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Density Forecasting for the Efficient Balancing of the Generation and Consumption of 

Electricity 

 

Abstract 

The transmitters of electricity in Great Britain are responsible for balancing generation and 

consumption. Although this can be done in the hour between closure of the market and real-

time, off-loading or calling-up electricity at this late stage can be costly. Costs can be 

substantially reduced if the imbalance can be anticipated ahead of time and balanced by trading 

on the market. Efficient trading relies on accurate density forecasts for the Net Imbalance 

Volume, which is defined as the sum of all actions taken to balance the system. Forecasting 

this density is the focus of this paper. We break down the problem into point and volatility 

prediction. We evaluate density forecasts in terms of the economic benefit generated from 

trading advice resulting from the forecasts. Promising results were achieved using a seasonal 

ARMA model or periodic AR model for point forecasting, with a simplistic approach to 

volatility forecasting. 

 

Key words: electricity markets; volatility forecasting; density forecasting; seasonality; periodic 

models; economic value. 

 



1.  Introduction 

In the wholesale electricity market of Great Britain, National Grid is the company that 

operates the transmission system, and balances supply and demand. The market involves 

suppliers undertaking contracts with generators to meet their anticipated requirements. An 

hour ahead of real time (known as “gate closure”), the market closes and market participants 

indicate what electricity they intend to produce or consume to meet their contractual 

obligations. In the hour between gate closure and real-time, National Grid must ensure that 

the demand is balanced by an equal amount of generation. To do this, they take “bids” and 

“offers” from generators and suppliers, who indicate the prices at which they would be 

prepared to change their intended generated output or consumption.  

The energy imbalance is known as Net Imbalance Volume (NIV). It is defined for 

each half-hour as the sum of all actions, in the market and after gate closure, that National 

Grid undertook to balance the system for that half-hour. The convention is that a negative 

value for NIV means that contracted generation exceeded consumption, forcing the company 

to undertake sales of electricity or accept bids from generators to reduce their generation. 

These actions, by the company, are based on the one hour-ahead prediction of NIV. 

Accepting bids or offers, after gate closure, can be very costly for the company. These 

costs can be substantially reduced if NIV can be anticipated ahead of gate closure and 

balanced by trading on the market. Indeed, the costs tend to decrease as the lead time 

increases. Efficient trading relies on accurate forecasts for the probability density function of 

NIV. This is the focus of this paper. We break down the problem of density forecasting into 

point and volatility prediction. By making a distributional assumption, the point and volatility 

forecasts can then be converted into a density forecast for NIV. It is not only National Grid 

that forecast NIV, but also generators seeking to gain an advantage by being able to anticipate 

the trades of the company. The problem of forecasting NIV is common to any self-

despatching electricity market, of which there are several in Europe and the US.  
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 In Section 2, we describe the NIV time series. Sections 3 and 4 evaluate the accuracy 

of point and volatility forecasting methods, respectively, using error summary measures. In 

Section 5, we evaluate the quality of density forecasting methods in terms of economic 

benefit by deriving the monetary outcome that is generated from trading advice resulting from 

the density forecasts. The final section provides a summary and concluding comments. 

 

2. Net Imbalance Volume 

In this paper, we analyse half-hourly NIV observations for the one-year period from 

11 March 2003 to 10 March 2004, inclusive. This series is plotted in Figure 1. We chose not 

to use data prior to 11 March 2003 because a change was introduced to the electricity trading 

rules on this day, and the forecasters at National Grid felt it was quite possible that this would 

have led to a change in the structure of the NIV time series. We considered omitting 

observations for the days immediately following the potential structural change, but we did 

not do this because informal inspection of the series around this period did not actually reveal 

any clear evidence of structural change in the series.  

----------  Figure 1  ---------- 

We used the first nine months of observations (273 days or 13,104 observations) to 

estimate model parameters, and the remaining three months (93 days or 4,464 observations) 

for post-sample forecast evaluation. The use of nine months of data for model estimation was 

recommended by National Grid from previous experience. In our study, we focused on the 

two forecast origins, and associated lead times, for which the National Grid trading support 

team are required to supply the company’s traders with NIV forecasts. Forecasts from a 3pm 

origin are required each day for the 48 half-hours from 11:30pm on the next day through to 

11pm on the day after. The lead times from this origin are, therefore, from 65 to 112 steps 

ahead. Forecasts from an 8am origin are required each day for the 48 half-hours from 
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11:30pm on the same day through to 11pm on the next day, which corresponds to a shorter 

set of lead times, running from 31 to 78 steps ahead.  

The company had considered the use of explanatory variables in the modelling of an 

earlier period of NIV data. Weather variables were considered but they were found to have no 

significant impact on NIV. A dummy variable had been used for bank holidays, and daily 

peak demand forecasts for a range of lead times were also considered. For our more recent 

data set, we were unable to find evidence of the usefulness of these explanatory variables. 

Therefore, in this paper, we focus solely on univariate methods.  

Figure 2 presents the ACF calculated from the nine-month estimation sample. The 

confidence interval in the figure is calculated using as standard error the inverse of the square 

root of the number of observations used to estimate the ACF values. In addition to significant 

autocorrelation at the early lags, there are strong spikes at the lags that are integer multiples 

of 48, indicating an intra-day seasonality. Significance at the lags that are integer multiples of 

336 would indicate an intra-week seasonality. The very dominant intra-day seasonality makes 

it difficult to see an intra-week seasonal effect in the ACF. However, in our modelling of the 

series in Section 3, we show that intra-week seasonality is present in the series.  

----------  Figure 2  ---------- 

Using the nine-month estimation sample, we investigated whether the series was 

stationary in the mean, based on the following augmented Dickey-Fuller test:  

∑
=

−− +∆++=∆
336

1
1

i
tititt uNIVNIVNIV βγα  

where α, γ and βi are constant parameters and ut is an error term. We selected 336 lagged 

difference terms in order to allow for autocorrelation due to both seasonal cycles. We 

included a deterministic trend term, t, but removed it after finding that it was not significant 

(p-value = 0.462). The t-statistic for the parameter γ was -4.660, which is comfortably below 

the 1% critical value of -3.434 leading us to conclude that the series is stationary in the mean.  
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3.  Point Forecasting 

In this section, we compare the accuracy of point forecasts from 10 methods, the first 

three of which are relatively simplistic benchmark approaches.  

 

3.1.  Simple Benchmark Methods 

Method P1 - Moving average - The forecast for all lead times is the average of all values of NIV, 

from the nine months immediately prior to and including the forecast origin.  

Method P2 - Moving average: time of day - The forecast for each lead time is the average of the 

values for the same half-hour of the day from the nine months immediately prior to and 

including the forecast origin.  

Method P3 - Moving average: time of week - The forecast for each lead time is the average of 

the values for the same half-hour of the week from the nine months immediately prior to and 

including the forecast origin.  

 

 3.2.  Method P4 - Exponential smoothing 

We implemented the double seasonal version of Holt-Winters exponential smoothing, 

which was developed by Taylor (2003) in order to accommodate the two seasonal cycles in a 

half-hourly electricity demand series. As the method involves no model specification, it has 

the appeal of simplicity and robustness. From a theoretical perspective, exponential 

smoothing methods can be considered to have a sound basis as they have been shown to be 

equivalent to a class of state space models (see Hyndman et al., 2002). Applying Taylor’s 

method to the NIV series, the exponential smoothing formulation is: 

)()1()( 1133648 −−−− +−+−−= tttttt TSWDNIVS αα  

11 )1()( −− −+−= tttt TSST γγ  

48336 )1()( −− −+−−= ttttt DWSNIVD δδ  

33648 )1()( −− −+−−= ttttt WDSNIVW ωω  

( )( )336481133648)(ˆ
−−−−+−+− +++−++++= ttttt

k
ktktttt WDTSNIVWDTkSkVIN φ  
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where  is the k step-ahead forecast made from forecast origin t; α, γ, δ and ω are the 

smoothing parameters; S

)(ˆ kVIN t

t and Tt, are the smoothed level and trend; and Dt and Wt are the 

seasonal indices for the intra-day and intra-week seasonal patterns. The term involving the 

parameter φ, in the forecast function, is an adjustment for first-order autocorrelation. For 

simplicity, we have presented the forecast function for k ≤ 48, but it is straightforward to 

rewrite the expression for longer lead times.  

The initial smoothed values for the level, trend and seasonal components are 

estimated by averaging the early observations. All the parameters are estimated in a single 

procedure by minimising the sum of squared 1-step-ahead in-sample errors. We derived the 

following values: α = 0.007, γ = 0.000, δ = 0.203, ω = 0.119 and φ = 0.884. The low value of 

α and high value of φ reflects the fact that the adjustment for first-order autocorrelation has, 

to a large degree, made redundant the smoothing equation for the level. The value of zero for 

γ was accompanied by very small values for the smoothed trend, Tt. This seems reasonable 

given that in Section 2 we concluded that the series was stationary in the mean. 

 

3.3.  ARMA Modelling 

 Method P5 - Company’s simple autoregression  

For an earlier sample of NIV data than ours, the company investigated a variety of 

forecasting approaches, including nonlinear methods, such as an artificial neural network. 

The method that produced the most accurate post-sample results was an LS regression of NIVt 

on the following two lagged variables: the most recent observation corresponding to the same 

half-hour period and the corresponding half-hour observation in the previous week. Our 

implementation of this approach involved estimating three LS regression models. To forecast 

up to 48 periods ahead, we used NIVt-48 and NIVt-336 as regressors; for lead times of 49 to 96, 

we used NIVt-96 and NIVt-336; and, for lead times 97 to 144, we used NIVt-144 and NIVt-336. 
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Method P6 - SARMA 

Multiplicative seasonal ARMA modelling has often been used for univariate 

forecasting of intraday load time series (e.g. Laing and Smith, 1987; Darbellay and Slama, 

2000; Taylor et al., 2006). The multiplicative double seasonal ARMA model (see Box et al., 

1994, p. 333) applied to the NIV series can be written as 

( ) ( ) ( )( ) ( ) ( ) ( ) tQQqtPPp LLLcNIVLLL εθφ 3364833648
2121

ΨΘ=−ΩΦ  

where c is a constant term; L is the lag operator; εt is a white noise error term; and φp, 1PΦ , 

, θ
2PΩ q, , and 

1QΘ
2QΨ  are polynomial functions of orders p, P1, P2, q, Q1, and Q2, 

respectively. This model can be expressed as ARMA 336224811 ),(),(),( QPQPqp ×× .  

We followed the Box-Jenkins methodology to identify the most suitable SARMA 

model based on the estimation sample. For the NIV data, differencing was not necessary. We 

considered lag polynomials up to order three, and based model selection on the Schwartz 

Bayesian Criterion (SBC), with the requirement that all parameters were significant (at the 

5% level). Our final model was the following ARMA(2,2)×(3,3)48×(3,3)336 model: 

( )( )( )( )
( )( )( t

t

LLLLLLLL

cNIVLLLLLLL

εθθθθθθθθ

φφφφφφφ
1008

1008
672

672
336

336
144

144
96

96
48

48
2

21

1008
1008

672
672

336
336

144
144

96
96

2
21

111

111

−−−−−−−−=

−−−−−−−−

)    (1)  

The model parameters were estimated using maximum likelihood based on a 

Gaussian distribution. The resultant parameters and associated standard errors are presented 

in Table 1. Box et al. (chapter 5, 1994) describe how to compute forecasts from such models. 

Comparison of the residual ACF in Figure 3 with the ACF in Figure 2 (note the change of y-

axis scale) for the original NIV series shows that the model successfully accommodated 

much of the autocorrelation in the NIV series. However, we were unable to eliminate it all, 

with the Ljung-Box Q-statistic indicating significant autocorrelation (at the 5% level) at lag 

22 and higher. A similar problem existed for all other SARMA models that we considered.  

----------  Figures 3 and 4, and Table 1  ---------- 
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We also inspected the residuals for heteroskedasticity. Figure 4 presents the ACF of 

the squared residuals. The squared residuals serve as a proxy for the residual variance 

because it is unobservable. The figure shows significant and strong autocorrelation, 

indicating conditional heteroskedasticity. The relatively large spikes occur every 48 periods, 

indicating the presence of intra-day seasonality in the residual variance. Intra-week 

seasonality may also be present but it is difficult to see because of the sizeable intra-day 

effect. The presence of a degree of autocorrelation and clear heteroskedasticity in the 

residuals from the SARMA model implies that the model’s estimation was inefficient and 

parameter testing was not strictly valid. However, the model seems likely to be an 

improvement on the company’s simple autoregression, Method P5. Therefore, we decided to 

include it as Method P6 in our analysis. In the next section, we describe Method P7, which 

involves the modelling of the heteroskedasticity in order to improve the SARMA model.  

 

Method P7 - SARMA-SGARCH 

Generalized autoregressive conditional heteroskedasticity (GARCH) models (see Engle, 

1982; Bollerslev, 1986) are widely used to forecast volatility in finance. These models express 

the conditional variance as a linear function of lagged squared error terms and lagged 

conditional variance terms. A natural seasonal extension of the GARCH model for the intra-

day and intra-week seasonality in the residual variance is to include seasonal lag terms. 

Estimating an ARMA model jointly with an appropriate GARCH model is considered to be 

more efficient than estimating the ARMA model with an incorrect assumption of 

homoskedastic errors. In view of this, we included in our comparison of point forecasting 

methods a SARMA model with seasonal GARCH model for the variance. We considered the 

same seasonal lags as we had done for the SARMA model. We estimated model parameters 

using maximum likelihood under the assumption of a Student-t distribution, which was 

proposed by Bollerlev (1987). We based model selection on the SBC, with the requirement 
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that all parameters were significant (at the 5% level). The formulation of our preferred model 

is presented in expressions (2) and (3).  

( )( )( )( )
( )( )( t

t

LLLLLLLL

cNIVLLLLLLL

εθθθθθθθθ

φφφφφφφ
1008

1008
672

672
336

336
144

144
96

96
48

48
3

31

1008
1008

672
672

336
336

144
144

96
96

3
31

111

111

−−−−−−−−=

−−−−−−−−

)     (2)    

where tt σε  has a Student-t distribution and 

   
( )

( ) 2672
672

336
336

144
144

48
48

3
3

2
210

2672
672

144
144

48
481

t

t

LLLLLLL

LLL

εαααααααα

σβββ

+++++++=

−−−
  (3) 

 If the model is able to capture all of the conditional heteroskedasticity in the residuals, 

there will be no significant autocorrelation evident in the ACF of the squared standardised 

residuals (residuals divided by the estimated values for σt), which is presented in Figure 5. 

Although significant autocorrelation remains, comparison of the figure with Figure 4 

indicates that the SGARCH model has accommodated much of the heteroskedasticity in the 

residuals. We considered other SARMA-SGARCH models, but we were unable to eliminate 

all autocorrelation from the squared standardised residuals. 

----------  Figure 5  ---------- 

 

3.4. Periodic AR 

A periodic ARMA model is one in which the parameters change with the seasons (see 

Franses and Paap, 2004). Empirical evidence for economic data has shown that seasonality is 

often not satisfactorily modelled by standard time-invariant coefficient models and that 

periodic models can be more successful (e.g. Osborn et al., 1988; Franses and Romijn, 1993). 

However, although periodic models can improve explanatory power, the evidence on their 

usefulness for forecasting is less clear (Ghysels and Osborn, Section 6.6, 2001).  

Applications have tended to show that periodic AR models tend to be sufficient, and 

that MA terms are unnecessary (Franses and Paap, p. 28, 2004). In view of this, we 

considered only periodic AR models for the NIV series. We found that, in addition to an AR 
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term of lag 1, the strong seasonality in the data necessitated the inclusion of an AR term of 

lag 48 and, possibly, also an AR term of lag 336. We considered the possibility of periodicity 

in the constant term and in all three AR term coefficients.  

 Figures 6, 7 and 8 show how autocorrelation at lags 1, 48 and 336 varies, dependent 

upon the half-hour of the day, for the estimation sample. An informal assessment of these 

figures suggests that periodicity in autocorrelation at lags 48 and 336 is more significant than 

at lag 1. We also examined how the autocorrelation at these three lags varied across the 336 

half-hours of each week. However, with only 39 weeks in our estimation sample, the 

resulting figures provided inconclusive evidence of such intra-week periodicity.  

-----------  Figures 6 to 8  ----------- 

A common approach to modelling the time-varying coefficients in periodic AR models 

is to specify a separate parameter for each season. This seems reasonable for quarterly or 

monthly data, but, as the half-hourly NIV data has seasonal cycles consisting of 48 and 336 

seasons, this approach implies a highly parameterised model. Faced with a similar problem in 

their analysis of the volatility in high frequency intra-day financial returns, Andersen and 

Bollerslev (1997, 1998) and Martens et al. (2002) use the flexible Fourier form proposed by 

Gallant (1981). We used this approach in our periodic AR models for NIV, which we present in 

the next three sections. The parameters in these models were estimated by OLS regression.  

 

Method P8 - Periodic AR: time of day and week 

Despite there being no clear evidence of intra-week periodicity, we felt it would be 

interesting to consider periodicity with period lengths of both 48 and 336 half-hours. We 

estimated the following periodic model: 

ttttt NIVtNIVtNIVttNIV εφφφφ ++++= −−− 3363364848110 )()()()(  
where 

( ) ( ) ( ) ( )( )∑
=

++++=
4

1
336

)(
336

)(
48

)(
48

)( 2cos2sin2cos2sin)(
i

tw
pi

tw
pi

td
pi

td
pipp iiivit πυπκππλωφ  
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d(t) and w(t) are repeating step functions that number the half-hours from 1 to 48 within each 

day, and from 1 to 336 within each week, respectively. The choice of summing from i=1 to 4 

was made arbitrarily. 

 

Method P9 - Periodic AR: time of day 

Given the lack of evidence for intra-week periodicity, we implemented the following 

model that aims to capture only the intra-day periodicity:  

ttttt NIVtNIVtNIVttNIV εφφφφ ++++= −−− 3363364848110 )()()()(  

where  ( ) ( )( )∑
=

++=
4

1
48

)(
48

)( 2cos2sin)(
i

td
pi

td
pipp ivit ππλωφ  

 

Method P10 - Periodic AR: time of day with no AR(1) 

 In Section 2, we described how the forecast lead times of interest in this paper are 

from 30 to 112 periods ahead. This raises the importance of the lag 48 and lag 336 AR terms, 

and rather questions the benefit of the lag 1 AR term. Indeed, the company’s simple 

autoregression approach, Method P5, makes no attempt to model short-lag autocorrelation. In 

terms of in-sample fit and quality of residuals, the exclusion of the lag 1 term clearly led to a 

poorer model. Nevertheless, we elected to implement the periodic model in expression (4), 

which has no lag 1 AR term. The parameters for this model are presented in Table 2. 

tttt NIVtNIVttNIV εφφφ +++= −− 33633648480 )()()(     (4) 

where   ( ) ( )( )∑
=

++=
4

1
48

)(
48

)( 2cos2sin)(
i

td
pi

td
pipp ivit ππλωφ  

----------  Table 2  ----------- 

  

3.5.  Point Forecasting Results 

We calculated the mean absolute error (MAE) and root mean squared error (RMSE) for 

the post-sample forecast errors from the 10 methods for each of the 48 forecast horizons from 
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each of the two forecast origins. In Table 3, we present the MAE results for the 3pm forecast 

origin. For conciseness, rather than present the MAE value for each lead time, we show the 

MAE averaged across groups of eight lead times. Such averages can be dominated by those lead 

times for which prediction is particularly difficult. In view of this, as a summary of the relative 

performances of the methods across all lead times, in the final column of Table 3, we show the 

mean value of a Theil-U measure calculated for each lead time as the ratio of the MAE for that 

method to the MAE for the SARMA method, Method P6. In Table 4, we provide the MAE 

results for the 8am forecast origin. We do not present the RMSE results, as the relative 

performances of the methods for this measure were very similar to that for the MAE. 

----------  Tables 3 and 4 , and Figures 9 and 10  ---------- 

Reassuringly, the results show a tendency for the more sophisticated methods, 

Methods P4 to P10, to outperform the simple benchmark methods, Methods P1 to P3. A clear 

exception to this is the poor performance of Method P8, which is the periodic AR model with 

intra-day and intra-week periodicity in the coefficients of autoregressive terms with lags 1, 48 

and 336. Perhaps not surprisingly, given the lack of clear evidence of intra-week periodicity 

in the autocorrelations, the results for Method P9 show that the accuracy of the periodic AR 

approach improves when just the intra-day periodicity is accommodated. More surprising, to 

us, was the noticeable improvement in the approach when the AR term of lag 1 was removed 

from the model to produce Method P10. In terms of the mean Theil measure, this method and 

the SARMA model, Method P6, were the best performing of all the 10 methods. The 

accuracy of the SARMA model was not improved when the model was estimated with a 

GARCH model for the conditional variance, Method P7. This finding and the relative 

performance of the three periodic AR models leads us to conclude that, for the lead times 

considered in our study, the quality of in-sample diagnostics did not relate well to post-

sample forecast accuracy.  

 11



To provide a little more insight into the variability within the forecast errors, in 

Figures 9 and 10, we present box-plots, corresponding to the two different forecast origins, 

for the AE results from the SARMA model of Method P6. The two plots are very similar, 

with the values being generally slightly larger for the earlier forecast origin. 

 

4.  Volatility Forecasting 

In this section, we evaluate methods for forecasting the volatility in the NIV series. 

More specifically, we compare the accuracy of methods for forecasting, for the various lead 

times, the variance of the forecast error from the SARMA model of Method P6 in Section 3. 

We focus on a single method from Section 3 in order to provide a fair and simple comparison 

of the variance forecasting methods. Estimating the variance is non-trivial because it is not 

constant and it contains seasonality. We can deduce this from our assessment, in Section 3.3, of 

the ACF of the squared residuals from the SARMA model. We consider six methods; the first 

three of which are simple benchmark approaches.  

 

4.1. Simple Benchmark Methods Applied to Historical Forecast Errors 

Method V1 - Historical variance - This approach assumes the variance is constant across half-

hours of the week. For each lead time, k, we calculated the variance of all k step-ahead in-sample 

forecast errors made for all half-hours in the nine month period immediately prior to the forecast 

origin being considered. The resulting variances were used as variance forecasts for both the 

3pm and 8am forecast origins. 

Method V2 - Historical variance: time of day - This approach assumes that the variance is 

constant for any given half-hour of the day, but that it can be different for different half-hours of 

the day. For the 3pm forecast origin, the k step-ahead variance forecast was calculated as the 

variance of the errors resulting from the k step-ahead forecasts, made from the 3pm origin, on all 
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days in the nine month period immediately prior to the forecast origin being considered. In an 

analogous way, variance forecasts were constructed for the 8am forecast origin.  

Method V3 - Historical variance: time of week - This approach assumes that the variance is 

constant for any given half-hour of the week, but that it can be different for different half-hours 

of the week. For the 3pm forecast origin on a particular day of the week, the k step-ahead 

variance forecast was calculated as the variance of the errors resulting from the k step-ahead 

forecast, made from the 3pm origin, on all similar days of the week in the nine month period 

immediately prior to the forecast origin being considered. Variance forecasts were constructed 

similarly for the 8am forecast origin.  

 

4.2. Methods Based on the Theoretical SARMA Error Variance Formula 

 The three methods in this section are based on the theoretical formulae for the 

standard error of the SARMA point forecast at the various lead times (see chapter 5, Box et 

al., 1994). These formulae are functions of the variance of the SARMA model error term, εt, 

at all lead times up to, and including, the lead time of interest. The three methods in this 

section present alternative approaches to forecasting the variance of εt in these periods. 

 

Method V4 - SARMA constant error variance 

This approach assumes the variance is constant. We estimated the variance of εt in all 

future periods as the variance of the SARMA estimation sample residuals.  

 

Method V5 - SGARCH 

We fitted an SGARCH model to the SARMA model residuals. We considered the 

same seasonal lags as we had done for the SGARCH model of Method P7 in Section 3.3, and. 

estimated parameters using maximum likelihood based on the Student-t distribution. Indeed, 

all GARCH models in this paper were estimated in this way. We based model selection on 
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the SBC, with the requirement that all parameters were significant (at the 5% level). 

Expression (5) presents our selected model, and Table 5 provides the estimated parameters.  

( )
( ) 2672

672
336

336
144

144
48

48
2

210

2672
672

144
144

48
481

t

t

LLLLLL

LLL

εααααααα

σβββ

++++++=

−−−
  (5) 

----------  Tables 5 and 6  ---------- 

 

Method V6 - Periodic GARCH  

In the GARCH literature, the tendency has been to accommodate seasonality through 

the use of periodic GARCH terms, which were first considered by Bollerslev and Ghysels 

(1996). Franses and Paap (2000) employ a periodic GARCH model to capture the day-of-the-

week effect in daily stock index return volatility. Martens et al. (2002) use a periodic 

GARCH model to capture the intra-day and intra-week seasonality in half-hourly exchange 

rate returns. They used a flexible Fourier form for the periodically time-varying parameters. 

We fitted a periodic GARCH model to the residuals of the SARMA model from 

Method P6. We used a time-invariant coefficient for lag variance terms, which has been the 

approach used in all the periodic GARCH models that we have seen. Given the results of our 

comparison of point forecasting periodic AR models in Section 3, we implemented a model 

that aimed to capture only the intra-day periodicity in the coefficients and we did not include 

a lag 1 term. The resultant periodic GARCH model is presented in expression (6) with 

parameters and standard errors given in Table 6. 

2
336336

2
4848

2
336336

2
48480

2 )()()( −−−− ++++= ttttt ttt σβσβεαεαασ               (6) 

where  ( ) ( )( )∑
=

++=
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48
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48

)( 2cos2sin)(
i

td
pi

td
pipp ivit ππλωα  

 

4.3.  Volatility Forecasting Results 
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We calculated the MAE and RMSE for the post-sample variance estimation error from 

the six methods for each of the 48 forecast horizons from each of the two forecast origins. We 

used the square of the post-sample SARMA model forecast error as a proxy for variance, so that 

the MAE was calculated, for each forecast horizon, k, as follows: 

MAE = ∑ −
i

kikie
m

2
,

2
, ˆ1 σ  

where  is the square of the k step-ahead SARMA model forecast error made from day i;  

 is the corresponding variance forecast; and m is the number of days in the post-sample 

period. In Tables 7 and 8, we present the MAE results for the 3pm and 8am forecast origins, 

respectively. The mean Theil-U measure in the final column was calculated for each method 

as the mean of the ratios of the MAE for that method to the MAE for Method V6, periodic 

GARCH. Tables 7 and 8 show that, overall, the best performing method was periodic 

GARCH. Its superiority over seasonal GARCH is consistent with its predominant use in the 

financial volatility literature. By contrast with the MAE results, the RMSE results in Tables 9 

and 10 indicate that the simpler methods are preferable. The impressive performance of the 

simpler methods may be due to the unstable nature of the volatility in NIV. Simpler methods 

have the appeal of robustness, which is particularly important for unstable series. 

2
,kie

2
,ˆ kiσ

----------  Tables 7 to 10  ---------- 

 

5. Evaluating Economic Value of NIV Density Forecasts 

 At National Grid, a NIV density forecast is required in order to provide trading 

advice. In Section 5.2, we describe nine density forecasting methods that are based on the 

point and volatility forecasting methods presented in Sections 3 and 4, respectively. The 

resulting density forecasts could be evaluated using statistical procedures (see, for example, 

Diebold et al., 1998, and Christoffersen, 1998). However, this would not address whether the 
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difference in accuracy between forecasting approaches had any economic significance. For the 

majority of forecasting applications, evaluating the economic benefit of an improvement in 

forecast accuracy is not straightforward. However, in the case of NIV, if we make some 

reasonable simplifying assumptions, we can derive the economic benefit by evaluating the 

monetary outcome that results from trading advice provided by the various density forecasting 

methods. We discuss this in more detail in the next section. 

 

5.1.  Trading Advice and the Resulting Cost Benefit 

The net balancing cost that results from trading an amount of electricity in period t in 

order to balance the impact of NIV in period t+k is presented in expression (7).  

( )
⎩
⎨
⎧

>
<

×−

+×=

++

++
+ TradeNIVifOfferPrice

TradeNIVifBidPrice
TradeNIV

kMktPriceTradeTradektCost

ktkt

ktkt
kt

t )(),,(
           (7) 

where Trade is the amount of electricity traded; MktPricet(k), is the price at which the market 

is trading electricity in period t for exchange in period t+k (i.e. it is the forward price); and 

NIVt+k is the actual value of NIV in period t+k; BidPricet+k is the price at which National Grid 

can balance an excess of generation, for period t+k, after gate closure; and OfferPricet+k is the 

price at which National Grid can balance an excess of demand, for period t+k, after gate 

closure. The cost benefit due to the trade is given by expression (8): 

),,()0,,(),,( TradektCostktCostTradektBenefit −=                (8) 

 As the industry regulator does not permit National Grid to trade speculatively, the 

optimal trade is the amount that minimises the expectation in period t of the net balancing 

cost in period t+k. Differentiating the expectation of expression (7) with respect to Trade 

delivers the rule that the optimal trade is the value that satisfies the following expression: 

( ) ktkttktkttt icePrOfferTradeFicePrBidTradeFkMktPrice ++++ ×−+×= )(ˆ1)(ˆ)( ,,      (9) 
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where is the forecast at period t of the cdf for NIV)(ˆ
, TradeF ktt + t+k, evaluated at the traded 

quantity, Trade. (In other words,  is the estimate in period t of the probability of 

NIV

)(ˆ
, TradeF ktt +

t+k being less than the traded quantity.) Rearranging expression (9), it then follows that 

the optimal trade is given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

++

+−
+

ktkt

tkt
ktt BidPriceOfferPrice

kMktPriceOfferPrice
F

)(ˆ 1
,              (10) 

 We set realistic caps on the amount that is traded, so that, if the market price is greater 

than the offer price, or the market price is lower than the bid price, these caps are enforced. 

The trading advice and cost benefit formulae rely on the following simplifying assumptions: 

the trades do not affect market price; liquidity is never a problem; and we can forecast the bid 

and offer prices perfectly. Despite these simplifications, we feel the essence of the use of the 

NIV density forecast is captured in the trading advice of expression (10).  

 The quality of the trading advice in expression (10) relies on the quality of the NIV 

density forecasts. In Section 5.3, we show the results of substituting into the cost benefit 

formulae, in expression (8), the trading advice produced by nine different density forecasting 

approaches, which we now present in Section 5.2. 

 

5.2. Density Forecasting Methods 

Methods D1 to D6 - Methods based on SARMA point forecasts 

 We generated density forecasts by using the SARMA point forecasts with the 

variance forecasts from the six methods considered in Section 4. In order to be consistent 

with the distribution type used in their estimation, for the two GARCH approaches, we used 

Student-t distributions with degrees of freedom set to the values optimised in the maximum 

likelihood estimation. For the other four methods, we used a Gaussian distribution.   
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Method D7 - Simplistic benchmark 

 This approach was based on a Gaussian distribution, centred at the point forecasts 

from Method P2, with variance estimated using Method V2. Methods P2 and V2 are simple 

benchmark approaches that performed reasonably in Sections 3 and 4, respectively.  

 

Method D8 - Company benchmark 

We constructed a density forecast based on the company’s simple autoregression 

point forecasting method, Method P5. A Gaussian distribution was used with variance 

forecasts created using the simplest method from Section 4, Method V1. We felt that this was 

a reasonable representation of the company’s past approach to density estimation. 

 

Method D9 - SARMA-SGARCH 

 We produced density forecasts using the SARMA-SGARCH model of expressions (2) 

and (3), in Section 3.3, for which the SARMA and SGARCH components had been estimated 

in a single stage.  

 

5.3. Cost Benefit Results   

 Tables 11 and 12 show the cost benefit resulting from trading based on the nine 

density forecasting methods. The cost benefit is calculated using expression (8) with optimal 

trade calculated from expression (10). The final columns in the tables present the sum of the 

cost benefits for each method. This value represents the total benefit resulting from National 

Grid trading once for each half-hour period of the three-month evaluation period. 
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 The tables show that Methods D1 to D6, which are based on the SARMA model point 

forecasts from Method P6, generally led to greater cost benefit than the other three methods. 

The best performing method in both tables is Method D2, which uses the SARMA point 

forecasts with forecast error variance estimated as the variance of in-sample errors with the 

same lead time and from the same time of day. Interestingly, the results are not competitive 

for Method D6, the method based on periodic GARCH variance forecasts, which according 

to the MAE measure was the most accurate variance forecasting approach in Section 4. In 

that section, RMSE highlighted the simpler variance forecasting methods as performing the 

best. This suggests that, for this application, RMSE is a better indicator of which variance 

forecasting method will deliver density forecasts with the greatest economic benefit.  

The final column in Table 11 shows that, for the predictions made from the 3pm 

forecast origin, Method D2 led to a benefit of £104,000 more than achieved by the company 

benchmark approach, Method D8. As this is for just a three-month period, it implies an 

improvement in the benefit of £416,000 over a year. For the predictions made from the 8am 

forecast origin, Table 12 indicates a difference in the benefit of £205,000, between these two 

methods, for the 3-month period, which translates into an improvement in trading benefit of 

£820,000 over a year.   

----------  Tables 11 and 12  ---------- 

 

6.  Summary and Concluding Comments 

 This paper has investigated methods for NIV density forecasting. We decomposed the 

problem down into point forecasting and volatility forecasting. In our evaluation of point 

forecasting methods, the two best performing methods were a multiplicative seasonal ARMA 

model and a periodic AR model. Comparing volatility forecasting methods, we found that 

MAE and RMSE measures delivered a contradictory ranking of methods. We evaluated 

density forecasting in terms of economic benefit by deriving the monetary outcome that is 
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generated from trading advice resulting from a variety of density forecasting methods. The best 

results were achieved by a method that constructed density forecasts from seasonal ARMA 

point forecasts with forecast error variance estimated using a simplistic approach that 

accounted for the intra-day seasonality in the variance. The economic benefit in using this 

approach, rather than one based on the company’s point forecasting method, was calculated as 

being of the order of £416,000 for the earlier forecast origin and £820,000 for the later origin.  

There are a number of potential areas for further study. Combining the forecasts 

produced by different methods has been found to be useful in a wide variety of applications, 

so it would be interesting to consider combinations of point, variance or, perhaps, density 

forecasts. Another possibility is to combine the trading advice resulting from different density 

forecasts. A different form of synthesis is prompted by the result that the simpler volatility 

forecasting methods were more successful than the GARCH models. There may be scope for 

filtering off the seasonal components of the heteroskedasticity, using a relatively simple 

approach, and then applying a statistical model to capture the localised structure in the data. 

If several years of data were available, the modelling of an annual seasonal cycle could be 

considered. In this paper, we have used a Gaussian or Student-t distribution to construct 

density forecasts from point and volatility predictions. It may be beneficial to try to use, 

instead, some form of empirical distribution of historical values. It would also be interesting 

to consider the more direct modelling of the inverse of the cdf, given in expression (10), 

because this is ultimately what is needed in order to compute the trading advice. As the 

inverse of the cdf is the quantile function, this implies modelling the quantiles of NIV. 
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Figure 1. Half-hourly Net Imbalance Volume 
for the period 11 March 2003 to 10 March 2004. 
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Figure 2. Autocorrelation function for the nine-month estimation sample 
(13,104 observations). Dotted lines indicate 95% confidence interval. 
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Figure 3. Autocorrelation function for the residuals from the SARMA 
model, Method P6. Dotted lines indicate 95% confidence interval. 
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Figure 4. Autocorrelation function for the squared residuals from the SARMA 
model, Method P6. Dotted lines indicate 95% confidence interval. 
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Figure 5. Autocorrelation function for the squared standardised residuals from the 
SARMA-SGARCH model, Method P7. Dotted lines indicate 95% confidence interval. 
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Figure 6. Lag 1 autocorrelation at the 48 half-hours of the day, 

calculated using observations from only the nine-month estimation  
sample. Dotted line indicates upper bound of 95% confidence interval. 
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Figure 7. Lag 48 autocorrelation at the 48 half-hours of the day, 
calculated using observations from only the nine-month estimation 

sample. Dotted line indicates upper bound of 95% confidence interval. 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.2

0

0.2

0.4

0.6

0.8

1

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
time

of day

Figure 8. Lag 336 autocorrelation at the 48 half-hours of the day, 
calculated using observations from only the nine-month estimation 

sample. Dotted line indicates upper bound of 95% confidence interval. 
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Figure 9.  Box-plots for AE results from the SARMA model, Method P6, 
for point forecasting from forecast origin 3pm for the 48 half-hour 

periods commencing from 11:30pm on the next day. 
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Figure 10.  Box-plots for AE results from the SARMA model, Method P6, 
for point forecasting from forecast origin 8am for the 48 half-hour 

periods commencing from 11:30pm on the same day. 
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lag  1 2 3 48 96 144 336 672 1008 

φi  1.397 
(0.096) 

-0.438 
(0.086)   0.475 

(0.059) 
0.290 

(0.051) 
0.312 

(0.037) 
0.165 

(0.035) 
0.269 

(0.027) 

           

θi  0.437 
(0.096) 

0.115 
(0.011)  -0.223 

(0.009) 
0.302 

(0.059) 
0.225 

(0.040) 
0.197 

(0.038) 
0.103 

(0.034) 
0.209 

(0.026) 
           

c -589.5 
(205.3)          

 
 
Table 1. Parameters for the SARMA model in expression (1), Method P6, with standard 
errors in parentheses. 
 
 
 
 
 
 
 
 
 
 
 

 ω λ1 λ2 λ3 λ4 ν1 ν2 ν3 ν4

φ0(t) 
-279.0 
(8.51) 

58.7 
(12.31) 

101.5 
(11.80) 

5.7 
(12.06) 

9.4 
(12.02) 

23.3 
(12.07) 

-13.5 
(11.89) 

-4.6 
(11.93) 

39.0 
(11.94) 

          

φ48(t) 
0.470 

(0.008) 
0.0933 

(0.0109) 
0.0703 

(0.0123) 
0.0628 

(0.0115) 
-0.0259 
(0.0118) 

-0.0054 
(0.0118) 

-0.0043 
(0.0112) 

-0.0068 
(0.0112) 

0.0188 
(0.0114) 

          

φ336(t) 
0.254 

(0.008) 
0.0002 

(0.0109) 
-0.0586 
(0.0122) 

0.0846 
(0.0114) 

-0.1426 
(0.0118) 

-0.0550 
(0.0117) 

0.0673 
(0.0112) 

0.0027 
(0.0111) 

0.0437 
(0.0113) 

 
 
Table 2. Parameters for the periodic AR model in expression (4), Method P10, with standard 
errors in parentheses. 
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Half-hour periods 1-8 9-16 17-24 25-32 33-40 41-48  Mean Theil
P1 - Moving average 543 682 871 656 658 537  1.12 
P2 - Moving average: time of day 505 636 859 654 628 515  1.08 
P3 - Moving average: time of week 505 633 797 655 629 514  1.07 
P4 - Exponential smoothing 467 575 778 712 613 506  1.04 
P5 - Company’s simple autoregression 453 551 818 674 625 517  1.03 
P6 - SARMA 454 558 775 661 598 485  1.00 
P7 - SARMA-SGARCH  467 564 805 660 600 499  1.02 
P8 - Periodic AR: time of day and week 484 627 809 708 809 523  1.12 
P9 - Periodic AR: time of day 485 609 836 675 703 512  1.08 
P10 - Periodic AR: time of day, no AR(1) 443 539 814 648 612 497  1.00 

 
 
Table 3.  MAE (MW) for point forecasting from forecast origin 3pm for the 48 half-hour 
periods commencing from 11:30pm on the next day.  
 
 
 
 
 
 
 
 
 

Half-hour periods 1-8 9-16 17-24 25-32 33-40 41-48  Mean Theil
P1 - Moving average 541 681 864 658 655 534  1.20 
P2 - Moving average: time of day 505 635 852 656 623 512  1.15 
P3 - Moving average: time of week 505 632 791 656 625 511  1.14 
P4 - Exponential smoothing 421 504 740 699 605 499  1.05 
P5 - Company’s simple autoregression 411 473 773 679 609 480  1.03 
P6 - SARMA 414 495 703 641 590 470  1.00 
P7 - SARMA-SGARCH  430 497 725 635 588 482  1.01 
P8 - Periodic AR: time of day and week 439 548 713 768 859 510  1.15 
P9 - Periodic AR: time of day 435 515 723 687 723 495  1.08 
P10 - Periodic AR: time of day, no AR(1) 395 449 768 650 598 482  1.00 

 
 
Table 4.  MAE (MW) for point forecasting from forecast origin 8am for the 48 half-hour 
periods commencing from 11:30pm on the same day.  
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lag  1 2 3 48 96 144 336 672 1008 

αi
1071.7 
(514.5) 

0.050 
(0.010) 

0.030 
(0.007)  0.107 

(0.014)  0.031 
(0.013) 

0.043 
(0.014) 

0.024 
(0.010)  

           

βi     0.296 
(0.074)  0.239 

(0.070)  0.170 
(0.037)  

           

degrees of 
freedom 

11.21 
(1.13)          

 
 
Table 5. Parameters for the seasonal GARCH model in expression (5), with standard errors in 
parentheses. 
 
 
 
 
 
 
 
 
  ω λ1 λ2 λ3 λ4 ν1 ν2 ν3 ν4

α0(t) 
 19664.2 

(1495.8)
-2750.4 
(526.7) 

-153.1 
(596.3) 

-3228.0 
(569.2) 

1076.9 
(541.5) 

1054.5 
(549.1) 

2829.1 
(512.8) 

1505.5 
(508.9) 

704.7 
(506.4))

           

α48(t) 
 0.0381 

(0.0055)
0.0154 

(0.0076) 
0.0040 

(0.0081) 
0.0139 

(0.0069) 
-0.0045 
(0.0061)

-0.0052 
(0.0050) 

-0.0148 
(0.0065) 

-0.0046 
(0.0055) 

-0.0042 
(0.0054)

           

α336(t) 
 0.0456 

(0.0064)
0.0021 

(0.0082) 
0.0035 

(0.0094) 
0.0081 

(0.0085) 
-0.0027 
(0.0078)

-0.0006 
(0.0078) 

-0.0025 
(0.0073) 

0.0011 
(0.0073) 

-0.0025 
(0.0068)

           

β48
0.1492 

(0.0424)          

           

β336
0.2786 

(0.0395)          

           

degrees of 
freedom 

239.1 
(76.3)          

 
 
Table 6. Parameters for the periodic GARCH model in expression (6), with standard errors in 
parentheses. 
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Half-hour periods 1-8 9-16 17-24 25-32 33-40 41-48  Mean Theil
V1 - Historical variance 358 468 903 662 596 385  1.07 
V2 - Historical variance: time of day 294 446 927 694 622 360  1.04 
V3 - Historical variance: time of week 295 447 932 695 636 374  1.05 
V4 - SARMA constant error variance 362 469 903 662 596 385  1.08 
V5 - SGARCH 425 451 940 668 676 460  1.18 
V6 - Periodic GARCH 309 439 906 652 570 340  1.00 

 
 
Table 7.  MAE (MW2) for forecasting variance of SARMA point forecast errors corresponding 
to forecasts made from origin 3pm for the 48 half-hour periods commencing from 11:30pm on 
the next day. MAE values have been divided by 103. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Half-hour periods 1-8 9-16 17-24 25-32 33-40 41-48  Mean Theil
V1 - Historical variance 311 386 758 630 585 360  1.09 
V2 - Historical variance: time of day 246 357 779 664 612 334  1.04 
V3 - Historical variance: time of week 256 373 812 697 635 355  1.09 
V4 - SARMA constant error variance 322 393 759 632 587 363  1.10 
V5 - SGARCH 391 370 806 641 671 439  1.22 
V6 - Periodic GARCH 267 349 751 616 561 316  1.00 

 
 
Table 8.  MAE (MW2) for forecasting variance of SARMA point forecast errors corresponding 
to forecasts made from origin 8am for the 48 half-hour periods commencing from 11:30pm on 
the same day. MAE values have been divided by 103. 
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Half-hour periods 1-8 9-16 17-24 25-32 33-40 41-48  Mean Theil
V1 - Historical variance 475 721 1852 1285 1062 533  0.97 
V2 - Historical variance: time of day 482 745 1806 1257 1040 535  0.97 
V3 - Historical variance: time of week 483 747 1820 1252 1053 547  0.98 
V4 - SARMA constant error variance 476 720 1851 1285 1062 533  0.97 
V5 - SGARCH 509 735 1792 1283 1063 569  1.00 
V6 - Periodic GARCH 473 772 1897 1334 1091 539  1.00 

 
 
Table 9.  RMSE (MW2) for forecasting variance of SARMA point forecast errors 
corresponding to forecasts made from origin 3pm for the 48 half-hour periods commencing 
from 11:30pm on the next day. RMSE values have been divided by 103. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Half-hour periods 1-8 9-16 17-24 25-32 33-40 41-48  Mean Theil
V1 - Historical variance 399 591 1552 1230 1060 495  0.98 
V2 - Historical variance: time of day 398 609 1519 1202 1036 496  0.98 
V3 - Historical variance: time of week 398 610 1521 1230 1056 521  0.99 
V4 - SARMA constant error variance  404 590 1548 1227 1058 496  0.98 
V5 - SGARCH 449 598 1496 1225 1060 539  1.02 
V6 - Periodic GARCH 390 622 1585 1273 1086 498  1.00 

 
 
Table 10.  RMSE (MW2) for forecasting variance of SARMA point forecast errors 
corresponding to forecasts made from origin 8am for the 48 half-hour periods commencing 
from 11:30pm on the same day. RMSE values have been divided by 103. 
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Half-hour periods 1-8 9-16 17-24 25-32 33-40 41-48  Average 

all 48  Sum 
all 48 

Methods based on SARMA point forecasts          
      D1 - Historical variance 26 46 31 62 392 49  101  4857 
      D2 - Historical variance: time of day 27 45 35 64 392 49  102  4904 
      D3 - Historical variance: time of week 27 45 35 64 393 49  102  4901 
      D4 - SARMA constant error variance 26 46 31 62 392 49  101  4857 
      D5 - SGARCH 27 46 36 62 388 47  101  4841 
      D6 - Periodic GARCH 27 44 29 57 392 50  100  4785 
           
Methods not based on SARMA point forecasts          
      D7 - Simple benchmark 15 34 10 71 428 46  101  4832 
      D8 - Company benchmark 26 48 17 59 410 40  100  4800 
      D9 - SARMA-SGARCH 24 40 12 53 410 46  97  4674 
 
 
Table 11.  Economic benefit (£000s) of trading based on density forecasts from forecast origin 
3pm for the 48 half-hour periods commencing from 11:30pm on the next day.  
 
 
 
 
 
 
 
 
Half-hour periods 1-8 9-16 17-24 25-32 33-40 41-48  Average 

all 48  Sum 
all 48 

Methods based on SARMA point forecasts          
      D1 - Historical variance 33 52 51 81 411 55  114  5456 
      D2 - Historical variance: time of day 33 51 54 83 411 54  114  5494 
      D3 - Historical variance: time of week 33 51 55 82 410 53  114  5467 
      D4 - SARMA constant error variance 33 52 51 81 411 55  114  5458 
      D5 - SGARCH 33 51 55 81 407 52  113  5431 
      D6 - Periodic GARCH 33 50 50 76 411 56  113  5419 
           
Methods not based on SARMA point forecasts          
      D7 - Simple benchmark 16 36 15 80 460 50  109  5249 
      D8 - Company benchmark 35 54 28 66 421 57  110  5289 
      D9 - SARMA-SGARCH 30 47 37 76 434 53  113  5419 
 
 
Table 12.  Economic benefit (£000s) of trading based on density forecasts from forecast origin 
8am for the 48 half-hour periods commencing from 11:30pm on the same day.  
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