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Summary 

We present new autoregressive logit models for forecasting the probability of a time series of 

financial asset returns exceeding a threshold. The models can be estimated by maximizing a Bernoulli 

likelihood. Alternatively, to account for the extent to which an observation does or does not exceed 

the threshold, we propose that the likelihood is based on the asymmetric Laplace distribution, which 

has been found to be useful for quantile estimation. We incorporate the exceedance probability 

forecasts within a new time-varying extreme value approach to value at risk and expected shortfall 

estimation. We provide empirical illustration using daily stock index data. 
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1. Introduction 

A forecast of the time-varying probability of a financial asset return exceeding a given fixed 

threshold is of interest in a variety of contexts. For an extreme threshold, the forecast provides an 

assessment of tail risk. To estimate value at risk and expected shortfall, exceedance probability 

forecasts can be used within time-varying adaptations of extreme value theory (EVT) (see, for 

example, Chavez-Demoulin et al. 2014). The probability of a sudden fall in an exchange rate below a 

given threshold serves as an indicator of a currency crisis (Kumar et al. 2003). To support trading 

strategies, Christoffersen and Diebold (2006) and Linton and Whang (2007) consider exceedance 

above 0, while Chung and Hong (2007) focus on non-zero thresholds, noting that exceedance needs to 

be large enough to ensure a profit after allowing for transaction costs. They also note that investors 

may respond differently to a signal of large versus small changes leading to different dynamics in 

thresholds of different sizes and signs. This motivates Thomakos and Wang (2010) to consider the 

choice of threshold that will maximize the responsiveness of the exceedance probability to changes in 

the volatility.  

Exceedance probability forecasts are also needed in many other applications. The probability 

of an inflation rate rising by more than a given percentage might prompt a central bank to increase 

interest rates (Granger and Pesaran 2000). In energy risk management, probability forecasts are 

required for price spikes, which are typically defined as exceedances over a pre-specified threshold 

(Kanamura and Ōhashi 2007). The occurrence of precipitation above a threshold is important for 

flood and drought risk management (Mason et al. 2007).  

In this paper, we consider the forecasting of the probability of daily financial returns 

exceeding a chosen threshold. Our interest is in thresholds that are not close to 0, as this is of greater 

relevance for risk management. For a return yt, we wish to estimate the time-varying probability pt of 

yt falling below a fixed chosen threshold Q. If Q lies in the lower tail of the returns distribution, then 

pt is the exceedance probability, while if Q lies in the upper tail, the exceedance probability is equal to 

(1-pt). For a time series of daily returns, the presence of heteroskedasticity causes pt to be time-

varying. One approach to estimating pt is to fit a model to yt, and use the estimate of the conditional 

distribution of yt to make predictions of pt. For example, a GARCH model could be fitted. However, 
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these models require a distributional assumption, and assume the dynamics are the same for different 

parts of the distribution. Both of these assumptions are questionable. In view of this, it is interesting to 

consider the direct modelling of pt. Direct modelling of a particular feature of the conditional 

distribution of yt has also been the motivation for quantile modelling. In this paper, we focus on 

autoregressive modelling of pt. We introduce a set of autoregressive logit models that can be viewed 

as an extension of the models of Rydberg and Shephard (2003), which they developed for the rather 

different problem of modelling the probability of the dichotomous event of a price change in trade-by-

trade data. 

A natural way to model pt is to use a binary response variable defined as I(yt≤Q), which takes 

a value of 1 if yt is less than or equal to Q, and 0 otherwise. pt is the conditional expectation of this 

binary variable. To estimate the parameters in a model for pt, maximum likelihood can be used, based 

on a Bernoulli density. This is the approach taken with logistic regression. The use of the Bernoulli 

density is reasonable when modelling a binary response variable that was binary in its original form. 

However, if the binary response variable has been created, as in this paper, to indicate exceedances of 

an original variable that was not binary, then the use of the Bernoulli density seems inefficient, 

because it is affected only by whether or not the variable yt is below the threshold Q. It would seem to 

be preferable to capture also the degree to which yt is below Q. We do this by performing constrained 

maximum likelihood based on an asymmetric Laplace (AL) density. Maximizing an AL likelihood 

has been shown to be equivalent to quantile regression, which involves a time-varying quantile and a 

constant probability level. We adapt this for probability modelling by using a constant quantile Q and 

a time-varying probability pt.  

 Section 2 discusses autoregressive models for exceedance probability prediction. Section 3 

considers model estimation. Section 4 presents an empirical study that evaluates probability forecast 

accuracy using stock indices. Section 5 shows how the exceedance probability forecasts can be used 

within a new time-varying EVT approach for estimating value at risk (VaR) and expected shortfall 

(ES). Although VaR has received much attention in the research literature (see, for example, Kuester 

et al. 2006), future regulatory frameworks will put increased emphasis on ES (Embrechts et al. 2014).  
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2. Autoregressive modelling of the exceedance probability 

2.1. A review of the literature 

Given the common use of logistic regression for modelling a probability, it seems natural to 

consider some form of logistic autoregression for the time series modelling of an exceedance 

probability. Slud and Kedem (1994) model the exceedance probability using logistic regression, with 

lagged values of yt as regressors. They apply the model to rainfall runoff data. Within a decomposition 

approach to modelling trade by trade data, Rydberg and Shephard (2003) model the probability of 

whether or not there is a change in the price of an asset, as each trade occurs. Their autoregressive 

logit model appears to be the first to include a lagged logit term. The dynamic binary response models 

of Kauppi and Saikkonen (2008) are of a similar form, with the difference that they generalise the 

choice of link function to be any distribution function. They developed the models for predicting the 

probability of a recession. The models are used by Nyberg (2011), who includes macroeconomic 

explanatory variables in order to forecast the direction of monthly excess stock returns. This is close 

to our focus, because it amounts to forecasting the probability of exceedance, albeit over a threshold 

of 0. Anatolyev and Gospodinov (2010) implement similar models, except that they use a logistic link 

function and no lagged logit term. The autoregressive models discussed in this section are estimated 

by maximum likelihood based on the Bernoulli density. Theoretical support for the models is 

presented by de Jong and Woutersen (2011).  

 

2.2. A new set of autoregressive models 

In this section, we introduce a new set of models that we term conditional autoregressive 

logit (CARL). These differ from previously developed autoregressive logit models, which have either 

not modelled exceedance probability or have focused on exceedance over a threshold of 0.  

The standard approach to modelling a probability using a logit model is to allow the logistic 

function to vary between 0 and 1. However, this has little appeal for our application to financial 

returns with chosen threshold Q not close to 0, because the exceedance probability will be less than 

0.5. In view of this, we formulate the CARL models as in expression (1), which restricts the 

probability pt to vary between 0 and 0.5 for a negative threshold, and between 0.5 and 1 for a positive 
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threshold. We found that preliminary empirical results supported the use of these restricted ranges. 

Our various CARL models differ in the specification of xt, which is the logit of (2pt−I(Q>0)).  

   
 

 05.0
exp1

5.0
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x
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t
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The CARL-Ind model of expression (2) involves the lagged indicator I(yt<Q), as in the model 

of Anatolyev and Gospodinov (2010), and lagged logit xt, as in the models of Rydberg and Shephard 

(2003).  

         
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where i and 1 are constant parameters. To allow a faster response to the change in volatility, we also 

consider the inclusion of I(yt-1>-Q), resulting in the CARL-AsymInd model: 
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where i and 1 are constant parameters. The binary variables in this model limit the model’s ability 

to respond to changes in the volatility. This motivates the CARL-Abs model of expression (3). This 

contains the lagged absolute value of the return, which can be viewed as a proxy for the volatility.  

              11110 
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where i and 1 are constant parameters. 

The CARL-AsymAbs model of expression (4) allows for an asymmetric response of xt, and 

hence pt, to changes in the lagged absolute return. The similarity between the form of the 

GJRGARCH model of Glosten et al. (1993) and this CARL model suggests that it has the potential to 

capture the impact on pt of the leverage effect, which is the tendency for volatility to be greater 

following a negative return than a positive return of equal size.  
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where i and 1 are constant parameters. 

To motivate two additional CARL models, let us consider, for a GARCH model, the 

probability pt of yt falling below a fixed threshold Q. With the usual GARCH assumption of a constant 

distribution F for the standardized returns, we can write ))(( 2

1

tt
hQFp  , where ht is the variance, 

and  is the mean, which we assume to be constant. This suggests that pt can be estimated using a 
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logistic function with the logit term a linear function of 2

1

t
h . Using a GARCH(1,1) structure for the 

variance, we get the logit model of expressions (5) and (6), which we term CARL-Vol.  

2
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where i, i, 1 and  are constant parameters. We estimate  using the mean of the in-sample returns, 

and, given that the variance of yt is stationary, we set 0=(1-1-)h, where h is the variance of the in-

sample returns (see, for example, the analogous expression for GARCH in Section 4.1.1, Franses and 

Van Dijk 2000). To avoid negative variance and ensure stationarity, we impose the constraints 

1,≥0 and 1+<1. In comparison with GARCH modelling, the appeal of the CARL-Vol model, 

and indeed all the CARL models, is that a separate exceedance probability model can be estimated for 

different thresholds. This avoids a distributional assumption, and allows the dynamics to differ across 

the distribution. For example, the left tail of the distribution may evolve at a different rate to the right 

tail. By contrast, standard GARCH modelling involves a distributional assumption, and assumes an 

autoregressive model for the variance. However, we acknowledge that GARCH models have the 

computational advantage that just one model is needed to deliver exceedance probabilities for 

multiple thresholds. Another advantage of GARCH models is that, unlike CARL models, the 

exceedance probability estimate cannot be larger for the more extreme of two thresholds of the same 

sign. This is analogous to quantile crossing in quantile estimation (see Section 2.5, Koenker 2005).  

To allow for the leverage effect, we use the structure of a GJRGARCH(1,1) model to give the 

CARL-AsymVol model of expressions (7) and (8):  
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where i, i, 1 and  are constant parameters. We make the reasonable assumption that 

P(I(yt≥0))≈0.5, so that we can estimate 0 as (1-0.5(1+2)-)h (see, for example, the analogous 

expression for GJRGARCH in Section 4.1.2, Franses and Van Dijk 2000). To avoid negative variance 

estimate and ensure stationarity, we impose the constraints 1,,≥0 and 0.5(1+)+<1. 
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3. Parameter estimation for the CARL models 

3.1. Maximum likelihood based on the Bernoulli distribution 

Maximizing a Bernoulli likelihood is a standard approach to estimating a probabilistic model 

for a binary response variable. It can be used to estimate a model for the probability pt of yt falling 

below a chosen threshold Q, with the Bernoulli density specified as in the following expression:  

             QyI

t

QyI

tt

tt ppyf



1

1  

However, for modelling the exceedance probability, this approach seems inefficient, as it does 

not capture the extent to which the variable yt is above or below the threshold Q. We aim to capture 

this by constructing the likelihood function from an asymmetric Laplace (AL) distribution.  

 

3.2. Constrained maximum likelihood based on the asymmetric Laplace distribution 

Before describing how we use the AL distribution to estimate models for the exceedance 

probability, we first discuss quantile regression. The quantile regression minimization is presented in 

expression (9). It can be used to estimate the parameters in a model for the quantile Qt of a variable yt, 

corresponding to a chosen probability level p, based on n observations (Koenker 2005). 
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The resulting estimates of Qt satisfy expression (10) (see Theorem 2.2, Koenker 2005), which has the 

interpretation that the quantile estimates have correct in-sample unconditional coverage.   
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In this paper, we are interested in the time-varying probability pt of exceedance over a 

constant threshold Q. This can be viewed as a constant quantile Q for which there is a time-varying 

probability level pt. If the sequence of pt is known, the quantile Q can be estimated by the following 

simple adaptation of the minimization in expression (9): 
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Following a similar derivation to that used for expression (10), we find that the estimate of Q satisfies 

expression (12) (see Appendix A), which shows that, on average, the estimate of Q has correct in-

sample unconditional coverage. 

          
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We will return to the issue of a time-varying probability level for a fixed quantile after 

discussing the connection between quantile regression and the AL distribution. A fundamental appeal 

of quantile regression is that an assumption is not needed for the distribution of yt. However, Koenker 

and Machado (1999) point out that the quantile regression minimization in expression (9) is 

equivalent to maximum likelihood based on yt specified as having the AL density function of 

expression (13), where p is chosen as the probability level of interest,  is a scale parameter, and Qt is 

the AL density’s time-varying location, which is also the p-th quantile of the density.  
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ttttt
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Koenker and Machado have described as “rather implausible” the idea that data would follow 

an AL distribution. This view seems reasonable for our application, as the AL density plots of Yu and 

Zhang (2005) are very different in shape to the densities typically assumed for financial returns data. 

For example, GARCH models with a Student-t distribution are often used to model such data. 

Although it is rather unrealistic to assume that the data follows an AL distribution, its use within a 

quasi-maximum likelihood framework has led to useful developments for quantile regression, 

including statistical inference (Koenker and Machado 1999) and Bayesian quantile regression (Yu and 

Stander 2007).  

In this paper, we propose a quasi-maximum likelihood based on an AL distribution to 

estimate models for the exceedance probability. We are not motivated by an interest in statistical 

inference or Bayesian methods, but instead by the desire to capture, in the model estimation, the 

degree to which an observation exceeds the threshold. In our proposal, we rewrite the AL density, so 

that instead of a fixed probability and time-varying location, the density has a time-varying 

probability pt and fixed location parameter Q, as in expression (14). Note that, for this density, pt is 

the probability of yt falling below Q. 
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Since the asset returns yt possess heteroskedasticity, pt will vary over time, in which case it 

seems overly restrictive to constrain the scale to remain constant. Therefore, we allow the scale t to 

be time-varying. In expression (13) of their paper, Yu and Zhang (2005) provide the maximum 

likelihood estimator of the scale of a static AL density. We adapt this to give the time-varying scale t 

in expression (15), where  is the mean of the in-sample observations. 
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 Our proposal is to estimate a model for the probability pt of yt falling below a chosen 

threshold Q by maximizing the likelihood based on the AL density of expression (14), with t 

replaced by expression (15). However, if we do not constrain this optimisation, it will not necessarily 

deliver consistent estimates for the probability pt of yt falling below Q. Indeed, the estimates for pt 

may well not satisfy expression (12), which is a necessary condition for the probability pt of yt falling 

below Q. Given the one-to-one correspondence between the quantiles and probability levels of a 

monotonic probability distribution function, we ensure consistent estimation for the probability pt of yt 

falling below Q by performing the likelihood maximisation with expression (12) as a constraint. We 

impose this constraint by subtracting, from the sum of log likelihoods, a penalty term equal to 10
5
 

multiplied by the square of the difference between the left and right hand sides of expression (12). 

The resultant penalised log likelihood is given in expression (16). It is well-known that, under some 

regularity conditions, penalised likelihood parameter estimators are asymptotically consistent and 

Gaussian (see, for example, Green, 1987). 
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In proposing this AL-based estimation approach, as an alternative to a Bernoulli likelihood, 

we are essentially responding to Gneiting’s (2008) call to give consideration to the estimation of 
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probability models when the ultimate aim is prediction. In the next section, we compare the accuracy 

of prediction based on the two different approaches to estimation described in Sections 3.1 and 3.2. 

 

4. Empirical evaluation of exceedance probability forecasts 

We evaluated day-ahead forecasts using daily log returns for the FTSE 100, NIKKEI 225 and 

S&P 500 stock indices. Each series consisted of the 3500 daily log returns ending on 16 April 2013. 

We downloaded the data from Yahoo! Finance (finance.yahoo.com). In order to evaluate the models 

of Section 2 for a variety of low and high thresholds, of different signs, we considered the following 

six thresholds: -3%, -2%, -1%, 1%, 2% and 3%. To give an idea of the locations of these thresholds, 

for the S&P 500 series, the proportions of observations below these thresholds are 1.9%, 5.4%, 

16.3%, 84.4%, 95.3% and 98.2%, respectively. For each series, we used the first 2500 observations to 

estimate model parameters, and then produced out-of-sample day-ahead forecasts for the next 250 

periods. We then moved the estimation window of 2500 periods forward by 250 periods, re-estimated 

the parameters, and again produced out-of-sample day-ahead forecasts for the next 250 periods. We 

did this twice more to give a total of 1000 out-of-sample probability forecasts. We should emphasise 

that these are out-of-sample forecasts, because each forecast was generated using only data on or 

before the forecast origin. The structure of our analysis is that approximately 10 years of data is used 

for model estimation, and the models are re-estimated approximately each year. 

 

4.1. Probability forecasting methods 

 As a simple benchmark, for each threshold and each series, we produced probability forecasts 

for each out-of-sample period as the proportion of the previous m=2500 observations that were less 

than or equal to the threshold. We present this estimator in expression (17), and refer to it as historical 

simulation because, in using the distribution of historical observations, it is similar to the historical 

simulation VaR estimator. We also implemented the estimator using m=250. In addition, we produced 

probability forecasts using a filtered historical simulation approach, which involved an exponentially 

weighted moving average model for the variance, with optimised parameter, and the distribution of all 

2500 standardised historical returns. 
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We also fitted GARCH(1,1) and GJRGARCH(1,1) models, with parameters estimated using a 

Student-t distribution. The GJRGARCH(1,1) model is written as: 
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where yt is the return;  is a constant mean; t is a heteroskedastic term with variance ht; t is a white 

noise process with Student-t distribution; and i and 1 are constant parameters. Setting 1=2 

delivers the GARCH(1,1) model. The probability of yt falling below threshold Q is given by 

)/)(( 2

1

t
hQt   , where tv is the Student-t distribution function. Day-ahead probability forecasts were 

produced using the model’s forecast for the variance. We also fitted the (asymmetric power) 

APARCH(1,1) model of Ding et al. (1993), which models the standard deviation t as: 

   
1112110 


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where i, 1 and  are constant parameters. In addition, we implemented this model with a non-central 

t distribution, as proposed by Krause and Paolella (2014). We refer to this as NCTAPARCH.  

We implemented the six CARL models, with estimation first based on a Bernoulli likelihood, 

as discussed in Section 3.1, and then using the constrained maximization of the AL likelihood, as 

described in Section 3.2. For the CARL-Ind, CARL-AsymInd, CARL-Abs and CARL-AsymAbs 

models, we calculated the initial probability estimate p0 as the proportion of the first 100 returns that 

were less than the threshold. Using p0 and expression (1), we obtained an initial value x0 for use in the 

autoregressive logit models. This requires that p0(0,0.5) for a negative threshold, p0(0.5,1) for a 

positive threshold, and so when this was not true, we recalculated p0 from all in-sample observations. 

For the CARL-Vol and CARL-AsymVol models, we calculated  as the mean of the estimation sample 

of 2500 returns. These two models require an initial variance estimate h0, and we calculated this as the 

variance of the first 100 returns. For the CARL models, we performed a similar optimization approach 

to that used by Engle and Manganelli (2004) for CAViaR models. The optimisation proceeded by 
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sampling 10
4
 vectors of parameters using a uniform random number generator between a lower and 

upper bound, which were set for each parameter based on initial experimentation. Of the 10
4
 sampled 

vectors, the three that delivered the highest likelihood values were used, in turn, as the initial vector in 

a quasi-Newton algorithm. The resulting vector, corresponding to the highest likelihood, was chosen 

as the final parameter vector. As discussed in Section 3.2, when estimation was based on an 

asymmetric Laplace density, a penalised likelihood was used as the objective function. 

In the following expressions, we present the six CARL models for the threshold Q=-2%, with 

parameter estimation based on the AL density, using the first 2500 S&P 500 returns.  
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CARL-Vol:  2
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
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The following expressions present the models estimated using the Bernoulli likelihood: 

CARL-Ind:   
11

958.0556.0131.0



ttt

xQyIx  

CARL-AsymInd:      
111

956.0039.0549.0137.0

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tttt

xQyIQyIx  

CARL-Abs:  11
942.0794.12256.0




ttt
xyx  

CARL-AsymAbs:    
11111

961.00431.180578.2170.0



tttttt

xyIyyIyx  

CARL-Vol:  2
1

047.0643.1

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tt
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 
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1
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


ttt
hyh    

CARL-AsymVol:       2

1
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


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     
1

2
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2

11
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


tttttt
hyyIyyIh 
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In the Ind and AsymInd models, the positive coefficients for I(yt-1<Q) are intuitive, as they 

imply that if the return is below the threshold, the logit rises, and hence the probability rises. The 

AsymAbs and AsymVol models show that, in comparison with a positive return, a negative return of 

equal size leads to a larger rise in the logit, and hence a larger rise in the probability.  

In Fig. 1, for Q=-2%, and for the first 2750 days of the S&P 500 series, we plot the 

exceedance probability estimates produced by GJRGARCH, and the CARL-AsymVol models. For the 

last 250 days, the probability estimates are out-of-sample day-ahead forecasts. It is reassuring to see 

correspondence between the returns series exceeding the threshold and the magnitude of the 

probability forecasts. With CARL model parameters estimated using the Bernoulli likelihood, the 

predictions can be seen to be more responsive to changes in the returns series than when estimation 

was based on the AL likelihood. This tended also to be the case for the other CARL models, 

thresholds and series that we considered.  

For the threshold of -2% for the S&P 500 returns, Table 1 shows the correlation matrix for the 

1000 out-of-sample probability forecasts from the six CARL models estimated using the two different 

approaches. We have underlined the correlations corresponding to the cases where the same CARL 

model has been estimated using the two different approaches. As expected, the correlation values are 

reasonably high. However, many values are noticeably lower than 1, and this was also the case for the 

other thresholds and stock indices. In view of this, we should anticipate differences in the resulting 

out-of-sample accuracy when using the different CARL models and the two different estimation 

approaches. 
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Fig. 1. S&P 500 returns (in upper panel), and probability estimates of exceedance below the threshold 

Q=-2% (in lower panel). 

 

 

 

Table 1. For the threshold of -2% for the S&P 500 time series, correlation between out-of-sample 

probability forecasts from CARL models. 
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Ind AL 1            

Ind Bernoulli 0.941 1           

AsymInd AL 1.000 0.936 1          

AsymInd Bernoulli 0.936 1.000 0.930 1         

Abs AL 0.867 0.887 0.861 0.887 1        

Abs Bernoulli 0.861 0.919 0.854 0.920 0.986 1       

AsymAbs AL 0.873 0.814 0.872 0.810 0.913 0.880 1      

AsymAbs Bernoulli 0.900 0.887 0.898 0.884 0.945 0.939 0.978 1     

Vol AL 0.846 0.855 0.840 0.856 0.984 0.960 0.919 0.937 1    

Vol Bernoulli 0.838 0.882 0.830 0.885 0.976 0.970 0.899 0.936 0.989 1   

AsymVol AL 0.886 0.833 0.884 0.830 0.946 0.912 0.976 0.967 0.962 0.939 1  

AsymVol Bernoulli 0.880 0.891 0.875 0.891 0.965 0.955 0.949 0.971 0.977 0.983 0.976 1 
 

Notes. Underlining indicates the same CARL model estimated using the two different approaches. 
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4.2. Out-of-sample evaluation 

We evaluated the day-ahead probability forecasts from each method using the Brier score 

(see, for example, Gneiting et al. 2007; Wilks 2011), which is presented in expression (18).  

Brier score =   





Nn

nt

tt
pQyI

N 1

2
ˆ

1
    (18) 

where tp̂  is the probability forecast for the event that yt falls below threshold Q; n is the size of the 

estimation sample; and N is the number of out-of-sample periods. The Brier score can be viewed as 

the mean squared error for a set of probability forecasts, with I(yt≤Q) acting as the proxy for the actual 

probability. The results for the S&P 500 series are presented in Table 2, with standard errors 

calculated using the expression of Bradley et al. (2008) with Wilks’ (2010) adjustment for 

autocorrelation. 

Table 2. For probability forecasts, Brier score (×100) for S&P 500 with standard errors in 

parentheses. 
 

 Threshold 

 -3% -2% -1% 1% 2% 3% 

    Historical simulation 2500 1.20(0.33) 4.21(0.58) 11.99(0.74) 13.43(0.81) 4.02(0.57) 1.00(0.30) 

    Historical simulation 250 1.40(0.33) 4.57(0.55) 12.46(0.72) 13.61(0.73) 4.25(0.55) 1.13(0.30) 

    Filtered historical simulation 1.18(0.31) 4.13(0.54) 11.76(0.73) 12.87(0.76) 3.75(0.51) 0.95(0.27) 

    GARCH with Student-t 1.19(0.31) 4.14(0.53) 11.90(0.68) 12.90(0.71) 3.77(0.49) 0.96(0.27) 

    GJRGARCH with Student-t 1.17(0.30) 4.14(0.54) 11.77(0.69) 12.67(0.72) 3.70(0.49) 0.93(0.26) 

    APARCH with Student-t 1.17(0.31) 4.13(0.54) 11.72(0.71) 12.65(0.73) 3.68(0.49) 0.93(0.26) 

    NCTAPARCH 1.16(0.31) 4.11(0.56) 11.64(0.75) 12.70(0.78) 3.69(0.52) 0.92(0.28) 

CARL using Asymmetric Laplace      

    CARL-Ind 1.18(0.33) 4.12(0.57) 11.78(0.75) 13.43(0.80) 3.93(0.55) 0.99(0.30) 

    CARL-AsymInd 1.18(0.33) 4.12(0.57) 11.77(0.74) 12.88(0.80) 3.80(0.55) 0.96(0.29) 

    CARL-Abs 1.17(0.33) 4.11(0.57) 11.68(0.73) 12.96(0.81) 3.85(0.56) 0.95(0.29) 

    CARL-AsymAbs 1.17(0.33) 4.12(0.58) 11.69(0.74) 12.85(0.81) 3.86(0.57) 0.96(0.30) 

    CARL-Vol 1.16(0.32) 4.09(0.56) 11.72(0.72) 12.90(0.78) 3.76(0.52) 0.94(0.28) 

    CARL-AsymVol 1.15(0.31) 4.09(0.56) 11.66(0.72) 12.73(0.78) 3.70(0.51) 0.92(0.27) 

CARL using Bernoulli       

    CARL-Ind 1.18(0.33) 4.13(0.56) 11.81(0.75) 13.43(0.72) 4.03(0.53) 0.99(0.30) 

    CARL-AsymInd 1.18(0.33) 4.14(0.56) 11.81(0.75) 12.84(0.81) 3.88(0.57) 0.94(0.29) 

    CARL-Abs 1.17(0.32) 4.12(0.56) 11.85(0.71) 12.91(0.79) 3.82(0.54) 0.95(0.29) 

    CARL-AsymAbs 1.17(0.33) 4.12(0.57) 11.86(0.73) 12.81(0.81) 3.68(0.53) 0.96(0.30) 

    CARL-Vol 1.17(0.31) 4.12(0.55) 11.80(0.71) 12.90(0.78) 3.77(0.52) 0.94(0.27) 

    CARL-AsymVol 1.16(0.31) 4.11(0.54) 11.72(0.72) 12.71(0.77) 3.71(0.51) 0.92(0.26) 
 

Notes. Lower values are better. Bold indicates best Brier score method in each column. Underlining indicates 

whether AL or Bernoulli was better for each CARL model.  
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Table 3. For probability forecasts, Brier skill score for the S&P 500. 
 

 Threshold  

 -3% -2% -1% 1% 2% 3% 
Geometric 

mean 

    Historical simulation 250 -17.0 -8.6 -3.9 -1.3 -5.6 -13.3 -8.4 

    Filtered historical simulation 1.4 2.0 1.9 4.2 6.8 5.4 3.6 

    GARCH with Student-t 0.2 1.6 0.7 3.9 6.3 3.6 2.7 

    GJRGARCH with Student-t 1.8 1.8 1.8 5.6 8.1 6.6 4.3 

    APARCH with Student-t 2.2 2.0 2.2 5.8 8.4 7.1 4.6 

    NCTAPARCH 3.0 2.5 2.9 5.5 8.3 7.9 5.0 

CARL using Asymmetric Laplace       

    CARL-Ind 1.4 2.2 1.7 0.0 2.2 1.0 1.4 

    CARL-AsymInd 1.5 2.2 1.8 4.1 5.4 3.8 3.1 

    CARL-Abs 2.0 2.4 2.6 3.5 4.3 4.7 3.2 

    CARL-AsymAbs 2.4 2.2 2.5 4.3 4.0 4.1 3.3 

    CARL-Vol 3.0 2.8 2.2 4.0 6.5 5.9 4.0 

    CARL-AsymVol 3.7 3.0 2.7 5.2 8.0 8.1 5.1 

CARL using Bernoulli        

    CARL-Ind 1.2 1.9 1.5 0.0 -0.3 1.1 0.9 

    CARL-AsymInd 1.2 1.8 1.5 4.4 3.6 6.2 3.1 

    CARL-Abs 1.8 2.3 1.1 3.9 5.0 5.1 3.2 

    CARL-AsymAbs 2.2 2.3 1.1 4.6 8.5 3.6 3.7 

    CARL-Vol 2.2 2.3 1.6 4.0 6.4 6.1 3.7 

    CARL-AsymVol 2.6 2.5 2.2 5.4 7.8 8.4 4.8 

 

Notes. Higher values are better. Bold indicates best method in each column. Underlining indicates whether AL 

or Bernoulli was better for each CARL model.  

 

 

For each method, we calculated the Brier skill score, which is presented in expression (19) 

(see, for example, Wilks 2011). This measure compares the Brier score to a reference method, which 

we chose as the historical simulation approach based on 2500 observations.  

Brier skill score = 

  

  
100

ˆ

ˆ

1

1

2

,

1

2






































Nn

nt

treferencet

Nn

nt

tt

pQyI

pQyI

   (19) 

The Brier skill score results for the S&P 500 series are presented in Table 3. Higher values 

indicate superior accuracy, and positive values indicate outperformance of the reference method. The 

final column summarizes performance, for each model, across the six thresholds. To obtain this 

column, we calculated the geometric mean of the ratios of the Brier score for each method to the Brier 

score for the reference method, then subtracted this from one, and multiplied the result by 100. A 
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similar calculation was used to produce Table 4, which averages the Brier skill score across the three 

indices. In the tables, for each threshold, and for the summary column, bold indicates the best result. 

For each CARL model, underlining indicates whether the AL or Bernoulli likelihoods led to superior 

performance. Model asymmetry led to improved accuracy, with GJRGARCH, CARL-AsymInd, 

CARL-AsymAbs and CARL-AsymVol outperforming GARCH, CARL-Ind, CARL-Abs and CARL-

Vol, respectively. Asymmetry is a feature of APARCH, and, interestingly, the two versions of this 

model also perform well. Table 3 shows that, for the S&P 500 series, the best results overall were 

produced by CARL-AsymVol and NCTAPARCH. This is also the case in Table 4 for the results 

averaged across the three series. The tables show that, for the CARL models, estimation based on the 

AL density was generally slightly better than using the Bernoulli density. 

 

Table 4. For probability forecasts, Brier skill score averaged across the three stock indices. 
 

 Threshold  

 -3% -2% -1% 1% 2% 3% 
Geometric 

mean 

    Historical simulation -11.9 -5.1 -2.8 -1.0 -3.6 -7.9 -5.5 

    Filtered historical simulation -1.0 1.5 0.3 2.2 4.7 6.6 2.3 

    GARCH with Student-t -1.2 1.1 -0.3 2.3 4.1 5.1 1.8 

    GJRGARCH with Student-t 0.0 1.4 1.0 3.4 5.3 6.5 2.9 

    APARCH with Student-t 1.1 1.8 1.2 3.7 5.5 7.0 3.4 

    NCTAPARCH 2.5 2.5 1.7 3.4 6.1 8.1 4.0 

CARL using Asymmetric Laplace       

    CARL-Ind 1.8 1.9 0.9 -0.6 1.4 1.7 1.2 

    CARL-AsymInd 1.9 1.8 0.8 2.3 4.5 4.1 2.6 

    CARL-Abs 1.7 1.7 1.0 2.0 3.6 4.6 2.4 

    CARL-AsymAbs 2.6 2.0 1.6 2.3 3.8 4.9 2.8 

    CARL-Vol 1.7 2.0 0.6 2.3 4.7 6.6 3.0 

    CARL-AsymVol 2.8 2.4 1.5 3.1 5.8 8.0 3.9 

CARL using Bernoulli        

    CARL-Ind 1.9 1.5 0.8 0.0 0.3 1.4 1.0 

    CARL-AsymInd 1.5 1.5 0.6 2.2 3.1 5.4 2.4 

    CARL-Abs 0.6 1.7 -0.3 2.2 4.3 6.0 2.4 

    CARL-AsymAbs 2.2 1.9 0.4 2.4 6.1 6.2 3.2 

    CARL-Vol 0.9 2.0 0.0 2.3 4.6 7.0 2.8 

    CARL-AsymVol 1.4 2.3 1.0 3.0 5.8 8.7 3.7 

 

Notes. Higher values are better. Bold indicates best method in each column. Underlining indicates whether AL 

or Bernoulli was better for each CARL model.  
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5. An application of exceedance probability forecasts within a new EVT method  

In this section, we use exceedance probability forecasts within a peaks over threshold (POT) 

EVT approach to estimate value at risk (VaR), which is a conditional tail quantile, and expected 

shortfall (ES), which is the conditional expectation of the return, given that it exceeds the VaR. After 

reviewing the POT method for i.i.d. observations, we present our adaptation for financial returns and 

an empirical study.  

 

5.1. Peaks over threshold EVT for i.i.d. observations 

The POT method considers exceedances of a variable yt over a typically high threshold, Q. 

Consider first estimation of the VaR in the upper tail of the returns distribution. The essence of the 

POT approach is captured by expression (20), which indicates that an alternative to estimating the 

VaR from the returns distribution is to work with the distribution of exceedances.  

         
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Assuming i.i.d. observations, the number of exceedances has a Poisson distribution and, for 

large samples and a high threshold, the exceedances zi obey a generalized Pareto distribution (GPD), 

with scale parameter s and shape parameter . The GPD has the following form: 
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Substituting 1-G(VaRt-Q) into the left hand side of expression (20) delivers the VaR estimate: 
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where  is the VaR probability level. The corresponding ES estimate is given by: 
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 For the estimation of VaR in the lower tail of the distribution, the VaR and ES expressions 

are:  
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Assuming i.i.d. observations, the exceedance probability, which is Pr(yt>Q) in expression (22) 

and Pr(yt<Q) in expression (24), is the mean of the Poisson process, and is estimated as the proportion 

of observations exceeding Q. The GPD parameters, s and , are estimated using maximum likelihood.  

The i.i.d. assumption is inappropriate for financial returns, because they typically possess 

heteroskedasticity. To address this, McNeil and Frey (2000) apply the POT method to residuals 

standardised by GARCH conditional volatility estimates. However, this implicitly assumes that the 

tails have the same dynamic behaviour as the rest of the distribution (Manganelli and Engle 2004). 

Bali and Neftci (2003) consider autoregressive models for the location and scale of the GPD of the 

POT method. Our method has similarities to this, although we use different autoregressive models, 

and we allow the exceedance probability to vary over time. Chavez-Demoulin and Davison (2005) 

consider a time-varying POT approach for modelling extremes in a data set with multiple time series. 

Another dynamic POT method is the Bayesian approach of Chavez-Demoulin et al. (2014), which 

enables the POT parameters to adapt to possible non-stationarities.  

 

5.2. A new time-varying peaks over threshold EVT method  

In this section, we introduce a new time-varying POT (TVPOT) approach. It involves three 

steps. First, we choose a suitable threshold. Second, we estimate the time-varying exceedance 

probability using a CARL model. Third, we fit a GPD to the exceedances, with an autoregressive 

model for the scale. From these models, we get forecasts of the exceedance probability and scale, 

which we use in expressions (22) to (25) of Section 5.1 to deliver VaR and ES forecasts. GAUSS 

computer code is available on request. 

 



 20 

Step 1: Finding a suitable threshold 

The choice of the threshold Q is important for the POT method. The GPD is more appropriate 

for exceedances beyond a more extreme threshold, but a less extreme threshold provides more 

exceedances from which to estimate the GPD parameters. Chavez-Demoulin et al. (2014) note that, in 

practice, there is some arbitrariness in the choice of Q. They set Q to be such that 10% of the 

observations from the last year are exceedances. In our TVPOT approach, we have a time-varying 

exceedance probability, and to estimate the GPD, a necessary condition for the choice of Q is that, for 

VaR with probability level , the exceedance probability is greater than min(,1-) for each in-sample 

period with an exceedance. In view of this, we need to select a value for Q that satisfies this condition, 

rather than simply set Q to be 10%. Our approach to selecting Q involves a numerical search. We start 

with a value of Q for which 10% of the in-sample periods are exceedances. We then increase Q in 

increments of 1% until the condition is satisfied. In our empirical work, the resulting percentages of 

exceedances were similar for all three indices, with values of approximately 10%, 10%, 14%, 18%, 

11% and 10% for =0.5%, 1%, 5%, 95%, 99% and 99.5%, respectively. The corresponding values of 

Q were also quite similar for the three indices, with averages of approximately -1.6%, -1.6%, -1.2%, 

1.0%, 1.4% and 1.5%, respectively. 

 

Step 2: Modelling the exceedance probability 

The time-varying probability of exceeding Q is estimated using a CARL model. Our 

empirical work used the CARL-AsymVol model, estimated using constrained maximum likelihood 

based on the AL density. We chose this CARL model, as it was the best performing CARL model in 

terms of probability forecasting in Section 4. 

 

Step 3: Fitting a GPD with autoregressive scale  

The final step of our approach involves fitting a GPD to the exceedances beyond Q, with an 

autoregressive model for the scale. Following Bali and Neftci (2003) and Chavez-Demoulin et al. 

(2014), we use a constant shape parameter. We note that, for the GPD of expression (21), the mean is 

 1s  and the variance is      211
22 s . In view of this, we initialize the scale to be 
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    211
2

  multiplied by the standard deviation of the exceedances in the first 100 periods. For 

a period i with a non-zero exceedance zi, we update the scale estimate using: 

                2
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where ai and b1 are constant parameters. We assume that the scale is stationary, and set a0=(1-a1-b1)S
2
, 

where S
2
 is the square of the unconditional scale of the in-sample exceedances, which we estimate as 

the product of      211
2

  and the variance of the exceedances. To avoid this becoming negative, 

we impose the constraint <0.5. To avoid a negative value and to ensure stationarity for estimates of 

the scale squared, we impose the constraints a1,b≥0 and a1+b1<1.  

An alternative model for the scale is the following asymmetric formulation, which responds 

to exceedances in both tails of the returns distribution: 
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where ai and b1 are constant parameters, wi is an exceedance beyond -Q, and i is a period with non-

zero zi or wi. We make the assumption that, for these periods, P(I(zi>0))≈0.5 and P(I(wi>0))≈0.5, so 

that we can estimate a0 as (1-0.5(a1+a2)-b)S
2
 (see, for example, the analogous expression for 

GJRGARCH in Section 4.1.2, Franses and Van Dijk 2000). For this model, we impose the constraints 

<0.5; a1a, b≥0; and 0.5(a1+a)+b<1. 

We estimated the parameters ai, b1 and  by maximum likelihood based on the GPD. The 

GPD density and sum of log likelihoods are given in expressions (26) and (27), respectively, where nz 

is the number of exceedances beyond Q in the estimation sample. 
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 In expressions (28) and (29), we present the symmetric and asymmetric scale models, used to 

derive the 99% VaR, with estimation based on the first 2500 S&P 500 returns.  
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For the two models, the estimated shape parameter  was 0.0504 and -0.0088, respectively.  

Fig. 2 presents the scale estimates produced by the asymmetric model of expression (29), along with 

the exceedances. The scale can be seen to adjust in response to the magnitude of the exceedances,. 

Fig. 3 presents the resulting 99% VaR and ES estimates for the first 2750 returns. These estimates can 

be seen to vary with the volatility in the returns. In both figures, the final 250 are out-of-sample day-

ahead forecasts.  
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Fig. 2. For TVPOT estimation of the 99% VaR for S&P 500 returns, the plot shows exceedances 

beyond the threshold Q=1.21%, and time-varying scale from the asymmetric model of expression 

(29). 
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Fig. 3. S&P 500 returns with 99% VaR and ES estimated using TVPOT. 
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5.3. Out-of-sample VaR forecast evaluation 

We evaluated day-ahead VaR forecasts for the three series of stock indices, and the following 

six VaR probability levels: 0.5%, 1%, 5%, 95%, 99% and 99.5%. As in our empirical study of 

exceedance probability forecasting, we estimated model parameters using four samples of 2500, and 

evaluated day-ahead forecasts for each of the next 250 periods, leading to 1000 out-of-sample 

forecasts.  

In addition to the TVPOT approach, we generated VaR forecasts from a set of benchmark 

methods. We used two versions of historical simulation; the first used 2500 observations in the 

moving window, and the second used 250. We implemented filtered historical simulation, which 

involved an exponentially weighted moving average model for the variance, with optimised 

parameter, and historical simulation applied to all 2500 standardised in-sample returns. We also 

implemented GARCH(1,1), GJRGARCH(1,1) and APARCH(1,1) models, estimated using the 

Student-t distribution, and also the APARCH(1,1) model estimated using a non-central t distribution. 

We produced VaR and ES forecasts using the same distributions, and also using the method of 

McNeil and Frey (2000), which involves applying EVT to the standardised residuals. We also 

implemented the four CAViaR models of Engle and Manganelli (Section 3, 2004). 

We evaluated the VaR forecasts using a test for unconditional coverage and a test for 

conditional coverage. For estimation of the VaR with probability level , we define the hit percentage 

as the percentage of observations falling below the estimator. We tested for unconditional coverage 

using a test based on the binomial distribution to examine significant difference of the hit percentage 

from the ideal value of p. We tested for conditional coverage using Engle and Manganelli’s (2004) 

dynamic quantile (DQ) test. This tests whether the hit variable, defined as   pRaVyIHit
ttt
 ˆ , is 

distributed i.i.d. Bernoulli with probability p, and is independent of the VaR estimator, t
RaV ˆ . Ideally, 

Hitt will have zero unconditional and conditional expectations. We included four lags of Hitt in the 

test’s regression to give a test statistic, which, under the null hypothesis of perfect unconditional and 

conditional coverage, is distributed 2
(6). 

Table 5 presents the values of the hit percentage for each method applied to the S&P 500 

returns for each VaR probability level. The asterisks indicate significance at the 5% level, and bold 
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indicates the best performing method for each probability level. The final column presents the number 

of probability levels for which the hit percentage is significantly different from the ideal. This final 

column shows that, for the GARCH models, using the Student-t distribution to construct VaR 

estimates was not as accurate as applying EVT to the standardized residuals. The CAViaR models and 

the two TVPOT methods performed well. Table 6 summarises the hit percentage results for the three 

stock indices. The TVPOT methods again can be seen to perform well, along with three of the 

CAViaR models, GARCH with EVT and the historical simulation approach based on 250 

observations. 

The DQ test results are presented in Table 7 for the S&P 500 returns, and summarised for all 

three indices in Table 8. The results are poor for many of the methods. The GARCH models were 

notably improved by using EVT instead of the Student-t distribution. The best results correspond to 

symmetric absolute value and asymmetric slope CAViaR, and the two TVPOT methods. 

 

Table 5. VaR hit percentages for the S&P 500. 

 

 Probability level  No. sig. at 
5% level  0.5% 1% 5% 95% 99% 99.5% 

  Historical simulation 2500 0.1 0.5 3.9 95.6 99.6 99.9 0 

  Historical simulation 250 0.7 1.1 3.6
* 

96.0 98.9 99.5 1 

  Filtered historical simulation 1.0
*
 1.7

*
 5.2 94.5 99.3 99.4 2 

  GARCH with Student-t 0.6 1.0 4.6 96.7
*
 99.8

*
 100.0

*
 2 

  GJRGARCH with Student-t 0.6 1.2 4.7 96.7
*
 99.7

*
 99.9 2 

  APARCH with Student-t 0.7 1.2 5.0 96.3 99.7
*
 99.8 1 

  NCTAPARCH 0.8 1.4 5.8 98.1
*
 98.6 99.5 1 

  GARCH with EVT 0.7 1.3 5.2 94.2 99.1 99.6 0 

  GJRGARCH with EVT 0.7 1.5 5.5 94.1 98.9 99.6 0 

  APARCH with EVT 0.8 1.5 5.8 93.7 98.8 99.5 0 

  NCTAPARCH with EVT 0.8 1.5 5.9 93.5
*
 98.7 99.5 1 

  CAViaR - Adaptive 0.3 0.8 4.5 95.6 99.4 99.7 0 

  CAViaR - Symmetric Absolute Value 0.8 1.8
*
 5.6 94.4 98.8 99.1 1 

  CAViaR - Asymmetric Slope 0.7 1.5 6.0 94.1 98.2
*
 99.1 1 

  CAViaR - Indirect GARCH 0.9 1.6 5.1 94.7 99.3 99.4 0 

  TVPOT using Sym Scale Model 0.3 0.7 4.7 94.7 99.4 99.6 0 

  TVPOT using Asym Scale Model 0.4 1.1 5.2 94.1 99.1 99.5 0 
 

Notes. Bold indicates best method in each column. * indicates significance at 5% level. 
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Table 6. Number of VaR hit percentages significant at the 5% level for the three stock indices. 
 

 Probability level  No. sig. at 
5% level  0.5% 1% 5% 95% 99% 99.5% 

  Historical simulation 2500 1 2 1 0 1 0 5 

  Historical simulation 250 0 0 1 1 0 0 2 

  Filtered historical simulation 1 1 0 0 0 0 2 

  GARCH with Student-t 0 0 1 2 2 2 7 

  GJRGARCH with Student-t 0 0 1 2 3 1 7 

  APARCH with Student-t 0 0 1 1 3 1 6 

  NCTAPARCH 0 0 1 3 0 0 4 

  GARCH with EVT 0 0 0 1 0 0 1 

  GJRGARCH with EVT 0 0 0 2 1 0 3 

  APARCH with EVT 0 0 0 2 1 0 3 

  NCTAPARCH with EVT 0 0 0 3 1 0 4 

  CAViaR - Adaptive 0 1 0 0 1 0 2 

  CAViaR - Symmetric Absolute Value 0 1 0 0 0 0 1 

  CAViaR - Asymmetric Slope 0 0 0 1 2 1 4 

  CAViaR - Indirect GARCH 0 0 0 0 0 0 0 

  TVPOT using Sym Scale Model 0 0 1 1 0 0 2 

  TVPOT using Asym Scale Model 0 0 0 1 0 0 1 
 

Notes. Bold indicates best method in each column.  

 

 

Table 7. VaR DQ test p-values for the S&P 500. 
 

 Probability level  No. sig. at 
5% level  0.5% 1% 5% 95% 99% 99.5% 

  Historical simulation 2500 0.007 0.000 0.007 0.051 0.000 0.013 5 

  Historical simulation 250 0.000 0.000 0.000 0.000 0.055 0.000 5 

  Filtered historical simulation 0.018 0.002 0.141 0.193 0.952 0.975 2 

  GARCH with Student-t 0.000 0.060 0.140 0.046 0.000 0.000 4 

  GJRGARCH with Student-t 0.000 0.164 0.215 0.032 0.006 0.010 4 

  APARCH with Student-t 0.000 0.184 0.125 0.099 0.006 0.384 2 

  NCTAPARCH 0.003 0.251 0.191 0.000 0.719 0.701 2 

  GARCH with EVT 0.000 0.000 0.012 0.693 0.994 0.983 3 

  GJRGARCH with EVT 0.000 0.229 0.049 0.245 0.980 0.749 2 

  APARCH with EVT 0.003 0.294 0.187 0.123 0.865 0.708 1 

  NCTAPARCH with EVT 0.003 0.300 0.148 0.112 0.737 0.709 1 

  CAViaR - Adaptive 0.000 0.001 0.018 0.006 0.000 0.305 5 

  CAViaR - Symmetric Absolute Value 0.003 0.016 0.189 0.456 0.876 0.428 2 

  CAViaR - Asymmetric Slope 0.000 0.370 0.239 0.317 0.473 0.466 1 

  CAViaR - Indirect GARCH 0.017 0.005 0.009 0.279 0.951 0.981 3 

  TVPOT using Sym Scale Model 0.000 0.000 0.282 0.135 0.833 0.999 2 

  TVPOT using Asym Scale Model 0.000 0.000 0.664 0.517 0.998 1.000 2 
 

Notes. Bold indicates best method in the final column. 
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Table 8. Number of VaR DQ tests significant at the 5% level for the three stock indices. 
 

 Probability level  No. sig. at 
5% level  0.5% 1% 5% 95% 99% 99.5% 

  Historical simulation 2500 3 3 3 2 3 3 17 

  Historical simulation 250 3 3 3 3 1 3 16 

  Filtered historical simulation 2 2 0 1 1 1 7 

  GARCH with Student-t 2 2 0 2 2 2 10 

  GJRGARCH with Student-t 2 1 1 3 3 3 13 

  APARCH with Student-t 2 1 1 1 3 2 10 

  NCTAPARCH 2 1 1 3 0 0 7 

  GARCH with EVT 2 3 1 1 0 0 7 

  GJRGARCH with EVT 2 1 1 1 0 0 5 

  APARCH with EVT 2 1 0 1 0 0 4 

  NCTAPARCH with EVT 2 1 0 1 0 0 4 

  CAViaR - Adaptive 2 3 3 3 3 0 14 

  CAViaR - Symmetric Absolute Value 2 1 0 0 0 0 3 

  CAViaR - Asymmetric Slope 2 1 0 0 0 0 3 

  CAViaR - Indirect GARCH 2 2 1 0 0 0 5 

  TVPOT using Sym Scale Model 2 1 1 0 0 0 4 

  TVPOT using Asym Scale Model 1 2 0 1 0 0 3 
 

Notes. Bold indicates best method in each column.  

 

5.4.  Out-of-sample ES forecast evaluation 

We produced forecasts of the conditional ES from each of the methods for which we had 

generated VaR forecasts, with the exception of the CAViaR models, because they cannot be used to 

produce ES estimates. To evaluate the ES estimates, we followed the approach of McNeil and Frey 

(2000), which involves the discrepancy between an observation and the conditional ES estimate for 

periods in which the observation exceeds the corresponding VaR estimate. When standardised, these 

discrepancies should be i.i.d. with a mean of zero. We standardised the discrepancies by dividing each 

by the corresponding VaR estimate. McNeil and Frey test for zero mean with a bootstrap test to avoid 

distributional assumptions (see page 224 of Efron and Tibshirani 1993). Table 9 presents p-values for 

this test for ES estimation for the S&P 500. The final column in this table is a count for the number of 

probability levels for which the null is rejected at the 5% level. The N/A entries in the table indicate 

that the test could not be performed due to there being no exceedances beyond the VaR estimate. 

Table 10 summarises the test results for the three stock indices. In Tables 9 and 10, the TVPOT 

method using an asymmetrical scale model performs very well. The results are also very impressive 
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for historical simulation based on 250 observations, which is consistent with this method’s hit 

percentage results in Tables 5 and 6. However, the DQ results of Tables 7 and 8 indicate that the 

dynamic properties of this method are poor. As in many other empirical studies of ES, we did not 

perform a test for the standardised discrepancies being i.i.d., as the number of discrepancies was low. 

 

Table 9. For the S&P 500, p-values for ES bootstrap test for zero mean in standardised discrepancies. 
 

 Probability level  No. sig. at 
5% level  0.5% 1% 5% 95% 99% 99.5% 

  Historical simulation 2500 0.000 0.647 0.111 0.004 0.047 0.000 4 

  Historical simulation 250 0.135 0.159 0.148 0.587 0.312 0.079 0 

  Filtered historical simulation 0.007 0.159 0.250 0.663 0.150 0.554 1 

  GARCH with Student-t 0.274 0.852 0.594 0.006 0.511 N/A  N/A 

  GJRGARCH with Student-t 0.012 0.351 0.060 0.050 0.609 0.000 2 

  APARCH with Student-t 0.895 0.546 0.029 0.049 0.292 0.507 2 

  NCTAPARCH 0.737 0.808 0.059 0.000 0.933 0.438 1 

  GARCH with EVT 0.382 0.484 0.781 0.556 0.665 0.628 0 

  GJRGARCH with EVT 0.004 0.061 0.563 0.719 0.699 0.640 1 

  APARCH with EVT 0.005 0.055 0.955 0.890 0.656 0.916 1 

  NCTAPARCH with EVT 0.527 0.688 0.264 0.959 0.562 0.795 0 

  TVPOT using Sym Scale Model 0.510 0.645 0.672 0.138 0.314 0.868 0 

  TVPOT using Asym Scale Model 0.758 0.706 0.587 0.118 0.136 0.119 0 
 

Notes. Bold indicates best method in final column. N/A indicates not available due to no exceedances beyond 

VaR. 

 

Table 10. For the three stock indices, number of ES bootstrap tests significant at the 5% level. Test is 

for zero mean in standardised discrepancies. 
  

 Probability level  No. sig. at 
5% level  0.5% 1% 5% 95% 99% 99.5% 

  Historical simulation 2500 1 0 1 3 1 3 9 

  Historical simulation 250 0 0 0 0 0 0 0 

  Filtered historical simulation 1 0 1 0 0 0 2 

  GARCH with Student-t 0 0 0 2 0 N/A N/A 

  GJRGARCH with Student-t 1 0 0 1 0 N/A N/A 

  APARCH with Student-t 1 0 1 3 0 N/A N/A 

  NCTAPARCH 1 0 0 3 0 0 4 

  GARCH with EVT 0 1 1 0 1 0 3 

  GJRGARCH with EVT 1 0 0 0 0 0 1 

  APARCH with EVT 1 0 0 0 0 0 1 

  NCTAPARCH with EVT 1 0 0 0 0 0 1 

  TVPOT using Sym Scale Model 1 0 1 0 0 0 2 

  TVPOT using Asym Scale Model 0 0 0 0 0 0 0 
 

Notes. Bold indicates best method in each column. N/A indicates not available due to no exceedances beyond 

VaR. 
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6. Concluding comments 

Our empirical study of Section 4 provides encouraging results for the use of the CARL 

models for day-ahead prediction of exceedance probabilities for stock index returns. The best 

performing CARL model, CARL-AsymVol, relates exceedance probability to a proxy for the 

volatility, and incorporates asymmetry by allowing a different response to negative and positive 

shocks of equal size. We obtained slightly better accuracy when the parameters of the CARL models 

were estimated using our proposal of performing a constrained maximum likelihood based on the AL 

likelihood, rather than the standard Bernoulli likelihood. Our overall results for three series of daily 

stock index returns showed that the CARL-AsymVol model was very competitive in terms of the 

Brier score when compared with GARCH and historical simulation benchmark methods.  

We applied the exceedance probability forecasts to a new time-varying POT EVT approach to 

VaR and ES estimation. The approach uses CARL model probability forecasts, and an autoregressive 

model for the scale of the GPD. We evaluated VaR and ES forecast accuracy for six probability levels 

for three stock indices, and found that the new method performed well in comparison with historical 

simulation, filtered historical simulation, CAViaR and GARCH-based approaches.  
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Appendix 

In this appendix, we derive expression (12), drawing heavily on Section 2.2 of Koenker 

(2005). The objective function R(Q) of expression (11) is the following: 

      
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The function R(Q) is not differentiable at the points at which any of the residuals, (yt-Q), are equal to 

zero. For this reason, when considering the minimisation of R(Q), we consider directional derivatives. 

The directional derivative of R in direction w is given by 
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The parameter Q minimises R(Q) if and only if the directional derivatives,  wQR , , are 

nonnegative for all directions w. We present this condition in the following expression: 
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If we let w=- in expression (30), we get 
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and if we let w= in expression (30), we get 
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If we make the reasonable assumption that yt is not equal for Q for all t, expressions (31) and (32) 

constitute expression (12). 
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