by utilities who 
need to predict their customers’ demand, and by those 

wishing to trade electricity as a commodity on financial 
markets. Over the last decade, a great deal of attention has 
been devoted to the use of artificial neural networks (NNs) to 
model load [1]. Weather variables are an important input to 
these models for short- to medium-term forecasting. A load 
forecast is produced by substituting a forecast for each 
weather variable in the NN model. Traditionally, single 
weather point forecasts have been used. A weather ensemble 
prediction is a new type of weather forecast. It consists of 
multiple scenarios for the future value of a weather variable. 
The scenarios are known as ensemble members, and in this 
paper each ensemble prediction consists of 51 members. The 
ensemble, therefore, conveys the degree of uncertainty in the 
weather variable. In [2], we found that there was benefit in 
using ensemble predictions in linear regression load 
forecasting models. This paper considers the use of these new 
weather forecasts in the non-linear modelling environment of 
NNs.  

We use the 51 weather ensemble members to produce 51 
scenarios for load from a NN for lead times from 1 to 10 days 
ahead. Meteorologists sometimes find that the mean of the 
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ensemble members for a weather variable is a more accurate 
forecast of the variable than a traditional single point forecast 
[3,4]. In view of this, we consider the use of the average of the 
51 load scenarios as a point forecast for load. A standard 
result in statistics is that the expected value of a non-linear 
function of random variables is not necessarily the same as the 
non-linear function of the expected values of the random 
variables. Since NN load models are non-linear functions of 
weather variables, the traditional procedure of inserting single 
weather point forecasts amounts to approximating the 
expectation of a non-linear function of random variables by 
the same non-linear function of the expected values of the 
random variables. The mean of the 51 load scenarios is 
appealing because it is equivalent to taking the expectation of 
an estimate of the load probability density function. 

We use the distribution of the load scenarios as an input to 
estimating the uncertainty in the load forecasts. It is important 
to assess the uncertainty in order to manage the system load 
efficiently. A measure of risk is also beneficial when trading 
electricity. The standard practice in NN load forecasting 
research is to ignore the impact of weather forecast accuracy; 
actual weather is predominantly used to evaluate NN models 
[1]. However, weather forecast error can seriously impact load 
forecast accuracy [5]. In [6], it is demonstrated that weather 
uncertainty information can be used to produce improved load 
predictions and prediction intervals. This is also shown by our 
study, which uses weather ensembles to provide the weather 
uncertainty information.  
 In this paper, our analysis is based on daily load data for 
England and Wales. The variables used to model load are 
those used at the National Grid (NG), which is responsible for 
the transmission of electricity in England and Wales. Weather 
ensemble predictions are described in Section II. Section III 
presents the NN and input variables used in this study. Section 
IV considers how weather ensemble predictions can be used 
to improve the accuracy of the NN load forecasts. Sections V 
and VI investigate the potential for using weather ensemble 
predictions to assess the uncertainty in the load forecasts. The 
estimation of load forecast error variance is considered in 
Section V, and load prediction intervals are the focus of 
Section VI. Section VII provides a summary and conclusions. 

II.  WEATHER ENSEMBLE PREDICTIONS 
The weather is a chaotic system. Small errors in the initial 

conditions of a forecast grow rapidly, and affect predictability. 
Furthermore, predictability is limited by model errors due to 
the approximate simulation of atmospheric processes in a 
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numerical model. These two sources of uncertainty limit the 
accuracy of single point forecasts, generated by running the 
model once with best estimates for the initial conditions.  

The weather prediction problem can be described in terms 
of the time evolution of an appropriate probability density 
function (pdf) in the atmosphere’s phase space. An estimate of 
the pdf provides forecasters with an objective way to gauge 
the uncertainty in single point predictions. Ensemble 
prediction aims to derive a more sophisticated estimate of the 
pdf than that provided by the distribution of past forecast 
errors. Ensemble prediction systems generate multiple 
realisations of numerical predictions by using a range of 
different initial conditions in the numerical model of the 
atmosphere. The frequency distribution of the different 
realisations, which are known as ensemble members, provides 
an estimate of the pdf. The initial conditions are not sampled 
as in a statistical simulation because this is not practical for 
the complex, high-dimensional weather model. Instead, they 
are designed to sample directions of maximum possible 
growth [4, 7, 8]. 

The benefit of using ensemble predictions is illustrated in 
Fig. 1. pdf0, represents the initial uncertainties. From the best 
estimate of the initial state, a single point forecast is produced 
(bold solid curve). This point forecast fails to predict correctly 
the future state (dashed curve). The ensemble forecasts (thin 
solid curves), starting from perturbed initial conditions, can be 
used to estimate the probability of future states. In this 
example, the estimated pdf, pdft, is bimodal. The figure shows 
that two of the perturbed forecasts almost correctly predicted 
the future state. Therefore, at time 0, the ensemble system 
would have given a non-zero probability of the future state.  

Since December 1992, both the US National Center for 
Environmental Predictions (NCEP, previously NMC) and the 
European Centre for Medium-range Weather Forecasts 
(ECMWF) have integrated their deterministic prediction with 
medium-range ensemble prediction [7, 9, 10]. The number of 
ensemble members is limited by the necessity to produce 
weather forecasts in a reasonable amount of time with the 
available computer power. In December 1996, after different 
system configurations had been considered, a 51-member 
system was installed at ECMWF [8]. The 51 members consist 
of one forecast started from the unperturbed, best estimate of 
the atmosphere initial state plus 50 others generated by 
varying the initial conditions. Stochastic physics was 
introduced into the system in October 1998 [11]. This aims to 
simulate model uncertainties due to random model error.  

At the time of this study, ensemble forecasts were produced 
every day for lead times from 12 hours ahead to 10 days 
ahead. The ensemble forecasts were archived every 12 hours, 
and are thus available for midday and midnight. The archived 
weather variables include both upper level variables (typically 
wind speed, temperature, humidity and vertical velocity at 
different heights) and surface variables (e.g. temperature, 
wind speed, precipitation, cloud cover). In our work, we used 
ensemble predictions for temperature, wind speed and cloud 
cover generated by ECMWF from 1 November 1998 to 30 

June 2000. We did not use earlier predictions because the 
introduction of stochastic physics in October 1998 
substantially improved the ensemble predictions. 
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Fig. 1.  Schematic of ensemble prediction. Bold solid curve is the single point 
forecast. Dashed curve is the future state. Thin solid curves are the ensemble 
of perturbed forecasts. 

III.  AN NN LOAD MODEL FOR ENGLAND AND WALES 

A.  Load Forecasting 
A wide variety of methods have been used for load 

forecasting. The range of different approaches includes time-
varying splines [12], linear regression models [13], profiling 
heuristics [14] and judgemental forecasts. However, the most 
significant development in recent years has been the use of 
NNs, which allow the estimation of possibly non-linear 
models without the need to specify a precise functional form. 
Load forecasting is a suitable application for NNs because 
load is usually an unknown non-linear function of weather 
variables. Furthermore, there is often a large amount of data 
available in load modelling, which is a necessity for the 
effective use of NNs. A useful critical review of the literature 
on the use of NNs for load forecasting is provided in [1].  

The winners of a recent load forecasting competition 
produced hourly forecasts using separate linear regression 
models for each hour of the day [13]. In this paper, we follow 
this general methodology but, instead of linear regression, we 
use a NN. For simplicity, we focus on predicting load at 
midday. This is convenient because ensemble predictions are 
currently available for midday, although in the future they 
could be produced for any required period of the day. Midday 
is a particularly important period in many summer months in 
England and Wales because it is often when peak load occurs. 
However, it is important to note that our work is not specific 
to peak load forecasting, and that although we do focus on 
midday forecasting, the methods that we consider can be used 
for any period of the day. 

Fig. 2 shows a plot of load in England and Wales at midday 
for each day in 1999. One clear feature is the strong 
seasonality throughout the year, which results in a difference 
of about 5000 MW between typical winter and typical summer 
demand. Another noticeable seasonal feature occurs within 
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each week where there is a consistent difference of about 
6000 MW between weekday and weekend demand. There is 
unusual demand on a number of ‘special days’, including 
public holidays. In practice, at NG, judgemental methods are 
often used to forecast load on these days. As in many other 
studies of electric load (e.g. [6] and [15]), we elected to 
smooth out these special days, as their inclusion is likely to be 
unhelpful in our analysis of the relationship between load and 
weather. 
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Fig. 2.  Load at Midday in England and Wales in 1999.  
 

B.  The Neural Network Design 
In this paper, we use a single hidden layer feedforward 

network, which is the most widely-used neural network for 
forecasting [16]. It consists of a set of k inputs, which are 
connected to each of m units in a single hidden layer, which, in 
turn, are connected to an output. In regression terminology, the 
inputs are explanatory variables, xit, and the output is the 
dependent variable, yt, which in this study is midday load in 
England and Wales. The resultant model can be written as 
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where g1(⋅) and g2(⋅) are activation functions, which we chose 
as sigmoidal and linear respectively, and wji and vj are the 
weights (parameters). We estimated the weights using the 
following minimisation 
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where n is the number of observations, and λ1 and λ2 are 
regularisation parameters which penalise the complexity of the 
network and thus avoid overfitting [17, §9.2]. We established 
suitable values for λ1 and λ2 and for the number, m, of units in 
the hidden layer using a hold out method with a third of the 
data used for testing [17, §9.8]. This resulted in the same 
number of hidden units, m, as the number, k, of inputs, which 
is a rule-of-thumb suggested in [18].   

Although in [1] several studies are reviewed, which like 
ours implement a NN with just one output (e.g. [19, 20]), the 
use of 24 outputs is also common, where each output 

corresponds to an hour of the day (e.g. [15, 21]). However, in 
[1] it is argued that with 24 outputs it is difficult to avoid the 
number of weights becoming unreasonably large in 
comparison with the size of the estimation sample. We 
acknowledge that there are many other effective NN designs 
in the literature, which we could have implemented in this 
study. However, as our focus is on improved weather input to 
the modelling process, we felt that it was important to use a 
relatively straightforward and uncontroversial NN design. The 
methods discussed in this paper are relevant to other designs 
because all neural network load models are likely to be non-
linear functions of weather variables. It is this non-linearity 
that makes the use of weather ensemble predictions 
particularly attractive. 

 

C.  The Neural Network Inputs 
Our choice of inputs was influenced by the variables that 

have been used for many years in the linear regression models 
of NG. Short- to medium-term forecasting models must 
accommodate the variation in load due to the seasonal patterns 
shown in Fig. 2 and due to weather. NG forecasters use 0/1 
dummy variables for each day of the week and for each of 
three summer weeks when a large amount of industry closes. 
In order to capture the autoregressive pattern in load, we 
included lagged demand variables. We considered lags of 1 to 
7 days. A hold out method, with a third of the data used for 
testing [17, §9.8], indicated that only lags 1, 3 and 5 should be 
included in the model, and only the dummy variables for 
Fridays, Saturdays, Sundays and the second week of the 
industrial closure period.  

In addition to these seven variables, we also included as 
inputs the three weather variables used at NG: effective 
temperature, cooling power of the wind and effective 
illumination. These variables are constructed by transforming 
standard weather variables in such a way as to enable efficient 
modelling of weather-induced load variation [22]. Effective 
temperature (TEt) for day t is an exponentially smoothed form 
of TOt, which is the mean of the spot temperature recorded for 
each of the four previous hours.  

12
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The influence of lagged temperature aims to reflect the delay 
in response of heating appliances within buildings to changes 
in external temperature. At NG, the non-linear dependence of 
load on effective temperature is modelled by the inclusion of 
higher powers of TEt in their linear regression models. 
Cooling power of the wind (CPt) is a non-linear function of 
wind speed, Wt, and average temperature, TOt. It aims to 
describe the draught-induced load variation.  
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Effective illumination is a complex function of visibility, 
number and type of cloud, amount and type of precipitation.  

Since NG forecasters need to model the demand for the 
whole of England and Wales, weighted averages are used of 
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weather readings at Birmingham, Bristol, Leeds, Manchester 
and London. The weighted averages aim to reflect population 
concentrations in a simple way by using the same weighting 
for all the locations except London, which is given a double 
weighting. We used the same weighted averages in this study.  

As the aim of this paper is to investigate the potential for 
the use of ensemble predictions, we used only weather 
variables for which ensemble predictions were available. 
Ensemble predictions are available for spot temperature, wind 
speed and cloud cover at midday and midnight. In view of 
this, we replaced effective illumination by cloud cover, and 
we used spot temperature, instead of average temperature, 
TOt, to construct effective temperature and cooling power of 
the wind from the NG formulae in expressions (3) and (4), 
respectively. The hold out method indicated that all three 
weather variables should be included as inputs to the NN 
model. 

One might argue that variables should not be transformed 
prior to their use as inputs because the NN should be used to 
identify all non-linearities. However, an important stage of 
NN modelling is data pre-processing [1]. Since meteorologists 
and load forecasters have established that expression (4) 
satisfactorily captures the effect of the cooling power of the 
wind, it would be unwise to discard this information. Data 
pre-processing is also performed on weather variables in [23]. 

IV.  USING WEATHER ENSEMBLES IN LOAD FORECASTING 

A.  Creating 51 Scenarios for Load 
When forecasting from non-linear models, such as NNs, it 

is important to be aware that the expected value of a non-
linear function of random variables is not necessarily the same 
as the non-linear function of the expected values of the 
random variables [24]. In addition to the non-linearity in the 
NN, the definition of cooling power of the wind, given in 
expression (4), emphasises that our NN load model will be a 
non-linear function of the fundamental weather variables: 
temperature, wind speed and cloud cover. The usual approach 
to load forecasting involves substituting a single point forecast 
for each weather variable. In view of the result regarding the 
expectation of a non-linear function, it would be preferable to 
first construct the load probability density function, and then 
calculate its expectation. 
  Weather ensemble predictions enable an estimate to be 
constructed for the load density function. Since we have 51 
ensemble members for temperature, wind speed and cloud 
cover, we can substitute these into the NN model to deliver 51 
scenarios for load. The histogram of these load scenarios is an 
estimate of the density function. The mean of the load 
scenarios is an estimate of the mean of the density function. 
Meteorologists often find that the mean of the weather 
ensemble members is a more accurate forecast than a single 
point weather forecast. The collection of ensemble members 
must, therefore, contain information not captured by the single 
point forecast. This provides further motivation for forecasting 
load using the mean of the 51 load scenarios. 
 

B.  Comparison of Load Forecasting Methods 
We used 22 months of daily data from 1 January 1997 to 31 

October 1998 to estimate model parameters. It has been 
remarked in [1] that many studies implement NNs with far too 
many parameters in relation to the size of the estimation 
sample. Our estimation sample of 22 months consisted of 669 
daily observations with which to estimate the 121 parameters 
of our NN. This ratio of sample size to number of parameters 
is bettered by only one of the studies reviewed in [1]. Design 
of the NN model, choice of NN inputs and NN parameter 
estimation were based only on this sample of 669 
observations. We used 20 months of daily data from 1 
November 1998 to 30 June 2000 to evaluate the resulting 
forecasts. These 20 months are the months for which we had 
weather ensemble predictions. We produced forecasts for each 
day in our evaluation period for lead times of 1 to 10 days 
ahead. We compared forecasts from the following four 
methods using the mean absolute percentage error (MAPE) 
summary measure, which is used extensively in the load 
forecasting literature. 

Method 1: NN using traditional weather point forecasts - 
This is the usual procedure of substituting traditional single 
weather point forecasts in the NN load model. 

Method 2: mean of NN load scenarios - This is the mean of 
the 51 load scenarios. This approach is based on the weather 
ensemble predictions since the 51 scenarios are constructed 
from the 51 ensemble members. 

Method 3: NN using actual weather as forecasts - In order 
to establish the limit on load forecast accuracy that could be 
achieved with improvements in weather forecast information, 
we produced load ‘forecasts’ using actual observed weather 
substituted for the weather variables in the NN load model. 
Clearly this level of forecast accuracy is unattainable, as 
perfect weather forecasts are not achievable. 

Method 4: univariate - In order to investigate the benefit of 
using weather-based methods at different lead times, we 
produced a further set of benchmark forecasts from the 
following well-specified univariate model that does not 
include any of the weather variables: 
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where FRIt, SATt and SUNt are day of the week 0/1 dummy 
variables, and the bi, φi and ψ1 are constant parameters. The 
model was constructed using the standard Box-Jenkins 
statistical modelling steps. Comparison of NN predictions 
with forecasts from a simpler benchmark method is one of the 
recommendations in [25] for effective NN validation. 

Fig. 3 presents the MAPE results for the four methods. The 
figure shows that the weather-based methods comfortably 
dominate the method using no weather variables beyond a 
lead time of 1 day. It is interesting to note that, for 1 to 3 day-
ahead load forecasting, there is very little difference between 
the performance of the methods using weather forecasts and 
that of the benchmark method using actual observed weather. 
The difference increases steadily with the lead time due to the 
worsening accuracy of the weather forecasts. As in [5], this 
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shows how weather forecast error can have a significant 
impact on load forecast accuracy. The results show that using 
weather ensemble predictions, instead of the traditional 
approach of using single weather point forecasts, led to 
improvements in accuracy for all 10 lead times. These 
improvements brought the MAPE results noticeably closer to 
those of the method using actual observed weather, which is 
an unattainable benchmark. For lead times of 5, 6 and 10 days 
ahead, the accuracy of the new ensemble based NN approach 
is as good as that of the traditional NN approach at the 
previous lead time. This could be described as a gain in 
accuracy of a day over the traditional approach. 
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Fig. 3.  MAPE for load point forecasts for post-sample period 1 November 
1998 to 30 June 2000. 

V.  USING WEATHER ENSEMBLES TO ESTIMATE THE LOAD 
FORECAST ERROR VARIANCE 

The estimation of the variance of the probability 
distribution of load forecast error is not a trivial task, as the 
forecast error variance is likely to vary over time due to 
weather and seasonal effects [5, 6]. The approach that we took 
was to model the variance in a series of historical post-sample 
forecast errors. This is similar to the approach taken in [26], 
where the absolute magnitude of the errors is modelled. Since 
the method using weather ensemble predictions as input 
produced the most accurate post-sample forecasts in the 
previous section, we focused on estimation of the variance of 
the forecast errors from this method. We considered lead 
times from 1 to 10 days ahead. We used the first 10 months (1 
November 1998 to 31 August 1999) of post-sample errors 
from our earlier analysis of point forecasting to estimate 
model parameters, and the remaining 10 months (1 September 
1999 to 30 June 2000) of post-sample errors to evaluate the 
resulting variance estimates. We implemented the following 
three variance estimation methods. 

Method 1: naïve - This method produces simple benchmark 
variance estimates. For each lead time, h, we calculated the 
variance of the h day-ahead errors in the estimation period of 
10 months. For example, we estimated the future variance of 

the 5 day-ahead forecast errors using the variance of the 5 
day-ahead errors from the previous 10 months. 

Method 2: exponential smoothing - We used an 
exponentially weighted moving average of past squared 
errors, et

2, to allow the variance estimate to adapt over time. 
We optimised the smoothing parameter, α, separately for each 
lead time. This method is used in financial volatility 
forecasting. This estimator is constructed as: 
                             2

1
2

1
2 ˆ)1(ˆ −− −+= ttt e σαασ                              (6) 

Method 3: rescaled variance of NN load scenarios - The 
level of uncertainty in the load forecasts depends to an extent 
on the uncertainty in the weather forecasts. This motivates the 
use of a measure of weather forecast uncertainty in the 
modelling of load forecast uncertainty. The variance of the 51 
load scenarios, discussed in Section IV, conveys the 
uncertainty in the load due to weather uncertainty. For each 
day in our post-sample period, we calculated the variance, 

2
,tENSσ , of the 51 scenarios for each of the 10 lead times. 

However, the variance of the 51 scenarios will substantially 
underestimate the load forecast error variance because it does 
not accommodate the uncertainty due to the NN model 
residual error and parameter estimation error. This was 
confirmed by our empirical analysis. In view of this, for each 
lead time, we rescaled the estimator by regressing the squared 
forecast error on 2

,tENSσ  using just the first 10 months of post-

sample data. This results in an estimator of the form 
2

,
ˆˆ tENSba σ+ , where â  and b̂  are constant parameters.  

Fig. 4 shows the R2, from the regression of the squared 
post-sample forecast errors on the variance estimates for the 
10-month post-sample evaluation period. Higher values of the 
R2 are better. This measure is widely used in volatility forecast 
evaluation in finance. Typically, the R2 values are low, with 
values less than 10% being the norm [27]. The R2 for the 
naïve estimator was zero for all lead times, as it does not vary 
during the 10-month evaluation period. Exponential 
smoothing is the best for the first three lead times, but beyond 
that, it is comfortably outperformed by the rescaled variance 
of NN load scenarios.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  R2 percentage measure for forecast error variance estimation methods 
for post-sample period 1 September 1999 to 30 June 2000. 

 

0%

2%

4%

6%

8%

10%

1 2 3 4 5 6 7 8 9 10
Lead time (days)

1. naïve
2. exponential smoothing
3. rescaled variance of NN load scenarios

R2



 6

VI.  USING WEATHER ENSEMBLES TO ESTIMATE LOAD 
PREDICTION INTERVALS 

An alternative description of the load forecast error 
distribution is given by a prediction interval. In order to 
consider both the tails and the body of the predictive 
distribution, we focused on estimation of 50% and 90% 
intervals. More specifically, we evaluated different methods 
for estimating the bounds of these intervals: the 5%, 25%, 
75% and 95% quantiles. The θ% quantile of the probability 
distribution of a variable y is the value, Q(θ), for which 
P(y<Q(θ))=θ. As in Section V, we used 10 months of post-
sample errors from our earlier analysis of load point 
forecasting to estimate parameters, and the remaining 10 
months of errors for evaluation. 

We constructed quantile estimators using the three variance 
estimators investigated in Section V with either a Gaussian 
distribution or the empirical distribution of the corresponding 
standardised forecast errors, 

tte σ̂/  (see [28] and [29]). The 
use of the empirical distribution was generally more 
successful than the Gaussian distribution and so, in the 
remainder of this section, we limit our focus to comparison of 
the quantile estimators based on the empirical distribution. 

The upper tail tends to be the most important part of the 
load distribution for scheduling purposes; the problems caused 
by a large shortfall in electricity availability tend to be more 
serious than those resulting from an oversupply of the same 
size. Fig. 5 compares estimation of the 95% quantiles at the 10 
different lead times for the post-sample period of 10 months. 
The figure shows the percentage of errors falling below the 
95% quantile estimators. For estimation of the 95% quantile, 
the ideal is 95%. The dashed horizontal lines in Fig. 5 are the 
bounds of the acceptance region for the test of whether the 
percentages are significantly different from 95% (at the 5% 
level). The test uses a Gaussian distribution and the standard 
error formula for a proportion. Although the exponential 
smoothing based estimator performs well for the early lead 
times, it fades badly beyond 6 days ahead. The estimator 
based on the rescaled variance of NN load scenarios performs 
well at the early lead times and comfortably outperforms the 
other two estimators for the longer horizons. 

To summarise the overall relative performance of the 
methods at the different lead times, we calculated chi-squared 
goodness of fit statistics. For each method, at each lead time, 
we calculated the statistic for the total number of post-sample 
forecast errors falling within the following five categories: 
below the 5% quantile estimator, between the 5% and 25% 
estimators, between the 25% and 75%, between the 75% and 
95%, and above the 95%. Fig. 6 shows the resulting chi-
squared statistics. Lower values are better. The dashed 
horizontal line in the figure is the bound of the acceptance 
region for the 5% significance test on the chi-squared statistic. 
The chi-squared statistic for the estimator based on the 
rescaled variance of NN load scenarios lies under the 
statistics for the other two methods for all but two of the 10 
lead times indicating an overall superiority of this estimator.  
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Fig. 5.  Percentage of post-sample forecast errors falling below various 95% 
quantile estimators for the period 1 September 1999 to 30 June 2000. All 3 
estimators were based on empirical distribution. 

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10
Lead time (days)

Chi-squared 
statistic

1. naïve
2. exponential smoothing
3. rescaled variance of NN load scenarios  

Fig. 6.  Chi-squared statistics summarising overall estimator bias for 5%, 25%, 
75% and 95% forecast error quantiles for the period 1 September 1999 to 30 
June 2000. All 3 estimators were based on empirical distribution. 

VII.  SUMMARY AND CONCLUSIONS 
We have shown how weather ensemble predictions can be 

used in NN load forecasting for lead times from 1 to 10 days 
ahead. We used the 51 ECMWF ensemble members for each 
weather variable to produce 51 scenarios for load from a NN. 
For all 10 lead times, the mean of the load scenarios was a 
more accurate load forecast than that produced by the 
traditional procedure of substituting a single point forecast for 
each weather variable in the NN load model. This traditional 
procedure amounts to approximating the expectation of the 
NN non-linear function of weather variables by the same non-
linear function of the expected values of the weather variables. 
The mean of the 51 scenarios is appealing because it is 
equivalent to taking the expectation of an estimate of the load 
probability density function. 

The distribution of the 51 load scenarios provides 
information regarding the uncertainty in the load forecast. 
However, since the distribution does not accommodate the 
NN load model uncertainties, it will tend to underestimate the 
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load forecast uncertainty. In view of this, we rescaled the 
variance of the load scenarios before using it as an estimator 
of the load forecast error variance. The resulting estimator 
compared favourably with benchmark estimators based purely 
on historical forecast error. Using the same variance estimator 
as a basis for estimating prediction intervals also compared 
well with benchmark methods. We, therefore, conclude that 
there is strong potential for the use of weather ensemble 
predictions in NN load forecasting. 
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