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 
Abstract—Electricity demand forecasts are needed for 

decisions regarding generation dispatch for lead times as short as 
just a few minutes. Imbalance between generation and demand 
causes deviation of the system frequency from its target, which in 
Great Britain is 50Hz. This, in turn, causes a change in demand, 
due largely to motor loads. For Great Britain, the change is 
estimated to be 2.5% of demand per 1Hz of frequency deviation 
from its target. This can be used to calculate the demand that 
would have occurred if frequency had been at 50Hz. Modeling 
and forecasting the resulting frequency-corrected demand 
provides a better basis for dispatching generation. This paper 
evaluates methods for forecasting frequency-corrected demand 
up to 10 minutes ahead. We introduce an exponential smoothing 
model that, like the system operator’s proposed Kalman Filter 
approach, jointly models frequency and demand. We also 
evaluate a set of univariate methods applied directly to the series 
of frequency-corrected demand. These methods have not 
previously been considered for lead times less than 10 minutes. 
In our empirical analysis, the best results were produced by a 
seasonal exponential smoothing method applied directly to the 
series of frequency-corrected demand.  
 

Index Terms— Electricity demand forecasting, frequency-load 
control, system frequency, time series models. 

I. INTRODUCTION 

slight imbalance between electricity demand and 
generation causes  the system frequency to fluctuate [1]. 

The transmission system operator (TSO) in Great Britain is 
required to ensure that the system frequency does not deviate 
greatly from the target of 50Hz. With this aim, throughout the 
day, the TSO instructs generators as to how much electricity 
to provide. These instructions can be reactionary, in response 
to sudden changes in load and deviations of frequency from 
the required level, but they should also be based on demand 
forecasts [2], as generators require several minutes notice if 
adjustments to generation are required. If demand turns out to 
be greater than the amount generated, the system frequency 
will fall, as the energy has to come from slowing down the 
various generators. The lower frequency will result in a lower 
demand, and self-regulating effect helps to stabilize the 
system frequency [3,§4.2]. It is also the case that, if generation 
exceeds demand, the frequency rises, leading to a rise in 
demand. The sensitivity of load to frequency is due largely to 
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motor loads, as well as power devices controlled by 
semiconductors that allow variation in the power supplied, 
such as switched-mode power supplies in personal computers 
[4]. An example of the self-regulating effect is provided in [4], 
in which a fault led to an unexpected generation loss of 
1,050MW in Scotland. Only 64% of the loss was recovered 
using reserves, with the remainder accounted for by the 
natural sensitivity of demand to frequency. In view of this, the 
sensitivity of load to frequency should be considered in setting 
the optimal level of reserve [4].  

The sensitivity of demand to deviations in frequency varies 
across different electricity systems (see, for example, [5,6,7]). 
For the Great Britain electricity grid, the TSO estimates the 
impact as about 2.5% of demand per 1Hz of frequency 
deviation from the target of 50Hz. In view of this, we can 
derive the level of demand that would have occurred if 
frequency had been at 50Hz. We refer to this as the 
frequency-corrected demand Ct, and it is calculated as in 
expression (1), where Dt is the demand, Ft is the frequency, 
and c is the load-frequency sensitivity, which we term the 
correction factor and which we assume to be 2.5% for Great 
Britain. 

  tttt DFcDC  50           (1) 

In considering future periods, the aim is to have the system 
operating at its target frequency of 50Hz. Therefore, 
generation dispatchers need to predict the demand under the 
assumption that the frequency will be at this target. If 
frequency turns out not to be 50Hz, the forecasts should not 
be evaluated against observed demand, but should instead be 
evaluated against the demand that would have been observed 
if the system had been operating at 50Hz. This is the 
frequency-corrected demand. Indeed, to try to maintain a 
stable frequency at 50Hz, instead of delivering instructions to 
generators based on forecasts of demand, it is appropriate to 
use forecasts of frequency-corrected demand Ct. In this paper, 
our focus is to evaluate the point forecast accuracy of different 
methods for predicting minute-by-minute observations of Ct. 
In view of the limitations on generator response times, for 
Great Britain, the main focus of the TSO is a lead time of 3 
minutes. However, to provide broader insight, we investigate 
accuracy for lead times from 1 to 10 minutes.  

Load is often modeled in terms of weather variables. 
However, this has tended not to be the case when forecasting 
at lead times of less than about an hour, which can be termed 
very short-term load forecasting. For such lead times, weather 
predictions are of questionable worth, as the recent load 
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observations can adequately capture the very-short term 
evolution in the load time series. For very short-term 
forecasting, artificial neural networks (ANNs) are considered 
in [2], along with models based on fuzzy logic and 
autoregressive models. The analysis uses only the historical 
load observations. ANNs are also used in [8], and although 
temperature is considered as a possible input, the models 
presented include inputs that are functions only of past load. 
In [9], hourly load forecasts are employed as the basis for 
predicting load from 5 minutes up to 2 hours ahead. A cubic 
spline is used to convert hourly forecasts to predictions at a 5-
minute sampling rate. A Kalman Filter is then applied to these 
predictions and load data recorded at a 5-minute to produce 
forecasts from 5 minutes to 2 hours ahead. Abductive 
networks are used in [10], and it is found that, for one hour-
ahead prediction, temperature forecasts are not useful, with 
load from various lags being sufficient inputs. A forecast 
horizon of 15 minutes is considered in [11], where an ANN is 
implemented, based on fuzzy logic and chaotic dynamics 
reconstruction techniques. The approach is applied to a dataset 
consisting of only the historical load observations. This is also 
the case with the wavelet ANNs used in [12,13], which 
incorporate a pre-processing filter in order to smooth spikes 
occurring in the data due to malfunctioning of data recording 
devices. 

In this paper, we compare a set of forecasting methods that 
are applied directly to the time series of frequency-corrected 
demand. Several of these were included in the empirical study 
in [14], which looked at the forecasting of demand for lead 
times from 10 to 30 minutes. In this paper, our focus differs 
because we apply these methods to frequency-corrected 
demand, and we consider shorter lead times. Also, we 
evaluate other methods from the literature, including an ANN, 
and an exponential smoothing method based on singular value 
decomposition. In addition, we implement two methods that 
are not applied to the time series of frequency-corrected 
demand, but instead jointly model frequency and demand. 
One of these is the Kalman Filtering approach proposed by the 
TSO. 

Section II describes the data used in our empirical study. 
Section III presents the two forecasting methods that jointly 
model frequency and demand. Section IV describes the 
methods that directly model the frequency-corrected demand 
series. Section V presents the empirical results. Section VI 
provides concluding comments. 

II. THE FREQUENCY AND DEMAND DATA 

The data used in this study was supplied by the TSO in 
Great Britain. It consists of the 29 weeks of minute-by-minute 
observations for electricity demand and frequency in Great 
Britain from Sunday 7 April 2013 to Saturday 26 October 
2013. This constitutes 292,320 observations for each series. 
Following the advice of the TSO, if a value of demand was 
more than 1,000MW lower than the previous demand value, it 
was assumed that the recording meter had malfunctioned, and 

so the value was replaced by the average of demand from the 
two adjacent periods. This was needed for only 12 periods. An 
alternative to this simple smoothing approach is to use the 
filtering approach in [12]. We used the first 20 weeks of data 
to estimate forecasting method parameters, and the remaining 
9 weeks to evaluate post-sample forecast accuracy.  

The methods considered in this paper are not satisfactorily 
able to model special days, such as public holidays. Prediction 
for such days is typically performed separately offline. In our 
29-week sample, there were just three special days; two public 
holidays in the estimation sample and one in the post-sample 
period. For the estimation sample, we smoothed over each 
period of the special days by using the average of the 
corresponding periods in the two adjacent weeks. For the 
special day in the post-sample period, we smoothed by 
averaging the observations from the corresponding periods in 
the two previous weeks. The resulting smoothed values were 
not used for model estimation or evaluation. An alternative to 
forecasting special days offline is to adapt the models 
presented in [15], which were designed for half-hourly data.  

Fig. 1 shows the first fortnight of the electricity demand 
time series. The plot shows, at least for the weekdays, a 
repeating cycle of length m1=24×60=1,440 minutes. There is 
also a repeating cycle across each week, which is of length 
m2=7×24×60=10,080 minutes. The time series of system 
frequency, for the same two-week period, is shown in Fig. 2. 
This series shows high volatility around the target of 50Hz. 
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Fig. 1.  Minute-by-minute electricity demand for a two-week period. 
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Fig. 2.  Minute-by-minute frequency for a two-week period. 
 

Fig. 3 presents the autocorrelation functions (ACF) for 
demand and frequency. The demand ACF confirms the 
seasonality apparent in Fig. 1, with strong autocorrelation at 
lags that are multiples of m1, and particularly high 
autocorrelation at multiples of m2. The frequency ACF shows 
strong autocorrelation at the early lags, and also increased 
values of the autocorrelation at lags that are multiples of m1. 
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These values, which are significant at the 5% level, indicate 
some degree of seasonality in the frequency series. 
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Fig. 3.  Autocorrelation function for demand and frequency. 
 

A plot of a fortnight of the frequency-corrected demand 
series shows the same repeating cyclical patterns evident in 
the demand plot of Fig. 1. As we are interested in lead times 
of just a few minutes, it is informative to plot frequency-
corrected demand for a much shorter period, along with 
demand and frequency. We do this in Fig. 4 for one hour on 
the first Monday of our dataset. The figure shows the 
frequency-corrected demand for three values of the correction 
factor, c. Although the TSO assumes c=2.5%, this value is an 
estimate [4], and so it is interesting to consider alternative 
values. The plot of frequency in Fig. 4 confirms the finding 
from Fig. 3 that it is autocorrelated. As indicated by 
expression (1), when frequency is below 50Hz, Fig. 4 shows 
frequency-corrected demand above demand, and when 
frequency is above 50Hz, frequency-corrected demand is 
below demand. Given the form of expression (1), it is 
understandable that frequency-corrected demand shows 
greater volatility than demand in Fig. 4. 
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Fig. 4.  For a one hour period on Monday 8 April 2013, minute-by-minute 
observations for frequency (plotted against the secondary axis), demand and 
frequency-corrected demand for three values of the correction factor c. 

III. JOINTLY MODELING FREQUENCY AND DEMAND 

In this section, we present two methods that jointly model 
demand and system frequency. In each method, demand and 
frequency forecasts are generated, and then fed into 
expression (1) to give predictions for frequency-corrected 
demand.  

A. Kalman Filter Approach 
We implemented a Kalman Filter approach proposed by the 

TSO that involves modeling state variables for demand dt, 
growth in demand d

t , frequency ft, and growth in frequency 
f
t . The state equations for the model are the following:  

1,11111   t
f
tt

d
ttt udcdd            (2) 

1,21   t
d
t

d
t u                    (3) 

1,311   t
f
ttt uff                  (4) 

1,41   t
f
t

f
t u                    (5) 

where the uit are error terms. Expression (2) views the change 
in demand as consisting of the sum of three terms: growth, the 
impact of the frequency growth on demand, and error.  

The observed demand Dt and frequency Ft are related to the 
state variables through the following observation equations: 

ttt vdD ,1  

ttt vfF ,2  

where the vit are error terms. The TSO assumed the following: 
vit and uit are Gaussian, serially uncorrelated, and uncorrelated 
with each other; v1t and v2t are uncorrelated; and u1t and u2t are 
not correlated with u3t or u4t. The variances and correlations 
were treated as parameters. To assist prediction for a given 
lead time, parameters 1 and 2 were incorporated in the 
forecasting of the demand and frequency using the following: 

d
tttttkt dD |1||    

f
tttttkt fF |2||    

The parameters were optimized separately for each lead 
time by minimizing the sum of squared errors for the forecasts 
of frequency corrected-demand. The TSO proposed 
constraints on the parameters to assist the optimization. 
However, we found improved accuracy by removing these 
constraints. For a lead time of 3 minutes, which is the horizon 
of greatest interest to the TSO, we obtained 1=2.73, 2=0, 
var(v1t)=3.36, var(v2t)=0, and the covariance matrix of uit was 
estimated as:  



















00760.000

0760.038.900

00046.0655.0

00655.089.8

 

 
B. Exponential Smoothing for Frequency and Demand  

A weakness of the Kalman Filter approach is that it does 
not model seasonality. Standard state-space formulations for 
seasonality would imply a model with more than m2 states 
(see, for example, [16,§3.2.1]), which would be impractical. 
This motivates an alternative joint model of demand and 
frequency. Our proposal is to adapt HWT exponential 
smoothing, which aims to model intraday and intrayear 
seasonality. The HWT model is presented in [17] as follows: 

ttmtmttt ewdly    11 21
           (2) 

 
211 mtmtttt wdlye                 (3) 

ttt ell  1                     (4) 

tmtt edd   1
                      (5) 
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tmtt eww   2
                   (6) 

where yt is the target variable, lt is the smoothed level; dt is the 
seasonal index for the intraday cycle; wt is the index for the 
intraweek cycle remaining after the intraday cycle is removed; 
t~N(0,2); 2 is a constant variance; ,  and  are 
smoothing parameters; and  is a residual autocorrelation 
parameter.  

We used the HWT model for frequency Ft. Our model for 
demand was adapted from the HWT model, and is presented 
in expressions (7)-(11). For this model, the underlying 
demand is viewed as being best represented by frequency-
corrected demand, and so we model the level and seasonality 
of this variable. Consequently, the indices tl , td   and tw , 

represent the level and seasonality in frequency-corrected 
demand. In expression (7), we express demand in terms of the 
sum of these indices minus the frequency correction. 

  ttttmtmttt eDFcwdlD    1111 '50
21

     (7) 

   111 50
21   ttmtmtttt DFcwdlDe         (8) 

ttt ell   '1                      (9) 

tmtt edd   '
1

                  (10) 

tmtt eww   '
2

                 (11) 

We treated the modeling of frequency and demand as a 
joint model, and estimated all the parameters in one step by 
minimizing the sum of squared errors for the forecasts of 
frequency corrected-demand. We initially based estimation on 
one step-ahead forecast error, which is the standard approach 
for exponential smoothing. However, we obtained better 
results by following the TSO’s Kalman Filter approach in 
estimating parameters separately for each lead time. In Section 
V, we report results for the model with this approach to 
estimation. For 3 minutes ahead, we obtained the following 
estimates: =0.000, =0.301, =0.117, =0.300, =0.000, 
=0.046, =0.137 and=0.997. For all exponential 
smoothing methods considered in this paper, we initialized the 
smoothed components using averages of the early 
observations. 

IV. MODELING FREQUENCY-CORRECTED DEMAND 

In this section, we present a variety of univariate methods 
that we applied directly to frequency-corrected demand. These 
methods did not involve the modeling of frequency or 
demand. In addition to seasonal methods, we felt it was useful 
to evaluate non-seasonal methods, as our interest is in very 
short lead times, and because the Kalman Filter approach of 
Section III.A does not model seasonality. Prior to 
implementing the methods in this section, we applied the 
natural log transform in order to stabilize the variance and 
produce additive structure.  

 
A. Random Walk 

As a naïve benchmark, we used the value of the series at the 
forecast origin as the forecast for all lead times.  

 

B. Simple AR Models 
As additional simple benchmarks, we implemented an 

autoregressive (AR) model including only lags 1 to 5, and a 
second AR model including lags 1 to 5, as well as lags m1 and 
m2. In both models, all terms were significant at the 5% level. 
C. SARMA and ARMA Models 

We used the same form of double seasonal autoregressive 
moving average (SARMA) model considered in [14] for 
modeling a minute-by-minute series of demand. The model 
incorporates the product of three lag polynomials for both the 
AR and the MA parts of the model. The first polynomial is 
written in terms of the lag operator L, with the aim of 
capturing the variation in the level of the series. The second 

polynomial is written in terms of 1mL , in order to model the 
intraday seasonality. The third polynomial is written in terms 

of 2mL , with the aim of modeling the intraweek cycle. We 
considered lag polynomials up to order five, and found all 
terms to be significant at the 5% level. Estimation involved 
the standard approach of maximizing a Gaussian likelihood 
function. 

As a benchmark, we also implemented a non-seasonal 
ARMA model for frequency-corrected demand. We included 
lags of up to order five for both the AR and MA terms.  

 
D. ANN 

We implemented a similar type of ANN to that used in [17] 
for half-hourly demand. This model is a univariate single 
hidden layer feedforward ANN with single output. We 
implemented a separate ANN for each lead time. To be 
consistent with our SARMA modeling, we considered a larger 
set of candidate inputs than used in [17]. For lead time h, the 
potential inputs consisted of the value of the output variable at 
the forecast origin and at lags: 1, 2, 3, 4, m1-h, 2m1-h, 3m1-h, 
4m1-h, 5m1-h, m2-h, 2m2-h, 3m2-h, 4m2-h and 5m2-h. From these 
variables, we selected inputs using cross-validation with a hold-
out sample consisting of the final 4 weeks of the estimation 
sample. This led to the following inputs: the output variable at 
the forecast origin and at lags: 1, 2, 3, 4, m1-h, and m2-h. 

 
E. Non-seasonal Exponential Smoothing 

We used damped additive trend exponential smoothing, 
which smoothes the level and trend of a series, and dampens 
the trend when forecasting (see, for example, [18]). The 
method does not model seasonality. We optimized the 
parameter values by the standard approach of minimizing the 
sum of squared in-sample 1 step-ahead forecast errors.  

 
F. HWT Exponential Smoothing 

We implemented the HWT exponential smoothing method 
of expressions (2)-(6) for frequency-corrected demand. We 
first optimized parameters by minimizing the sum of squared 
1 step-ahead forecast error. However, we also optimized the 
model separately for each lead time, as this was the approach 
taken with the two methods of Section III. For 3 minute-ahead 
prediction, this led to =0.001, =0.047, =0.140 
and=0.997. In applying the HWT model to minute-by-
minute demand [14], accuracy for 10-30 minutes-ahead 
improved when parameters were estimated based on 30 
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minute-ahead error. In this paper, we extend this idea by 
optimizing the parameters separately for each lead time. 
 
G. SVD-Based Exponential Smoothing 

For modeling half-hourly load, an exponential smoothing 
method has been introduced in [17] that involves singular 
value decomposition (SVD), which is a dimension reduction 
technique. For minute-by-minute data, the method proceeds 
by applying SVD to the data arranged as a (wm2) matrix Y, 
where w is the number of weeks of data. Each column of Y 
contains the observations for a particular minute of the week. 
Predicting the next row of Y amounts to forecasting the next 
week of the time series. SVD transforms Y to a new matrix P, 
with columns ordered according to the extent to which they 
capture the variation in the columns of Y. The approach is 
then to reduce the matrix P to fewer columns, in order to 
capture the main variation in Y, whilst simplifying the 
forecasting task to one of predicting the next row of a reduced 
matrix. 

If SVD is applied to a column-centered matrix, it is 
equivalent to principal component analysis. The columns of 
matrix P are then the principal components. The empirical 
study in [17] focused on British and French half-hourly load 
data, and used accuracy for a lead time of 1 half-hour to select 
the dimension of the reduced matrix. This led to dimensions of 
31 and 38, respectively. In our study of minute-by minute 
data, we selected the dimension using 1 to 10 minute-ahead 
accuracy for a cross-validation sample consisting of the final 4 
weeks of the estimation sample. For this, the optimal 
dimension of the reduced matrix was just 1 column. This 
suggests that, for very short lead times, the seasonality is 
adequately described by the average intraweek cycle, with the 
variation around this cycle captured by non-seasonal terms 
within the SVD-based exponential smoothing model. We 
optimized the parameter values by minimizing the sum of 
squared in-sample 1 step-ahead forecast errors. 

V. EVALUATION OF POST-SAMPLE FORECAST ACCURACY 

For lead times from 1 to 10 minutes, we evaluated point 
forecast accuracy for each minute of the 9-week post-sample 
period, using mean absolute error (MAE), mean absolute 
percentage error, mean squared error, and mean squared 
percentage error. The rankings of the methods at each lead 
time were similar for all four measures, and so we present 
results for just the MAE. These results are given in Fig. 5. 

Fig. 5 does not include the results for the exponential 
smoothing model of Section III.B, because the results for this 
joint model of frequency and demand were very similar to 
those of HWT exponential smoothing applied directly to 
frequency-corrected demand, which we described in Section 
IV.F. The joint modeling is probably not superior because it is 
difficult to predict the frequency time series beyond one step-
ahead. Indeed, in separate analysis of frequency, we found 
that sophisticated models were only very slightly able to 
outperform the naïve random walk forecasting approach. 

Fig. 5 shows the random walk, simple non-seasonal AR and 
simple seasonal AR methods performing relatively poorly 
beyond 1 minute-ahead. The results for the latter two methods 

were very similar, indicating that the seasonal terms did not 
benefit a simplistic AR modeling.  

The ANN can be seen to have performed poorly for the 
early lead times, with accuracy improving with the lead time. 
This was also the case for a similar ANN implemented in [17] 
for half-hourly data, although the poor performance for the 
shortest lead time was less apparent in that study because it 
considered prediction up to 24 hours ahead, and the ANN was 
reasonably competitive beyond about 12 hours ahead. The 
ANN results suggest that there are not significant 
nonlinearities in the time series structure of the load data. We 
experimented with no differencing, with the use of the output 
at the forecast origin as the only input, and with the inclusion 
of all 15 potential inputs. However, this did not deliver 
improved post-sample forecast accuracy. It seems that the 
strong seasonality in the data leads to a relatively large 
network in terms of hidden units, but that this is overly 
complex for very short lead times. Of course, there are many 
other forms of ANN, and it could be that one of these would 
be more successful than our ANN for minute-by-minute 
frequency-corrected demand.  
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Fig. 5.  Post-sample MAE for 1 to 10 minute-ahead prediction. 
 

Fig. 5 shows fairly similar accuracy for the Kalman Filter 
approach, the non-seasonal exponential smoothing method, 
and the ARMA model. Unlike these three methods, the four 
best performing methods in Fig. 5 all model the seasonal 
cycles. The relative complexity of the SVD-based exponential 
smoothing approach would not seem to be justified, because 
the method is comfortably outperformed by the simpler HWT 
exponential smoothing method. This method was also more 
accurate than the SARMA model. Fig. 5 shows that the 
accuracy of the HWT method was improved by optimizing the 
method’s parameters separately for each lead time. 
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Although we considered lead times from 1 to 10 minutes, 
the TSO’s main interest is in 3 minutes. In Figs. 6 and 7, for 
three of the methods, we show how the MAE for this lead 
time varies across the minutes of the day. The figures are 
consistent with Fig. 5 in showing that the Kalman Filter was 
less accurate than the SARMA model, which in turn was less 
accurate than the HWT method. However, it is interesting to 
note from Fig. 7 that the HWT method is notably better than 
the SARMA model only around 6am and 8pm. For all three 
methods, the MAE is highest around these periods of the day, 
reflecting the difficulty of accurately modeling the series 
during the morning pick-up and the evening fall in demand.  

As it is difficult to estimate the frequency correction factor 
c [4], we repeated our analysis for two alternative values, 
c=1% and 5%. With each of these values, we obtained the 
same rankings of methods that we have reported above for 
c=2.5%. 

 

0

50

100

150

200

250

300

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

MAE (MW) HWT optimised for each lead time

Kalman Filter

 
Fig. 6.  MAE for the Kalman Filter approach and HWT exponential smoothing 
with parameters optimized for each lead time. 
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Fig. 7.  MAE for the SARMA model and HWT exponential smoothing with 
parameters optimized for each lead time. 

VI. SUMMARY AND CONCLUDING COMMENTS 

In this paper, we first described how very short-term 
generation dispatch decisions should be based on predictions 
of frequency-corrected demand. We then compared the 
accuracy of methods for forecasting frequency-corrected 
demand. We considered methods that jointly modeled 
frequency and demand, but the best performing methods 
directly modeled frequency-corrected demand, and included 
terms for intraday and intraweek seasonal cyclicality. This is 
perhaps surprising, given that the lengths of these cycles are 
1,440 and 10,080 minutes, respectively, while our focus was 
on lead times of 1 to 10 minutes. The most accurate method 
across all lead times was HWT exponential smoothing with 

parameters optimized separately for each lead time. 
The focus in this paper has been on point forecasting, 

which reflects the main interest of the TSO. However, 
prediction intervals are also of potential interest. With regard 
to the best performing method in our study, HWT exponential 
smoothing, we note that the formulation of expressions (2) to 
(6) can be written as a single source of error state space 
model. This can be used as the basis for producing theoretical 
prediction intervals [19,Ch.6]. However, our simpler proposal 
is to use empirical prediction intervals, constructed from the 
distribution of historical forecast errors for the lead time of 
interest. 
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