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 
Abstract—Short-term load forecasts are needed for the 

efficient management of power systems. Although weather-based 
modeling is common, univariate models can be useful when the 
lead time of interest is less than one day. A class of univariate 
methods that has performed well with intraday data is 
exponential smoothing. This paper considers five recently 
developed exponentially weighted methods that have not 
previously been used for load forecasting. These methods include 
several exponential smoothing formulations, as well as methods 
using discount weighted regression, cubic splines and singular 
value decomposition (SVD). In addition, this paper presents a 
new SVD-based exponential smoothing formulation. Using 
British and French half-hourly load data, these methods are 
compared for point forecasting up to one day ahead. Although 
the new SVD-based approach showed some potential, the best 
performing method was a previously developed exponential 
smoothing method. A second empirical study showed the better 
of the univariate methods outperforming a weather-based 
method up to about five hours ahead, with a combination of these 
methods producing the best results overall.  
 

Index Terms— Discount weighted regression, exponential 
smoothing, load forecasting, singular value decomposition, spline 
functions. 

I. INTRODUCTION 

utomated short-term load prediction is needed for the 
efficient operation of power systems. It is also used to 

support transactions by participants in deregulated electricity 
markets [1],[2]. Although weather-based models are often 
used to predict load, they are less important for short horizons, 
as weather variables tend to change relatively smoothly over 
short intervals of time. This prompts consideration of 
modeling approaches that use only historical load data. These 
are termed univariate methods. A common approach to short-
term load forecasting is to decompose the load into weather 
sensitive and weather insensitive components [3], and for the 
latter univariate methods are required. Of course when 
weather data and forecasts are not available, or are 
prohibitively expensive, a univariate method must be used.  

The key feature of intraday load data that must be 
accommodated in a univariate method is the existence of 
intraday and intraweek seasonal cycles. Two univariate 
methods that have performed well in empirical studies are 
HWT exponential smoothing, which is the Holt-Winters 
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method adapted for the modeling of two seasonal cycles, and 
an intraday cycle (IC) exponential smoothing method [4], [5]. 
The success of these methods, and the common use of 
exponential smoothing in business and industry, motivates the 
consideration in this paper of five exponentially weighted 
methods recently developed in [6] for intraday time series. In 
[6], the accuracies of the methods were compared using a 35-
week call center time series for prediction up to two weeks 
ahead. In this paper, the main empirical analysis involves two 
load series, each consisting of three years of half-hourly 
observations, which are used to evaluate point forecast 
accuracy from one half-hour up to 24 hours ahead. An 
additional empirical study is presented that compares the 
univariate methods to a weather-based approach. 

The first of the five methods from [6], considered in this 
paper, involves exponential smoothing of both the total load 
for a week and the partition of this weekly total across the 
periods of the week. The second method is discount weighted 
regression (DWR) with trigonometric terms. This is a 
development of an idea put forward in this journal 40 years 
ago [7].  That paper used exponentially weighted regression. 
The development provided by DWR is the use of more than 
one discount factor. The third method from [6] uses DWR to 
fit a time-varying regression spline to the seasonal cycles. The 
fourth method is an alternative form of time-varying spline, 
which uses exponential smoothing to model the spline at the 
knots. The fifth method aims to reduce the dimensionality of 
the modeling of intraday data by using singular value 
decomposition (SVD) to transform the data before the use of 
exponential smoothing. The availability of a long time series 
of intraday observations prompts the development in this 
paper of a new and simpler version of this method. Therefore, 
although the contribution in this paper is largely empirical, it 
also provides this methodological development. 

This paper’s empirical analysis includes, as benchmarks, 
the HWT and IC exponential smoothing methods, as well as 
an autoregressive integrated moving average (ARMA) model, 
and an artificial neural network (ANN). The short-term load 
forecasting literature contains a variety of ARMA models, 
including periodic [5] and double seasonal [8], [9]. Although 
the nonlinear and nonparametric features of ANNs are 
particularly attractive for weather-based load modeling, 
univariate ANNs have also been applied to load [e.g. 10].  
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Section II introduces the data used in the main empirical 
study in this paper. Section III presents the exponentially 
weighted methods. Section IV describes the ARMA and ANN 
methods. Section V provides an empirical comparison of the 
univariate methods. Section VI presents an additional 
empirical study that includes a weather-based method. Section 
VII provides a summary and conclusion.  

II. THE LOAD SERIES 

The main empirical analysis in this paper compares 
forecasting methods using a British and a French load series. 
Both consist of all half-hourly observations in 2007, 2008 and 
2009. The methods were fitted using the first two years of 
data, and post-sample accuracy was evaluated for the final 
year. The forecast origin was rolled through 2009 to deliver a 
set of forecasts for one half-hour up to 24 hours ahead.  

Fig. 1 shows a summer and winter fortnight from the 
British series. Each fortnight shows two reasonably similar 
intraweek cycles of length m2=748=336 half-hourly periods. 
There is also similarity between the intraday cycles of length 
m1=48 periods, particularly for the weekdays. These features 
were also evident in the French data, and are typical of 
intraday load data. The univariate methods in this paper aim to 
model these two types of seasonal cycle. The seasonality is 
noticeably different in the winter and summer fortnights. 
Therefore, methods are needed that model the seasonality as 
time-varying. 
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Fig. 1.  British load for a winter fortnight (12 to 25 January 2009) and a 
summer fortnight (20 July to 2 August 2009). 
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Fig. 2.  Average British daily load profiles. 
  

For each day of the week, Fig. 2 shows the British load 
profile averaged over data from our estimation sample. This 
figure emphasizes the differences and similarities between the 
patterns of load for different days of the week.  

The two series both possess strong annual seasonality, with 
lower demand during the warmer months of each year. The 
exponentially weighted methods proposed in [6] could be 
developed to accommodate the annual cycle. For the 
exponential smoothing models, this could be achieved using 
the approach in [11], but other ideas would be needed for the 
methods based on DWR. In this paper, the annual seasonality 
is not incorporated in the methods. Modeling the annual cycle 
would clearly be important for forecasting at lead times of 
several years, months and weeks, but it is less important when 
interest is, as in this paper, in prediction up to just a day 
ahead. 

Prior to modeling the series, the natural log transformation 
was applied in order to stabilize the variance of each series, 
and because the models to be considered have additive 
structure. Both series possessed days for which the pattern of 
load was unusual, such as public holidays. As the methods in 
this paper are not suitable for such days, observations for 
these days were smoothed out before modeling. For the in-
sample data, this generally involved replacing an unusual 
observation by the average of the load in the corresponding 
periods of the two adjacent weeks. The unusual days were not 
included when optimizing parameters and evaluating post-
sample forecasts.  

III. EXPONENTIALLY WEIGHTED METHODS 

A. HWT Exponential Smoothing 
The HWT method, introduced in [12], extends Holt-

Winters exponential smoothing with the aim of modeling the 
intraday and intraweek cycles in intraday data. The method is 
presented here in full to assist later discussions. The method 
can be presented as the following state space model: 

ttmtmttt ewdly    11 21
         (1) 

 
211 mtmtttt wdlye               (2) 

ttt ell  1
                 (3) 

tmtt edd   1
                (4) 

tmtt eww   2
                (5) 

where t ~ N(0,2) and 2 is a constant variance. Throughout 
this paper, yt is the log transform of load. lt and dt are the state 
variables for the level and intraday cycle, respectively; wt is 
the state variable for the intraweek cycle remaining after dt is 
removed; ,  and  are smoothing parameters; and the term 
involving parameter  is an important adjustment for residual 
autocorrelation. The inclusion of a trend term was considered, 
but this did not improve accuracy. Monte Carlo simulation can 
be used to generate prediction intervals, and indeed point 
forecasts, from the model. For all exponential smoothing 
methods in this paper, the initialization of state variables and 
the least squares parameter optimization were performed using 
the procedures described in [6]. The optimized values for the 
British data were: =0.001, =0.302, =0.399 and =0.969. 
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B. IC Exponential Smoothing 
Intraday cycle (IC) exponential smoothing is presented in 

[4]. Although the IC method smoothes the level in the same 
way as the HWT method, these methods differ noticeably in 
how they model the seasonality. The IC method has no term 
for the intraweek cycle. It allows the same intraday cycle to be 
used for days of the week with similar load profiles. In view 
of Fig. 2, and the analogous plot for the French data, for both 
series, an IC model was implemented with distinct intraday 
cycles for Monday, Friday, Saturday and Sunday, and a 
common intraday cycle for the other days of the week. As in 
[5], the accuracy of the IC model substantially improved with 
the inclusion of a similar residual autocorrelation term to that 
included in the HWT model. The two forms of the IC model 
evaluated in [5] were both implemented in this paper. The 
‘restricted’ form constrains some of the parameters to be 
identical, while the ‘unrestricted’ form only constrains the 
parameters to be nonnegative and less than 1. 
 
C. Total and Split Exponential Smoothing 

This method is introduced in [6]. It smoothes both the 
weekly total and the split of this total across the periods of the 
day and the week. The smoothing of the weekly total is an 
interesting alternative to the HWT and IC methods, which 
involve the more classical smoothing of a level term.  

 
D. DWR with Trigonometric Terms 

In a linear regression framework, a model with 
trigonometric terms could be fitted to intraday data in order to 
model the seasonality. As the seasonality in the data in this 
paper changes over time, there is appeal in using a weighted 
estimation approach, where more recent observations are 
assigned greater weights. An approach of this type, put 
forward in this journal 40 years ago [7], is exponentially 
weighted regression (EWR), which involves the inclusion of a 
single decay factor, , in a least squares minimization. A 
development of this, presented in [6], is the use of discount 
weighted regression (DWR), which enables each parameter to 
have its own distinct discount factor [13]. This allows 
different rates of discounting for different components of a 
time series.  

Both EWR and DWR were implemented as described in 
[6]. Based on the estimation sample, signal coherence was 
used to select trigonometric terms [14]. The implementation 
employed the same signal coherence floor value of 0.45 that 
was used for half-hourly load data in [14]. For the British 
data, the procedure selected 70 pairs of sine and cosine terms. 
For DWR, three discount factors were used: 1 for the 
intercept; 2 for the trigonometric terms corresponding to the 
harmonics of the intraday cycle; and 3 for the remaining 
trigonometric terms. For the British data, the optimized values 
were: 1=0.977, 2=0.994 and 3=0.998. The relatively high 
discount factors for the trigonometric terms can be interpreted 
as slower evolution in the seasonality than in the level of the 
series. Implementing EWR for the British data delivered 0.996 
for the single decay factor. Given the similarity of this value 
to 2 and 3 for the DWR method, it would seem the main 

difference between the implementations of DWR and EWR 
was in smoothing the non-seasonal component of the series.  

 
E. DWR Spline 

A cubic spline consists of smoothly joined cubic 
polynomials. The smoothness is ensured by imposing 
continuity of the spline function and its first and second 
derivatives at the joining points. The abscissa values for these 
points are referred to as ‘knots’. A regression spline models 
the data as a spline function plus noise. It can be expressed as 
a linear model, and hence, after selecting the knot locations, 
the spline can be fitted using OLS regression [15]. In this way, 
a spline could be fitted to the intraweek cycle in the load data. 
However, this would require the incorrect assumption that the 
intraweek cycle is constant. Therefore, instead of OLS, this 
paper follows the approach in [6], which fits a time-varying 
spline using DWR. 

As in [6] and [16], the number and locations of the knots 
were selected subjectively. Relatively more knots are needed 
for parts of the cycle where the slope is more rapidly 
changing. For each day, knots were positioned every hour, on 
the hour, except for 4pm. This implies 23 knots for each day 
of the week, plus an extra knot at the beginning of the week. 
For efficiency, using the procedures described in [16], the 
spline function was constrained to have the same value at 
selected knots. In view of Fig. 2, for the British data, the 
following constraints were imposed: the function on 
Wednesday and Thursday must be identical to Tuesday; the 
function at the first nine Friday knots must be the same as for 
Tuesday; and the function at the last 14 Monday knots must 
be the same as for Tuesday. This led to a spline with 93 
distinct knots.  

In [6], it is explained that separate smoothing of the level is 
enabled by first defining as a ‘base knot’ the knot at the start 
of each intraweek spline function. The value of the spline 
function at each of the other knots is then defined relative to 
this base knot. Three different discount factors are used: 1 for 
the base knot; 2 for the knots positioned at periods during the 
night; and 3 for the remaining knots. For the British data, the 
following values were obtained: 1=0.988, 2=0.996 and 
3=0.995. As for DWR with trigonometric terms, the value of 
1 is noticeably lower than the values of 2 and 3. This is 
consistent with the interpretation in [6] that using a distinct 
discount factor for the base knot enables smoothing of the 
non-seasonal component of the time series. 

 
F. Spline-Based Exponential Smoothing 

An alternative approach, based on a time-varying spline, is 
to use a multiple source of error state space model, with a state 
specified for the value of the spline at each knot [16]. This 
paper uses the similar approach in [6], which involves an 
exponential smoothing model, with the same sets of knots that 
that were used for the DWR spline.  

 
G. SVD-Based Exponential Smoothing 

Singular value decomposition (SVD) enables a multivariate 
dataset to be reduced to a dataset of lower dimension 
consisting of uncorrelated variables, which capture most of 
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the variation in the original dataset. SVD has been used to 
refine the set of inputs to a neural network load forecasting 
approach [10], and within pre-processing prior to electricity 
price forecasting [17]. For our application, the original 
‘multivariate’ dataset is the intraday data arranged as a (wm2) 
matrix Y, where w is the number of weeks in the time series. 
Each column of this matrix contains the observations for a 
particular half-hour of the week. Forecasting the next 
intraweek cycle amounts to forecasting the next row of the 
matrix. Applying SVD simplifies the task to one of 
forecasting the next row of a matrix with fewer columns.  

The SVD of the data matrix Y delivers YY = VSV, where 
V is an (m2m2) matrix. The columns of V are orthogonal 
basis functions, which can be referred to as ‘intraweek feature 
vectors’. S is a diagonal matrix with positive entries. The 
‘singular values’ are the positive square roots of these entries. 
They are placed in decreasing order, and the columns of V are 
correspondingly rearranged. Projecting the weekly profiles 
(rows of Y) onto the basis functions gives ‘interweek feature 
series’, which can be viewed as columns of a (wm2) matrix 
P, where P = YV. Therefore, each intraweek feature vector 
(column of V) has a corresponding interweek feature series 
(column of P). Dimensionality is reduced by eliminating all 
but the first k columns of V and P, leaving feature vectors and 
series corresponding to the largest k singular values. A 
forecasting method can then be used for each feature series. 
The resulting forecasts would be projected onto the Y space to 
give predictions for the original variable. In this paper, k was 
chosen by evaluating forecast accuracy for the final six 
months of the in-sample data. This led to k=31 and 38 for the 
British and French series, respectively. There is a link 
between SVD and principal component analysis (PCA) 
[18],[19]. PCA involves the application of SVD to a column-
centered matrix. The columns of matrix P are then the 
principal components. 
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Fig. 3. Intraweek feature vectors for the British log load series. Only the 1st 
feature vector is plotted on the primary y-axis. 
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Fig. 4. Interweek feature series for the British log load series. Only the 1st 
feature series is plotted on the primary y-axis. 

Figs. 3 and 4 plot the first three feature vectors and series 
for the British log load series. The first intraweek feature 
vector would seem to be the average intraweek cycle, and the 
corresponding interweek feature series would seem to capture 
the annual cycle. The second and third intraweek feature 
vectors show different intraweek patterns, and the second and 
third interweek series show how these different patterns 
impact to varying degrees throughout the year. The change in 
the intraweek pattern over the year was highlighted in Fig. 1. 

From a search of the literature, it would seem that no 
previous studies with intraday data have applied SVD to a 
(wm2) data matrix. Although SVD is applied to intraday data 
in [5], [6] and [19], in these studies, the data is arranged as a 
(dm1) matrix, where d is the number of days in the time 
series. The columns of this matrix are daily series, which 
possess weekly seasonality. The same is true of the columns 
of the matrix P resulting from SVD, i.e. the feature series. In 
[5] and [19], simple seasonal time series methods are 
independently applied to each of these k feature series. 
Forecast updating occurs when a complete new seasonal cycle 
(i.e. row of the data matrix) has been observed. To enable 
within-day updating, an additional stage of modeling is used 
in [5] and [19], which increases the complexity of these 
methods. An appealing aspect of the SVD-based exponential 
smoothing method in [6] is that all k feature series are 
modeled together, with the result that forecasts are updated as 
load for each new half-hour period is observed. This model 
requires days of the week with similar patterns of load to be 
treated as identical, as in IC exponential smoothing. This 
brings an unappealing element of subjectivity into the method.  

The length of the series in this paper allows the application 
of SVD to the data arranged as a (wm2) matrix. For the 
resulting intraweek feature series, an exponential smoothing 
model is used of similar type to the one in [6]. However, 
relative to that model, the new model has the advantage that 
no subjective grouping of days is needed, as the SVD extracts 
from the intraweek cycle the main underlying features 
amongst the periods of the week. Furthermore, working with a 
(wm2) data matrix leads to a simpler model formulation. The 
new SVD-based exponential smoothing model is presented in 
(6)-(8). The model updates estimates of the first k interweek 
feature series (columns of P), and then projects them onto Y 
space to produce forecasts.  

  ttmttt ey    1mod1 2

~
'Vp              (6) 

  'Vp
2mod1

~
mtttt ye                  (7) 

      tmt
j

mjmtmtt e







 


 2112 mod

7

1
1mod1

~~~
VVVpp 1    (8) 

t ~ N(0,2); pt is a (1×k) state vector representing the values 
in period t of the first k interweek feature series; V

~
 is a (m2k) 

matrix consisting of the first k intraweek feature vectors 
(columns of V); 

iV
~

 is the ith row of V
~

; 
2m1  is a (1×m2) vector 

of 1’s; and ,  and  are smoothing parameters. In (6), the 
state vector pt is projected onto Y space using the intraweek 
feature vectors, which are columns of V. In (8), to enable 
updating of the state vector pt, the error et, which is a value in 
Y space, is projected into P space using the intraweek feature 
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vectors. The parameters ,  and  play a similar role to those 
in the HWT method of (1)-(5). The term with  updates pt in 
the same way every period; the term with  causes each 
element of pt to be updated by an amount that depends on its 
relationship to the period of the day on which t falls; and the 
term with  causes each element of pt to be updated by an 
amount that depends on its relationship to the period of the 
week on which t falls. The optimized parameter values for the 
British data were: =0.005, =0.602, =0.418 and =0.945. 

IV. ARMA AND ANN BENCHMARK METHODS   

A. ARMA 
The ‘double seasonal’ ARMA model considered in [8] and 

[9] was implemented in this paper. The AR and MA parts of 
the model each involve the product of three lag polynomials. 
The first is written in terms of the lag operator L, the second in 
terms of 1mL , and the third in terms of 2mL . Unit root tests 
gave inconclusive evidence, and so differencing was not 
employed. The Box-Jenkins methodology was used for model 
selection.  
 
B. ANN 

The empirical study also included a univariate single hidden 
layer feedforward ANN with a single output. Using the final 
six months of the estimation sample as a hold-out sample, 
experimentation with various degrees of differencing led us to 
apply the operator )1)(1( 21 mm LL   to the log of load prior to 

ANN modeling. After standardizing, this variable was 
specified as the ANN output. To avoid multi-step ahead 
prediction, a separate ANN was used for each lead time. For 
the model for lead time h, the set of potential inputs consisted of 
the value of the output variable at the forecast origin and at lags: 
1, 2, m1-h, 2m1-h, 3m1-h, m2-h, 2m2-h and 3m2-h. The hidden 
layer and output layer activation functions were sigmoidal and 
linear, respectively. Weights were estimated using least 
squares with backpropagation. Using one step-ahead forecast 
accuracy for a hold-out sample consisting of the final six 
months of the estimation sample, the following were selected: 
the input variables; the number of hidden units; 
backpropagation learning rate and momentum parameters [20, 
§7.5]; and regularization parameter [20, §9.2].  

V. EMPIRICAL COMPARISON OF UNIVARIATE METHODS 

Forecast accuracy was evaluated for each series and each 
lead time, from one half-hour up to 24 hours ahead, using 
mean absolute percentage error (MAPE), mean absolute error, 
root mean squared percentage error and root mean squared 
error. The rankings of the methods were similar for all the 
measures, and the relative performances of the methods were 
similar for the two series, and so only the MAPE values, 
averaged for the two series, are presented. 

Fig. 5 plots the mean MAPE for the five methods 
developed in [6] and the new SVD-based method developed 
in this paper. None of these methods has previously been 
applied to load data. The figure shows that total and split 
exponential smoothing was relatively uncompetitive. The two 

spline methods performed similarly up to about four hours 
ahead, but beyond this, the DWR spline method was more 
successful than spline-based exponential smoothing. Of the 
two DWR methods, Fig. 5 shows that the use of trigonometric 
terms was more accurate than splines. Fig. 5 also shows that 
the new SVD-based exponential smoothing method, 
developed in this paper, outperformed the version presented in 
[6]. Indeed, this new SVD-based method produced results that 
were, to various degrees, better than those of the five methods 
from [6].  
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Fig. 5.  Mean MAPE for the methods from [6] and the new SVD-based 
method. 

Let us briefly consider reasons for the relative performances 
of the methods in Fig. 5. The total and split exponential 
smoothing method contrasts with the standard seasonal 
exponential smoothing approaches, because it essentially 
replaces the traditional smoothing of the level by a smoothing 
of the total across the periods of the seasonal cycle. 
Furthermore, the method assumes multiplicative seasonality, 
but this is not particularly appealing when, as in this paper, a 
log transform has been used. In comparison with the total and 
split method, a fundamental appeal of the DWR, spline and 
SVD-based approaches is that they reduce the dimensionality 
of the problem, and hence simplify the forecasting task [6]. 
With regard to the spline-based methods, they rely on suitable 
selections for the number and location of the knots. In this 
paper, this was done subjectively, but perhaps a methodical 
approach could be used involving cross-validation. By 
contrast, the new SVD-based approach requires only the 
selection of the number, k, of feature vectors and series, and 
the use of cross-validation is straightforward for this. The old 
SVD-based approach has the disadvantage that, in addition to 
the choice of k, it requires an appropriate clustering of the 
days of the week, as in the IC exponential smoothing method 
[6].  

Fig. 6 presents the results for HWT exponential smoothing, 
the two forms of IC exponential smoothing, the ARMA and 
ANN benchmarks, and the EWR method with trigonometric 
terms. In contrast to the methods in Fig. 5, all of the methods 
in Fig. 6 have previously been applied to load data. Having 
said this, for the EWR method, in this paper, signal coherence 
was employed to select trigonometric terms, while in the 
previous use of the method the trigonometric terms were 
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chosen subjectively [7]. The results in Fig. 6 for this EWR 
method are poor. Comparing these results with those for the 
DWR method with trigonometric terms in Fig. 5, there would 
seem to be a clear advantage in replacing EWR with DWR. 
Fig. 6 shows that the competitiveness of the ANN improved 
with the lead time. By contrast, the ARMA method performed 
well up to 12 hours ahead, but slightly less so for longer lead 
times. The figure shows that HWT exponential smoothing 
performed well, but the best results were produced by the 
unrestricted version of IC exponential smoothing.  
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Fig. 6.  Mean MAPE for the methods previously applied to load. 

 

Fig. 7 compares the best two performing methods from Fig. 
6 with the best performing method from Fig. 5, which was the 
new SVD-based exponential smoothing method. Also 
included in Fig. 7 is the SVD-based exponential smoothing 
method from [6]. The figure confirms that this method was 
less accurate than the new SVD-based method. The figure also 
shows that this new method performed similarly to HWT 
exponential smoothing, and that both were outperformed by 
the unrestricted form of IC exponential smoothing. 
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Fig. 7.  Mean MAPE for the best performing methods in Figs. 5 and 6, as well 
as the SVD-based exponential smoothing method from [6]. 
 

Fig. 8 presents box-plots for the post-sample average 
percentage error (APE) for the two SVD-based exponential 
smoothing methods and the unrestricted form of IC 
exponential smoothing applied to the French data. The 
noticeable difference between the top two plots in Fig. 8 is in 
the height of the upper limits for each horizon, indicating that 
the largest APE was smaller for the new SVD-based method 

than the old SVD-based method. One cause of large errors 
was that the methods tended to struggle with the change in the 
pattern of load following the change of the clocks in October 
2009. This was particularly the case for the British data. Large 
errors also occasionally occurred on the day following a 
public holiday, when the forecast origin fell on the public 
holiday. Although public holiday were excluded from the 
post-sample period, it was not felt appropriate to exclude the 
day following each of these days. This motivates future work 
looking at how best to deal with such unusual days. Although 
the upper limits are also high in the bottom plot in Fig. 8, the 
black boxes in the three plots indicate that the APE values for 
the IC method are less variable than for the SVD-based 
approaches. 
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Fig. 8.  APE box-plots for the SVD-based exponential smoothing methods and 
unrestricted IC exponential smoothing applied to the French data.  

VI. EMPIRICAL COMPARISON OF UNIVARIATE AND WEATHER-
BASED METHODS 

This section presents an additional empirical study that 
compares several univariate methods with forecasts from the 
weather-based approach described in [8]. The empirical work 
in [8] employs 30 weeks of minute-by-minute British load 
data. This section uses the same 10-week post-sample period 
as that paper, with the difference that load is recorded at the 
half-hourly frequency. This period ran from 20 August 2006 
to 28 October 2006. To be consistent with the other empirical 
analysis in this paper, two years of data was used for 
parameter estimation, rather than just 20 weeks as in [8]. The 
forecast origin was rolled through the post-sample period to 
produce forecasts from one half-hour up to 24 hours ahead.  
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The weather-based approach was devised by the 
transmission company in Great Britain, and it involves 
regression models estimated independently for about 10 chosen 
points on the daily load curve. Each model uses temperature, 
wind speed and cloud cover variables. Importantly, weather 
forecasts are used, which ensures a realistic comparison with 
the univariate methods. Load forecasts for the half-hours 
between the 10 or so chosen points are derived from a heuristic 
interpolation procedure involving a subjectively chosen load 
profile from a past day.  

Fig. 9 presents the results for the weather-based approach, 
three univariate methods, and a combined forecast constructed 
as the simple average of the weather-based method and the 
two exponential smoothing methods included in the figure. 
Combining is a convenient way to synthesize the information 
in different individual forecasts. Indeed, it is not clear how to 
incorporate, in a single model, the features of the exponential 
smoothing and the weather-based methods. The results for IC 
exponential smoothing were a little poorer than those for the 
HWT method. In Fig. 9, the exponential smoothing methods 
outperform the weather-based method up to about 5 hours 
ahead, but beyond this the weather-based method was better. 
Interestingly, the combination delivered the best results at all 
horizons. Similar findings are reported in [8] for minute-by-
minute data. This suggests that the combination efficiently 
synthesizes the information in the different types of forecasts.  
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Fig. 9.  MAPE for the weather-based method and several univariate methods 
applied to the British load data from the second empirical study in this paper. 

VII. SUMMARY AND CONCLUDING COMMENTS 

This paper has evaluated the five exponentially weighted 
methods developed in [6] for forecasting load up to one day 
ahead. The relative performances of the methods differed from 
the one previous empirical study with these methods in [6], 
where they were used for forecasting call center arrivals up to 
a fortnight ahead. In this paper’s load forecasting application, 
all five methods were outperformed by the new SVD-based 
exponential smoothing formulation developed in this paper. In 
[6], SVD is essentially performed on the intraday cycle, while 
in the new method, SVD is applied to the intraweek cycle, 
which leads to a simpler and potentially more efficient model 
formulation. This constitutes a methodological contribution in 
this largely empirical paper. The better univariate methods 

outperformed a weather-based method up to about five hours 
ahead. These univariate methods were also of value for the 
longer lead times, because combining them with the weather-
based approach led to the best results of all methods. 

The methods, that had not previously been applied to load 
data, were not able to outperform the HWT and IC methods. 
Of these two, the HWT method has the appeal of simplicity. 
Also of practical importance is the ability to produce 
prediction intervals from a method. These are useful for risk 
management by the system operator, as well as those buying 
and selling electricity. For exponential smoothing models, 
prediction intervals can be generated using Monte Carlo 
simulation, but their derivation for DWR-based approaches is 
not obvious. In terms of future research, SVD could be used 
prior to weather-based load modeling, and the exponentially 
weighted methods could be adapted for electricity prices. 
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