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Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential 

Smoothing 

 

Abstract  

This paper considers univariate online electricity demand forecasting for lead times from a 

half-hour-ahead to a day-ahead. A time series of demand recorded at half-hourly intervals 

contains more than one seasonal pattern. A within-day seasonal cycle is apparent from the 

similarity of the demand profile from one day to the next, and a within-week seasonal cycle is 

evident when one compares the demand on the corresponding day of adjacent weeks. There is 

strong appeal in using a forecasting method that is able to capture both seasonalities. The 

multiplicative seasonal ARIMA model has been adapted for this purpose. In this paper, we 

adapt the Holt-Winters exponential smoothing formulation so that it can accommodate two 

seasonalities. We correct for residual autocorrelation using a simple autoregressive model. 

The forecasts produced by the new double seasonal Holt-Winters method outperform those 

from traditional Holt-Winters and from a well-specified multiplicative double seasonal 

ARIMA model.  
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Introduction 

 Online electricity demand prediction is required for the control and scheduling of power 

systems. The forecasts are required for lead times from a minute-ahead to a day-ahead. At 

National Grid, which is responsible for the transmission of electricity in England and Wales, 

online prediction is based on half-hourly data. A profiling heuristic is used to produce forecasts 

for each minute by interpolating between each half-hourly prediction. The National Grid one 

hour-ahead forecasts are a key input to the balancing market, which operates on a rolling one 

hour-ahead basis to balance supply and demand after the closure of bi-lateral trading between 

generators and suppliers. 

 Weather is a key influence on the variation in electricity demand (see Taylor and 

Buizza1,2). However, in a real-time online forecasting environment, multivariate modelling is 

usually considered impractical. A multivariate online system would be very demanding in 

terms of weather forecast input and would require default procedures in order to ensure 

robustness3. Univariate methods are considered to be sufficient for the short lead times 

involved because the weather variables tend to change in a smooth fashion, which will be 

captured in the demand series itself.  

In this paper, we consider online, univariate forecasting of half-hourly data. A time 

series of electricity demand recorded at half-hourly intervals contains more than one seasonal 

pattern. Figure 1 shows half-hourly demand in England and Wales for a fortnight in June 

2000. A within-day seasonal cycle, of duration 48 half-hour periods, is apparent from the 

similarity of the demand profile from one day to the next, particularly on weekdays. A 

within-week seasonal cycle, of duration 336 half-hour periods, is evident when one compares 

the demand on the corresponding day of adjacent weeks. There is strong appeal in using a 

forecasting method that is able to capture information in both seasonalities. 

*****  Figure 1  ***** 
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Holt-Winters exponential smoothing is a popular approach to forecasting seasonal 

time series. The robustness and accuracy of exponential smoothing methods has led to their 

widespread use in applications where a large number of series necessitates an automated 

procedure, such as inventory control. This suggests that Holt-Winters might be a reasonable 

candidate for the automated application of online electricity demand forecasting. However, 

the method is only able to accommodate one seasonal pattern. The multiplicative seasonal 

ARIMA model has been extended in order to model the within-day and within-week 

seasonalities in electricity demand. In this paper, we adapt the Holt-Winters method so that it 

can accommodate two seasonalities. This involves the introduction of an additional seasonal 

index and an extra smoothing equation for the new seasonal index.  

 In the next section, we describe how ARIMA models have been adapted for online 

electricity demand forecasting, in order to capture multiple seasonalities in the demand series. 

We then show how the Holt-Winters method can be adapted for series with more than one 

seasonality. The section that follows presents an empirical forecast comparison of the new 

formulation with the standard Holt-Winters method and with a multiplicative double seasonal 

ARIMA model. In the final section, we provide a summary and conclusion.  

 

Multiplicative Double Seasonal ARIMA Models 

The literature on short-term load forecasting contains a variety of univariate methods 

that could be implemented in an online prediction system. The range of different approaches 

includes state space methods with the Kalman filter (e.g. Infield and Hill4), general 

exponential smoothing (e.g. Christiaanse5), artificial neural networks (e.g. Lamedica et al.6), 

spectral methods (e.g. Laing and Smith7) and seasonal ARIMA models (e.g. Laing and 

Smith7; Darbellay and Slama8). The most noticeable development in demand forecasting over 

the last decade has been the increasing interest shown by researchers and practitioners in 

artificial neural networks (see Hippert et al. 9). Although there is obvious appeal to using this 



modelling approach to find the non-linear relationship between demand and weather 

variables, its appeal for univariate modelling is far less clear. The one short-term forecasting 

method that has remained popular over the years, and appears in many papers as a benchmark 

approach, is multiplicative seasonal ARIMA modelling. 

 The multiplicative seasonal ARIMA model, for a series, Xt, with just one seasonal pattern 

can be written as 

( ) ( ) ( ) ( ) t
s

Qqt
D
s

ds
Pp LLXLL εθφ Θ=∇∇Φ  

where L is the lag operator, s is the number of periods in a seasonal cycle, ∇ is the difference 

operator, (1-L), ∇s is the seasonal difference operator, (1-Ls), d and D are the orders of 

differencing, εt is a white noise error term, and φp, ΦP, θq and  ΘQ are polynomial functions of 

orders p, P, q and Q, respectively. The model is often expressed as ARIMA(p,d,q)×(P,D,Q)s. 

It is multiplicative in the sense that the polynomial functions of L and Ls are multiplied on 

each side of the equation to give a rich function of the lag operator. Box et al. 10 (p 333) 

comment that the model can be extended for the case of multiple seasonalities. The 

multiplicative double seasonal ARIMA model can be written as 
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where s1 and s2 are the number of periods in the different seasonal cycles, and  and 
2PΩ

2QΨ  

are polynomial functions of orders P2 and Q2, respectively. This model can be expressed as 

ARIMA . Applying the model to half-hourly electricity 

demand, Laing and Smith

21
),,(),,(),,( 222111 ss QDPQDPqdp ××

7 set s1=48 to model the within-day seasonal cycle of 48 half-hours, 

and s2=336 to model the within-week cycle of 336 half-hours. The forecasts from ARIMA 

models of this type are currently used at National Grid. In an application to hourly demand in 

the Czech Republic, Darbellay and Slama8 set s1=24 to model the within-day seasonal cycle, 

and s2=168 to model the within-week cycle. 
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The multiplicative seasonal ARIMA model can easily be extended to take care of 

three or more seasonalities by the introduction of additional polynomial functions of the lag 

operator and additional difference operators in expression (1). Therefore, the annual seasonal 

pattern in electricity demand could also be modelled. However, it is usual to assume that it is 

not significant in the context of lead times up to a day-ahead7. 

 In this section, we have shown how the multiplicative double seasonal ARIMA model 

is a straightforward extension of the standard multiplicative seasonal model. Motivated by 

this, and by the fact that exponential smoothing has been a competitive alternative to ARIMA 

models with a variety of different types of data11, in the next section, we adapt the standard 

Holt-Winters method for application to series with two seasonalities.  

 

Double Seasonal Holt-Winters Exponential Smoothing 

Standard Holt-Winters 

The standard Holt-Winters method was introduced by Winters12 and is suitable for 

series with one seasonal pattern. The multiplicative seasonality version of the method is 

presented in expressions (2)-(5). It assumes an additive trend and estimates the local slope, Tt, 

by smoothing successive differences, (St - St-1), of the local level, St. The local s-period 

seasonal index, It, is estimated by smoothing the ratio of observed value, Xt, to local level, St. 

Level   )()1()( 11 −−− +−+= ttsttt TSIXS αα    (2) 
Trend   11 )1()( −− −+−= tttt TSST γγ     (3) 
Seasonality  stttt ISXI −−+= )1()( δδ      (4) 

kstttt ITkSkX +−+= )()(ˆ      (5) 

where α, γ and δ are smoothing parameters, and  is the k-step-ahead forecast. The 

seasonality is multiplicative in the sense that the underlying level of the series is multiplied 

by the seasonal index. Holt-Winters for additive seasonality is an alternative formulation, 

which involves the addition of seasonal factors to the underlying trend. The multiplicative 

version is appropriate if the magnitude of the seasonal variation increases with an increase in 

)(ˆ kX t
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the mean level of the series, while the additive version should be used if the seasonal effect 

does not depend on the current mean level. The multiplicative version is much more widely 

used and so for simplicity, in this paper, we provide only the multiplicative formulation. 

It is worth noting that the use of the word “multiplicative” in the context of seasonal 

ARIMA models is quite different to its use in Holt-Winters exponential smoothing. By 

contrast with Holt-Winters for multiplicative seasonality, the seasonal effect for 

multiplicative seasonal ARIMA models does not depend on the mean level of the series. 

There is no equivalence between Holt-Winters for multiplicative seasonality and 

multiplicative seasonal ARIMA models. This point is, perhaps, emphasised by the fact that, 

although there is an ARIMA model for which Holt-Winters for additive seasonality is 

optimal13, there is no ARIMA model for which Holt-Winters for multiplicative seasonality is 

optimal14. 

 

Double Seasonal Holt-Winters 

Although standard Holt-Winters is widely used for forecasting seasonal time series, 

the method is only able to accommodate one seasonal pattern. A formulation that can 

accommodate more than one seasonal pattern has not been considered in the exponential 

smoothing literature. This is evident from the recent taxonomies of Hyndman et al.15 and 

Taylor16. The Holt-Winters method for double multiplicative seasonality is given in 

expression (6)-(10). The method is suitable when there are two seasonal patterns in the time 

series. The formulation involves separate seasonal indices, Dt and Wt, for the two 

seasonalities. The local s1-period seasonal index, Dt, is estimated by smoothing the ratio of 

observed value, Xt, to the product of the local level, St, and local s2-period seasonal index, 

. Similarly, the local s
2stW − 2-period seasonal index, Wt, is estimated by smoothing the ratio of 

observed value, Xt, to the product of the local level, St, and local s1-period seasonal index, 

.  
1stD −
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Level   )()1())(( 1121 −−−− +−+= ttststtt TSWDXS αα   (6) 
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Seasonality 1  

12
)1())(( ststttt DWSXD −− −+= δδ     (8) 

Seasonality 2  
21

)1())(( ststttt WDSXW −− −+= ωω     (9) 

kstkstttt WDTkSkX +−+−+=
21

)()(ˆ               (10) 

where α, γ, δ and ω are smoothing parameters. Applying the method to a series of half-hourly 

demand, one would set s1=48 and s2=336, as in the multiplicative double seasonal ARIMA 

model of Laing and Smith7. Dt and Wt would then represent the within-day and within-week 

seasonalities, respectively. A double additive seasonality method can be developed in a 

similar way from the standard Holt-Winters method for additive seasonality. The formulation 

in expressions (6)-(10) can easily be extended for three or more seasonal patterns by 

introducing an extra seasonal index and smoothing equation for each additional seasonality.  

 

Empirical Comparison of Methods 

 We carried out empirical analysis in order to address two main issues. Firstly, we 

wished to investigate whether the new double seasonal Holt-Winters method offers an 

improvement on the standard Holt-Winters method in terms of forecast accuracy. Secondly, 

we wanted to compare forecasting performance of the new formulation with a well-specified 

multiplicative double seasonal ARIMA model.  

The data used was 12 weeks of half-hourly electricity demand in England and Wales 

from Monday 5 June 2000 to Sunday 27 August 2000. It is shown in Figure 2. We used the 

first 8 weeks of data to estimate method parameters and the remaining 4 weeks to evaluate 

post-sample forecasting performance. This amounts to 2,688 half-hourly observations for 

estimation and 1,344 for evaluation. To simplify our comparison of methods, we chose a 

period that did not contain any ‘special’ days, such as national holidays. Demand on these 

days is so very unlike the rest of the year that online univariate methods are generally unable 

to produce reasonable forecasts. In practice, interactive facilities tend to be used for special 

 7



days, which allow operator experience to supplement or override the system offline. If a 

forecasting method is unable to tolerate gaps in the historical series, the special days can be 

smoothed over, leaving the natural periodicities of the data intact7. 

*****  Figure 2  ***** 

 

Multiplicative Double Seasonal ARIMA 

The process of model identification is impractical in an online demand forecasting 

system, and so the model is chosen offline. We used the Box-Jenkins modelling methodology 

to identify the most suitable ARIMA model based on the 2,688 observations in the estimation 

sample. The autocorrelation function and partial autocorrelation function were used to select 

the order of the model, which was then estimated by maximum likelihood. The residuals were 

inspected for any remaining autocorrelation. Laing and Smith7 explain that, in the 

multiplicative double seasonal ARIMA formulation in expression (1), polynomials of order 

greater than two are rarely necessary when fitting a model to half-hourly data for England 

and Wales. In view of this, we considered polynomials up to order two, but we also checked 

the autocorrelation function of the residuals for any remaining higher order autocorrelation. 

We compared the Schwartz Bayesian Criterion (SBC) for an extensive range of different 

ARIMA models. We investigated differencing and a logarithmic transformation for demand 

but found neither to improve the SBC. The model with lowest SBC and satisfactory residuals 

was the following ARIMA(2,0,0)×(2,0,2)48×(2,0,2)336 model, which we shall refer to as the 

Double Seasonal ARIMA model: 

( )( )( )( )
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Holt-Winters Exponential Smoothing 

We produced forecasts using the following three Holt-Winters methods: 

Holt-Winters for Within-Day Seasonality - This is standard Holt-Winters for multiplicative 

seasonality, given in expressions (2)-(5), using only a 48-period seasonal cycle.  

Holt-Winters for Within-Week Seasonality - This is standard Holt-Winters for multiplicative 

seasonality, given in expressions (2)-(5), using only a 336-period seasonal cycle.  

Double Seasonal Holt-Winters - This is the new Holt-Winters for double multiplicative 

seasonality, given in expressions (6)-(10), using both a 48-period cycle for the within-day 

seasonality and a 336-period seasonal cycle for the within-week seasonality.  

Williams and Miller17 use simple averages of the first few data observations to 

calculate initial smoothed values for the level, trend and seasonal components in the standard 

Holt-Winters method. We implemented their procedure for Holt-Winters for Within-Day 

Seasonality and Holt-Winters for Within-Week Seasonality. We adapted the procedure for 

Double Seasonal Holt-Winters. The initial trend, T0, was chosen as the average of (1) 336
1  of 

the difference between the mean of the first 336 and second 336 observations, and (2) the 

average of the first differences for the first 336 observations. The initial level, S0, was chosen 

as the mean of the first 672 observations minus 336.5 times the initial trend. The initial values 

for the within-day seasonal index, Dt, were set as the average of the ratios of actual 

observation to 48-point centred moving average, taken from the corresponding half-hour 

period in each of the first seven days of the time series. The initial values for the within-week 

seasonal index, Wt, were set as the average of the ratios of actual observation to 336-point 

centred moving average, taken from the corresponding half-hour period on the same day of 

the week in each of the first two weeks of the demand series, divided by the corresponding 

initial value of the smoothed within-day seasonal index, Dt. 

We derived parameter values by the common procedure of minimising the sum of 

squared 1-step-ahead forecast errors using a non-linear optimisation routine. The estimated 
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parameters are shown in Table 1. The zero values for γ in Holt-Winters for Within-Week 

Seasonality and Double Seasonal Holt-Winters were accompanied by a constant small value 

for the smoothed trend, Tt. This seems reasonable since variation in the 8-week estimation 

period is dominated by seasonality. The high value for γ in Holt-Winters for Within-Day 

Seasonality was accompanied by highly varying, and quite sizeable, values for the smoothed 

trend. Since the method is unable to pick up the weekly seasonality in the data, it has 

incorporated this variability in its estimate of the trend. 

*****  Table 1  ***** 

Figure 3 compares the post-sample forecasting accuracy of the three Holt-Winters 

methods and the ARIMA model for lead times up to a day-ahead. The figure shows the mean 

absolute percentage error (MAPE), which is the most widely used error summary measure in 

electricity demand forecasting. Following the recommendation of Hippert et al. 9, we also 

calculated the mean absolute error, root mean square error and root mean square percentage 

error, but we do not report these results here because the relative performances of the 

methods for these measures were very similar to those for the MAPE. The results for Holt-

Winters for Within-Day Seasonality were so poor that it was impractical to plot the MAPE 

values beyond 2-steps-ahead ahead on the same graph as the MAPE values for the other 

methods. This is due to the method failing to accommodate within-week seasonality. This 

might have been anticipated from Figure 1, which shows how very different demand on 

Saturdays and Sundays is from demand on weekdays. Holt-Winters for Within-Week 

Seasonality is far more competitive, suggesting that the within-week seasonality accounts for 

a large proportion of the variation in the data. However, Double Seasonal Holt-Winters 

outperforms Holt-Winters for Within-Week Seasonality for 38 of the 48 lead times, indicating 

that there is benefit in using a method that is able to pick up both seasonalities. Beyond 12 

hours-ahead, the accuracy of these two methods tends to improve with the lead time. This is 

due to the within-day seasonality, and it implies that a forecast for 12 hours ahead would be 
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better made from a forecast origin 12 hours prior to the current period. In his analysis of 

online methods, Smith18 also concludes that the choice of forecast origin should depend on 

the forecast horizon. Comparing the two double seasonal methods, we see that Double 

Seasonal ARIMA outperforms Double Seasonal Holt-Winters for all but the last 5 lead times. 

*****  Figure 3  ***** 

 

Adjusting for Error Autocorrelation in the Holt-Winters Methods 

Inspection of the 1-step-ahead errors, in the estimation sample of 2,688 periods, 

revealed sizeable first-order autocorrelation for all three Holt-Winters methods, indicating 

that the forecasts were suboptimal. Gardner19 reports how the forecasts from exponential 

smoothing methods can sometimes be improved by using a simple adjustment, initially 

proposed by Reid20 and Gilchrist21 (pp 202-203). The adjustment involves an AR(1) model, et 

= λet-1 + ξt, being fitted to the 1-step-ahead errors, et. The k-step-ahead forecasts from 

forecast origin τ are then modified by adding the term λkeτ. Chatfield22 found that the 

modification resulted in improvements in accuracy when applied to the autocorrelated errors 

from Holt-Winters for multiplicative seasonality. Using just the estimation sample, we fitted 

AR(1) models to the residuals from each of the three Holt-Winters methods described in the 

previous section. This led to improved post-sample results for all three methods at the very 

early lead times.  

 Estimating the parameters of a Holt-Winters method and then fitting a model to the 

residuals is a two-stage estimation approach. Chatfield22 suggests that it may be more 

efficient to estimate all of the parameters for a method in a single stage. We did this for each 

of the three Holt-Winters methods by minimising the sum of squared 1-step-ahead errors 

from the estimation sample. This led to far greater improvements in post-sample accuracy 

than were found using the two-stage estimation approach. Before presenting the post-sample 

MAPE results, let us first consider the estimated parameters resulting from the single-stage 



 12

estimation approach. These are shown in Table 2. The parameters are noticeably different to 

those shown in Table 1 for the same methods without residual autocorrelation adjustment. 

The introduction of the AR(1) model for the residuals has caused a sizeable reduction in the 

smoothing parameter for the level in Holt-Winters for Within-Week Seasonality and Double 

Seasonal Holt-Winters. It would seem that the introduction of the model for the residuals has, 

to a large degree, replaced the smoothing equation for the level. Incidentally, we did not fit a 

model to the residuals of the Double Seasonal ARIMA model because it was estimated after 

careful diagnostic evaluation, and so there was no autocorrelation in its residuals.  

*****  Table 2  ***** 

Figure 4 shows the post-sample forecasting performance for the three Holt-Winters 

methods with residual autocorrelation adjustment. The MAPE results for Double Seasonal 

ARIMA, which were plotted in Figure 3, are also shown in Figure 4. The new results for all 

three Holt-Winters methods have improved substantially from Figure 3. The relative 

performance of the three methods has not changed, but Double Seasonal Holt-Winters is now 

the best of the three for all 48 lead times. Interestingly, the method now also outperforms 

Double Seasonal ARIMA for all the lead times. Beyond 12-periods-ahead, the ARIMA model 

is also outperformed by Holt-Winters for Within-Week Seasonality. 

*****  Figure 4  ***** 

Intuitively, it is not surprising that, for the electricity demand data, the new double 

seasonal Holt-Winters method was more accurate than the two implementations of the 

standard Holt-Winters method. Application of the standard method was relatively naïve 

because it is unable to accommodate more than one seasonality. Nevertheless, it is pleasing to 

find that the empirical results support intuition. It is less clear why the new method with 

residual autocorrelation adjustment outperforms the ARIMA model. It cannot simply be due 

to the multiplicative nature of the double seasonal Holt-Winters method because an additive 

version of the method performed similarly. A possible explanation is provided by the 
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comments of Chatfield23 and Chatfield and Yar24 in their consideration of the choice between 

ARIMA modelling and exponential smoothing. They explain that ARIMA modelling is worth 

considering if the series is dominated by short-term correlation but not when it is dominated 

by trend and seasonal variation. Since electricity demand, recorded at half-hourly or hourly 

intervals, is dominated by seasonal variation, it follows that Holt-Winters formulations 

should perform well in comparison with ARIMA models. 

  

Summary and Conclusions 

Online short-term electricity demand forecasting requires a robust, univariate 

procedure. Inspection of a time series of half-hourly demand reveals a within-day seasonality 

and a within-week seasonality. A popular approach is to use a multiplicative double seasonal 

ARIMA model. The robustness of exponential smoothing methods suggests that Holt-

Winters would be a reasonable candidate for online short-term demand forecasting. However, 

the method is only able to accommodate one seasonal pattern. In this paper, we have shown 

how the method can be adapted for time series with two seasonalities. This involves the 

introduction of an additional seasonal index and an extra smoothing equation for this new 

seasonal index.  

Using a series of half-hourly electricity demand, the new formulation outperformed 

standard Holt-Winters for forecast lead times from a half-hour-ahead to a day-ahead. The 

Holt-Winters methods were improved by the inclusion of an AR(1) model for the residuals. 

The best results were achieved by estimating the AR(1) model parameter in the same 

estimation procedure as the exponential smoothing parameters. The resulting forecasts for the 

new double seasonal Holt-Winters method outperformed those from standard Holt-Winters 

and also those from a well-specified multiplicative double seasonal ARIMA model. We, 

therefore, conclude that there is strong potential for the use of the new double seasonal Holt-

Winters formulation in online short-term electricity demand forecasting. However, rather 
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than recommending the new method in preference to all others, we feel that a more useful 

approach would be to use several different methods. Smith18 discusses combining online 

electricity demand forecasts from different methods with weights varying according to the 

particular period of the week and the forecast origin. Taylor and Majithia25 describe how 

smooth transition combining methods can used to enable a smooth form of switching 

between different demand forecasting methods. 

 

Acknowledgements 

We are grateful to Shanti Majithia, Chris Rogers and Sal Sabbagh of National Grid 

for supplying data and information regarding the company’s online demand forecasting. We 

are also grateful for the useful comments of the anonymous referees. 

 

References 

1  Taylor JW and Buizza R (2003). Using weather ensemble predictions in electricity 
demand forecasting. International Journal of Forecasting 19: 57-70. 

 
2 Taylor JW and Buizza R (2002). Neural Network Load Forecasting with Weather 

Ensemble Predictions. IEEE Transactions on Power Systems 17: 626-632. 
 
3 Bunn DW (1982). Short-term forecasting: A review of procedures in the electricity 

supply industry. Journal of the Operational Research Society 33: 533-545. 
 
4 Infield DG and Hill DC (1998). Optimal smoothing for trend removal in short-term 

electricity demand forecasting. IEEE Transactions Power Systems 13: 1115-1120. 
 
5 Christiaanse WR (1971). Short-term load forecasting using general exponential 

smoothing. IEEE Trans. on Power Apparatus and Systems Pas-90: 900-902. 
 
6 Lamedica R, Prudenzi A, Sforna M, Caciotta M and Cencelli VO (1996). A neural 

network based technique for short-term forecasting of anomalous load periods. IEEE 
Transactions Power Systems 11: 1749-1756. 

 
7 Laing WD and Smith DGC (1987). A comparison of time series forecasting methods 

for predicting the CEGB demand. Proceedings of the Ninth Power Systems 
Computation Conference.  

 
8 Darbellay GA and Slama M (2000). Forecasting the short-term demand for electricity 

- Do neural networks stand a better chance? International Journal of Forecasting 16: 
71-83. 



 15

9 Hippert HS, Pedreira CE and Souza RC (2001). Neural networks for short-term load 
forecasting: A review and evaluation. IEEE Transactions on Power Systems 16: 44-55. 

 
10 Box GEP, Jenkins GM and Reinsel GC (1994). Time Series Analysis: Forecasting 

and Control, third edition. Englewod Cliffs, Prentice Hall: New Jersey, p 333. 
 
11 Makridakis S, Chatfield C, Hibon M, Lawrence M, Mills T, Ord K and Simmons LF 

(1993). The M2-Competition: A real-time judgementally based forecasting study. 
International Journal of Forecasting 9: 5-22. 

 
12 Winters PR (1960). Forecasting sales by exponentially weighted moving averages. 

Management Science 6: 324-342. 
 
13 McKenzie E (1976). A comparison of some standard seasonal forecasting systems. 

The Statistician 25: 3-14. 
 
14 Abraham B and Ledolter J (1986). Forecast functions implied by autoregressive 

integrated moving average and other related forecast procedures. International 
Statistical Review 54: 51-66. 

 
15 Hyndman RJ, Koehler AB, Snyder RD and Grose S (2002). A state space framework 

for automatic forecasting using exponential smoothing methods. International Journal 
of Forecasting 18: 439-454. 

 
16 Taylor JW (2003). Damped multiplicative trend exponential smoothing. International 

Journal of Forecasting forthcoming. 
 
17   Williams DW and Miller D (1999). Level-adjusted exponential smoothing for modeling 

planned discontinuities. International Journal of Forecasting 15: 273-289. 
 
18 Smith DGC (1989). Combination of forecasts in electricity demand prediction. 

Journal of Forecasting 8: 349-356. 
 
19 Gardner ES Jr. (1985). Exponential smoothing: The state of the art. Journal of 

Forecasting 4: 1-28. 
 
20 Reid DJ (1975). A review of short-term projection techniques. In: Practical Aspects of 

Forecasting, Gordon HA (ed.). Operational Research Society, London, pp 8-25. 
 
21 Gilchrist W (1976). Statistical Forecasting. Wiley: Chichester. 
 
22 Chatfield C (1978). The Holt-Winters forecasting procedure. Applied Statistics 27: 

264-279. 
 
23 Chatfield C (1985). Comments on ‘Exponential smoothing: The state of the art’ by 

Gardner ES Jr. Journal of Forecasting 4: 30.  
 
24 Chatfield C and Yar M (1988). Holt-Winters forecasting: Some practical issues. The 

Statistician 37: 129-140. 
 



 16

25 Taylor JW and Majithia S (2000). Using combined forecasts with changing weights 
for electricity demand profiling. Journal of the Operational Research Society 51: 72-
82. 



 
 
 
 
 
 
 
 
 
 
 
 
 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 48 96 144 192 240 288 336 384 432 480 528 576 624 672
Half-hours

Demand (MW) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  Half-hourly electricity demand in England and 
Wales from Monday 5 June 2000 to Sunday 18 June 2000. 
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Figure 2  Half-hourly electricity demand in England and 
Wales from Monday 5 June 2000 to Sunday 27 August 2000. 
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Figure 3  Comparison of MAPE results for the 4-week post-sample. 

No adjustment for autocorrelation in the residuals of the Holt-Winters methods. 
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Figure 4  Comparison of MAPE results for the 4-week post-sample period. 
The Holt-Winters methods included an AR(1) model for the residuals. 
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Table 1  Holt-Winters parameters calculated from the 8-week estimation sample. No 
adjustment for autocorrelation in the residuals of the methods. 
 
 

 Level 
α 

Trend 
γ 

Within-day 
seasonality δ 

Within-week 
seasonality ω 

Holt-Winters for Within-Day Seasonality 0.98 0.90 1.00 - 

Holt-Winters for Within-Week Seasonality 0.82 0.00 - 1.00 

Double Seasonal Holt-Winters 0.90 0.00 1.00 1.00 

 
 

 

 

Table 2  Holt-Winters parameters calculated from the 8-week estimation sample. The 
methods included an AR(1) model for the residuals. 
 
 

 Level 
α 

Trend 
γ 

Within-day 
seasonality δ 

Within-week 
seasonality ω 

AR 
λ 

Holt-Winters for Within-Day Seasonality 0.92 0.00 1.00 - 0.71 

Holt-Winters for Within-Week Seasonality 0.02 0.00 - 0.41 0.91 

Double Seasonal Holt-Winters 0.01 0.00 0.21 0.24 0.92 

 
 

 
 
 
 
 
 
 
 
 
 
 


	Short-Term Electricity Demand Forecasting Using
	Double Seasonal Exponential Smoothing
	James W. Taylor
	Saïd Business School
	University of Oxford

	Park End Street
	Short-Term Electricity Demand Forecasting Using Double Seaso
	Abstract
	Key words: electricity demand forecasting; Holt-Winters expo
	Introduction
	Online electricity demand prediction is required for the con
	Multiplicative Double Seasonal ARIMA Models

	The multiplicative seasonal ARIMA model, for a series, Xt, w
	Double Seasonal Holt-Winters Exponential Smoothing
	Standard Holt-Winters
	Double Seasonal Holt-Winters


	Empirical Comparison of Methods
	Multiplicative Double Seasonal ARIMA
	Holt-Winters Exponential Smoothing
	Adjusting for Error Autocorrelation in the Holt-Winters Meth




	Summary and Conclusions
	Figure 3  Comparison of MAPE results for the 4-week post-sam
	Figure 4  Comparison of MAPE results for the 4-week post-sam
	The Holt-Winters methods included an AR(1) model for the res
	Table 1  Holt-Winters parameters calculated from the 8-week 
	Holt-Winters for Within-Day Seasonality
	Holt-Winters for Within-Week Seasonality

	Holt-Winters for Within-Day Seasonality
	Holt-Winters for Within-Week Seasonality




