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A Quantile Regression Neural Network Approach to Estimating the Conditional Density 

of Multiperiod Returns 

 

Abstract 

 

This paper presents a new approach to estimating the conditional probability distribution of 

multiperiod financial returns. Estimation of the tails of the distribution is particularly important 

for risk management tools, such as value at risk models. A popular approach is to assume a 

Gaussian distribution, and to use a theoretically derived variance expression which is a nonlinear 

function of the holding period, k, and the 1-step-ahead volatility forecast, 1ˆ +tσ . The new method 

avoids the need for a distributional assumption by applying quantile regression to the historical 

returns from a range of different holding periods to produce quantile models which are functions 

of k and 1ˆ +tσ . A neural network is used to estimate the potentially nonlinear quantile models. 

Using daily exchange rates, the approach is compared to GARCH-based quantile estimates. The 

results suggest that the new method offers a useful alternative for estimating the conditional 

density. 
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1.  INTRODUCTION 

 This paper aims to improve the estimation of the conditional probability distribution of 

financial returns. Accurate estimation of the tails of the distribution are of particular importance 

for risk management tools, such as value at risk models, which have received considerable 

attention in recent years (see Duffie and Pan, 1997). Value at risk calculations aim to measure 

the worst expected loss over a given time interval under normal market conditions at a given 

confidence level (see Jorion, 1997). The conditional density is not only needed for risk 

management. Hansen (1994) notes that the density is often important for option pricing, and 

Baillie and Bollerslev (1992) highlight the necessity for accurate confidence interval estimation 

to accompany forecasts of the conditional mean. 

 A popular procedure for estimating the distribution of 1-period returns is to forecast the 

volatility and then to make a Gaussian assumption. However, returns are not always normally 

distributed which has prompted alternatives, such as the use of a t-distribution and 

nonparametric methods. Boudoukh et al. (1997) observe that, even if the 1-period return is 

Gaussian, the distribution may well be much more complicated for the multiperiod return. This 

provides additional motivation for the use of a nonparametric method. 

 In this paper, we propose a quantile regression approach to the estimation of the 

distribution of multiperiod returns. This nonparametric approach uses historical returns from a 

range of different holding periods and produces quantile models which are functions of the 

length, k, of the holding period and the 1-step-ahead volatility forecast, 1ˆ +tσ , as suggested by 

theoretically derived variance expressions. The θth quantile of a variable y is the value, Q(θ), for 

which P(y<Q(θ))=θ. An approximation of the full probability distribution can be produced from 

the quantile estimates corresponding to a range of values of θ (0<θ<1). 

 The functional form of multiperiod volatility forecasts varies greatly depending upon the 

choice of forecasting method. For example, with moving average methods, the k-period 
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volatility forecast is usually calculated as the 1-step-ahead forecast, 1ˆ +tσ , inflated by √k. By 

contrast, the GARCH(1,1) volatility forecast is a much more complex nonlinear function of k 

and 1ˆ +tσ . Whilst the motivation for using k and 1ˆ +tσ  as explanatory variables in the quantile 

regression models is apparent, the appropriate nonlinear specification is much less clear. In this 

paper, we overcome this problem by using a neural network to perform the quantile regression. 

This computationally intensive approach to modelling enables the estimation of potentially 

nonlinear models, without the need to specify a precise functional form. 

 The next section of the paper considers the existing approaches to estimating the quantiles 

of the multiperiod returns. In the section that follows, we describe the theory of quantile 

regression, and discuss how an artificial neural network can be used to perform quantile 

regression. We then present our new proposal. In the next section, we use daily exchange rate 

data to compare the quantile estimates of our new approach with those of two commonly used 

GARCH-based methods. The final section provides a summary and conclusion. 

 

2.  TRADITIONAL APPROACHES TO MULTIPERIOD QUANTILE ESTIMATION 

 The traditional procedure for estimating quantiles of multiperiod returns consists of two 

stages. Firstly, the volatility is estimated for the periods under consideration, and secondly, a 

probability distribution is assumed. This procedure is used by Alexander and Leigh (1997) and 

proposed by Kroner et al. (1995). In this section, we discuss the two stages, and highlight 

potential improvements. 

 

2.1.  Distributional Assumption 

 The quantiles of 1-step-ahead returns are usually constructed using a Gaussian distribution 

(see Duffie and Pan, 1997). This is consistent with an assumption of Gaussian log returns in the 

finance literature. It is also consistent with ARCH models, provided the parameters have been 
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estimated using maximum likelihood based on Gaussian disturbances. However, market returns 

are frequently found to have excess kurtosis relative to a normal distribution (see, for example, 

the analysis of Hull and White (1998)). Baillie and Bollerslev (1989) suggest the use of a t-

distribution for the estimation of ARCH models in order to accommodate fat tails. If a t-

distribution is used for parameter estimation, it would be consistent to use a t-distribution to 

estimate the quantiles. However, log returns do not always have a normal or t-distribution, and 

so a nonparametric approach to estimating quantiles has strong appeal. 

 A normal distribution is also often used for estimating the quantiles of multiperiod returns. 

If the returns at different lead times are assumed to be uncorrelated and normally distributed, 

then perhaps it seems reasonable to assume normality for the distribution of the multiperiod 

returns, since they are the sum of the returns over a holding period. However, this assumption is 

inappropriate because, although the returns at different lead times are uncorrelated, they are not 

necessarily independent. This interdependence is apparent from the variance which would be 

unpredictable by moving average or ARCH methods, if it did not depend on its past values. 

Indeed, the hypothesis underlying ARCH processes is that the variance is autoregressive. 

Furthermore, Baillie and Bollerslev (1992) discuss how the higher order moments (such as the 

skewness and kurtosis) of the returns distribution are also interdependent for ARCH models. 

Recognising this, Hansen (1994) presents a nonparametric autoregressive conditional density 

(ARCD) model which aims to model the full probability density in an autoregressive 

framework. Hansen’s work produces k-step-ahead density estimates but his work has not been 

extended to multiperiod estimation (which focuses on the sum of the returns over a holding 

period). In summary, as Boudoukh et al. (1997) note, even if the 1-period innovation is normally 

distributed, the multiperiod innovation will have a much more complicated distribution. There is 

thus strong motivation for using a nonparametric approach to estimating the quantiles of 

multiperiod returns. 
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2.2.  Functional Form of the Volatility Forecasts 

 The functional form of multiperiod volatility forecasts varies greatly depending upon the 

choice of forecasting method. Moving average methods predict volatility using simple or 

weighted moving averages of past volatility. One of the most popular approaches is the 

exponentially weighted moving average estimator, which is used in the RiskMetricsTM Technical 

Document (1996). With moving average methods, the usual approach for calculating the 

volatility of the k-period return (i.e. the return over a holding period of length k) is to assume that 

the returns are uncorrelated with the same variance. The forecast for the k-period variance is 

then just the 1-step-ahead forecast, 2
1ˆ +tσ , multiplied by k. A traditional estimate of the θth 

quantile would then be 

      1,, ˆˆ)( 2
1

+== tktkt kZZQ σσθ θθ      (1) 

where Zθ is the θth quantile of the standard normal distribution. Here the quantile is a simple 

function of k and 1ˆ +tσ . 

 Autoregressive Conditional Heteroskedasticity (ARCH) models provide estimates of the 

variance of the return, rt, at time t conditional upon It-1, the information set of all observed 

returns up to time t-1 (see Engle, (1982)). This can be viewed as the variance of the error term, 

et=rt-E(rt|It-1). Bollerslev (1986) extended the ARCH class of models to Generalised 

Autoregressive Conditional Heteroskedastic (GARCH) models which enables a more 

parsimonious representation in many applications. GARCH models express the conditional 

variance as a linear function of lagged squared error terms and also lagged conditional variance 

terms. For example, the 1-step-ahead GARCH(1,1) variance forecast is given by 

2
1

2
10

2
1 ˆˆ ttt e σβαασ ++=+  

The s-step-ahead forecast is given by the following recursive expression for s>1 

2
1110

2 ˆ)(ˆ −++ ++= stst σβαασ  
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Using this, we can write the k-period GARCH(1,1) variance forecast as 
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If we assume the conditional mean of the returns is zero, a traditional estimate of the θth quantile 

is then 
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The quantile is a complicated nonlinear function of k and 1ˆ +tσ . Indeed, the same is true for other 

GARCH volatility models. 

 Expressions (1) and (2) suggest that the functional form of the volatility, and hence the 

quantile, is open to debate. Indeed, as Kroner et al. (1995) point out, the volatility modelling 

literature indicates that volatility is mean reverting at a hyperbolic rate which is slower than 

GARCH models permit. In addition, Diebold et al. (1998) show that scaling 1-step-ahead 

volatility forecasts by k½ is inappropriate and overestimates the volatility at long horizons. 

Furthermore, as we discussed earlier, the Gaussian assumption is often inappropriate. There is 

thus strong potential for a nonparametric approach that allows more flexible modelling of the 

multiperiod quantile as a function of the holding period, k. In this paper, we present a new 

nonparametric approach which uses quantile regression. Before describing the procedure, we 

first introduce the quantile regression theory of Koenker and Bassett (1978, 1982). 
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3.  QUANTILE REGRESSION 

 This section consists of two parts. Firstly, we present the linear quantile regression theory 

of Koenker and Bassett (1978, 1982). Secondly, we describe White’s (1992) proposal for the use 

of quantile regression within an artificial neural network for nonlinear quantile modelling. 

 

3.1.  Linear Quantile Regression 

 Koenker and Bassett (1978, 1982) developed theory for the estimation of the quantiles of 

a variable yt which is assumed to be a linear function of other variables. In order to provide some 

intuition, let us first consider the simple case of the constant model yt=β0+et, where β0 is a 

constant parameter and et is an i.i.d. random error term. Koenker and Bassett began by noting 

that the θth quantile of yt can be derived, from a sample of observations, as the solution β0(θ) to 

the following minimisation problem: 
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 The case of the median (θ=½) is well known, but the general result is not. The 

minimisation problem, as a means for finding the θth sample quantile, readily extends to the 

more general case where yt is a linear function of explanatory variables. Consider the following 

rather general model of systematic heteroscedasticity, 

     tttttt ey )()( xx σµ +=  

where xt is a row vector of explanatory variables, µt(xt) may be thought of as the conditional 

mean of the regression process, σt(xt) as the conditional scale, and et as an error term 

independent of vector xt. The θth quantile of et is defined as the value, Qe(θ), for which 

P(et<Qe(θ))=θ. Note that having µt and σt depend on the same vector xt is solely for notational 

convenience. The conditional quantile functions of yt are then 
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    )()()()|( θσµθ etttttyt QQ xxx +=  

 Consider the case where µt and σt are linear functions of xt which has 1 as first element, 

    )()1()|( θθ etttyt QQ γβ xxx ++=       (3) 

where β and γ are vectors of parameters. (Setting all the elements of γ to zero is equivalent to 

assuming that the error term of yt is i.i.d.) (3) can be rewritten as 

     )()|( θθ βttytQ xx =        (4) 

where β(θ) is a vector of parameters dependent on θ. Koenker and Bassett (1978) defined the 

θth regression quantile (0<θ<1) as any solution, β(θ), to the quantile regression minimisation 

problem 
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 Koenker and Bassett (1982) showed that if yt and xt are selected as dependent and 

independent variables respectively, then quantile regression delivers parameters that 

asymptotically approach the parameters, β(θ), in (4) as the number of observations increases. 

 The common procedure for building an explanatory model for a variable is to look for a 

relationship between past observations of that variable and past observations of potential 

explanatory variables. This is not a feasible procedure for building a model for the quantiles of a 

variable because past observations of the quantiles will not be available, as they are 

unobservable. The appeal of quantile regression is that past observations of the quantiles are not 

required. Instead, the variable itself is regressed on explanatory variables to produce a model for 

the quantile. 
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3.2.  A Quantile Regression Artificial Neural Network 

 Artificial neural networks allow the estimation of possibly nonlinear models without the 

need to specify a precise functional form. The most widely-used neural network for forecasting 

is the single hidden layer feedforward network (Zhang et al., 1998). It consists of a set of n 

inputs, which are connected to each of m units in a single hidden layer, which, in turn, are 

connected to an output. In regression terminology, the inputs are explanatory variables, xit, and 

the output is the dependent variable, yt. The resultant model can be written as 
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where g1(⋅) and g2(⋅) are activation functions, which are frequently chosen as sigmoidal and 

linear respectively, and wji and vj are the weights (parameters) to be estimated. 

 White (1992) presents theoretical support for the use of quantile regression within an 

artificial neural network for the estimation of potentially nonlinear quantile models. The only 

other work that we are aware of, that considers quantile regression neural networks, is that of 

Burgess (1995) who briefly discusses the appeal of the procedure. Instead of fitting a linear 

quantile function using the expression in (5), a quantile regression neural network model, 

f(xt,v,w), of the θth quantile can be estimated using the following minimisation 
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where λ1 and λ2 are regularisation parameters which penalise the complexity of the network and 

thus avoid overfitting (see Bishop, 1997, §9.2). The optimal values of λ1 and λ2 and the number, 

m, of units in the hidden layer can be established by cross-validation (see Donaldson and 

Kamstra, 1996; Bishop, 1997, §9.8). In the next section, we describe how a quantile regression 

neural network can be used to estimate the probability distribution of multiperiod returns. 
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4.ESTIMATING THE MULTIPERIOD DISTRIBUTION USING QUANTILE REGRESSION 

 Our proposal is to use quantile regression to construct quantile functions for the 

multiperiod returns. As dependent variable, we use a series of multiperiod returns corresponding 

to various holding periods, k. In view of the quantile expressions in (1) and (2), candidates for 

the explanatory variables could be simple, linear and nonlinear, functions of k and 1ˆ +tσ . 

However, selecting appropriate explanatory variables is not straightforward and so, in this paper, 

we use an artificial neural network to estimate the nonlinear quantile models. It is important to 

note that our proposal is very different from standard quantile regression described in the 

previous section. The standard approach involves the estimation of a model for the quantile of a 

variable in period t, conditional upon information available up to period t. Our procedure aims to 

estimate a conditional quantile model which describes the evolution of the quantile over the next 

k periods. 

 

4.1.  Implementation of the Quantile Regression Approach 

 The method proceeds by collecting together, as a single series, multiperiod returns 

corresponding to various holding periods, k. For illustrative purposes, consider the case where 

we are interested in constructing the returns distributions for holding periods of length 1, 3, 5, 7, 

10, 12 and 15 periods. Suppose we have a thousand returns available for each of these holding 

periods. The single series would have the thousand 1-period returns first, followed by the 

thousand 3-period returns, then the thousand 5-period returns, etc. This is the returns series. We 

then define the elements of the k series as taking a value of k when the corresponding element of 

the forecast error series is a k-period return. If estimating quantiles for holding periods of length 

1, 3, 5, 7, 10, 12 and 15, the k series will consist of a thousand 1’s, followed by a thousand 3’s, 

then a thousand 5’s, etc. The third series to be constructed is the volatility series. This series 

contains 1-step-ahead volatility forecasts, 1ˆ +tσ , which have been estimated by any method, such 
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as a GARCH model. The forecast origin of these forecasts is set at the same origin as the 

multiperiod return in the corresponding element of the multiperiod returns series. If the first 1-

period return has the same origin as the first 3-period return, the first 5-period return, etc., then 

the volatility series will have the same forecast in the 1st entry as in the 1001st entry, and the 

2001st entry, etc. 

 We then carry out quantile regressions with the multiperiod returns series as dependent 

variable. Earlier work investigated the use of simple functions of the k vector and the vector of 

volatility forecasts, 1ˆ +tσ , as explanatory variables (Taylor, 1999a). For example, the 95th 

quantile, Qt,k(0.95), was estimated by using θ=0.95 in the quantile regression minimisation in (5) 

with the returns series as dependent variable and k, k 1ˆ +tσ  and k½
1ˆ +tσ  as regressors. (The vector 

k 1ˆ +tσ  was constructed with ith element equal to the product of the ith element of the k vector 

and the ith element of the volatility vector.) The result was a model of the form 

11, ˆˆ)95.0( 2
1

++ +++= ttkt kdkckbaQ σσ  

where a, b, c and d are parameters estimated by quantile regression. The choice of explanatory 

variables was based on an inspection of coefficient bootstrapped standard errors and a pseudo R2 

statistic. A reasonable approximation to the correct quantile expression should be obtained if the 

explanatory variables are well chosen. In this paper, we take the view that a more efficient 

approach to quantile model specification is to use an artificial neural network. Neural networks 

avoid the laborious, and potentially inefficient, procedure of selecting transformed nonlinear 

variables for the linear regression. We use a quantile regression neural network to fit a nonlinear 

quantile model as a function of k and 1ˆ +tσ . 

 

 

 



 11

4.2.  Additional Features of the Quantile Regression Approach 

 The moving average and ARCH multiperiod volatility forecasts are estimated solely from 

1-period returns. Therefore, the corresponding quantile forecasts in (1) and (2) are also based on 

just 1-period returns. Our new proposal has the appeal of using multiperiod returns from several 

different holding periods in constructing the multiperiod quantiles. 

 If the return is correlated with other market returns, then, ideally, this should be 

accommodated in a quantile estimate. This is an important issue for value at risk applications. 

Our proposal can be adapted to allow for correlation by simply including an estimate of the 

correlation as an extra input variable to the neural network. Gibson and Boyer (1998) review the 

various statistical and market-based approaches to estimating the correlation between returns.  

 Interestingly, our approach enables quantile models with completely different 

specifications to be estimated for different quantiles. For example, whilst the model for the 95th 

quantile might be a complex nonlinear function of k and 1ˆ +tσ , the model for the 5th quantile 

might be a simple linear function. Yar and Chatfield (1990) note that one advantage of a 

theoretical method for estimating prediction intervals over an empirical procedure is that the 

theoretical formulae give insight into how the forecast error variance varies with k. A similar 

point can be made for our new proposal. 

 With modern computing power, we feel that the computational intensity of the approach is 

not a significant constraint. From a theoretical perspective, there may be inefficiencies due to the 

likely correlation between dependent variable observations. It is not clear how to handle this in 

quantile regression, and it is clearly an area for further research if the basic appeal of the method 

is accepted. 
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5.  A COMPARISON OF EXCHANGE RATE QUANTILE ESTIMATES 

 In this section, we describe a study that compared our new proposal with traditional 

quantile estimation methods. Our analysis used 2028 daily observations of the exchange rates 

for the German deutsche mark and the Japanese yen quoted against the U.S. dollar from 4 July 

1988 to 5 July 1996. 

 We estimated quantiles of the multiperiod log returns for holding periods of length 1, 3, 5, 

7, 10, 12 and 15 days. Although these periods are chosen arbitrarily, for daily returns, it seems 

quite reasonable to consider a range of holding periods from one day to three weeks. For 

example, Duffie and Pan (1997) and Jorion (1997) report that two weeks has been proposed by 

various organisations as a standard for value at risk calculations. We compared the quantile 

estimates with the corresponding actual multiperiod returns to reveal post-sample performance. 

We carried out this procedure for 1000 moving windows, each consisting of 1014 observations, 

to give 1000 post-sample quantile estimates for each of the holding periods. 

 We compared three different quantile estimators of the 1st, 5th, 25th, 75th, 95th and 99th 

quantiles. We chose several quantiles in the tails of the distribution as estimation of the tail is 

often considered of greatest importance. The quantile estimators that we used are based on 

ARCH estimates of the volatility. We acknowledge that better estimators may exist, however, 

we felt that it was sensible to employ straightforward and commonly used estimators in our 

study. In the next subsection, we describe the quantile estimators, and in the subsection that 

follows we present the results. 

 

5.1.  Quantile Estimation Methods 

 We fitted an ARMA-GARCH model to an initial data set of 1014 log returns using the 

common practice of maximising a Gaussian likelihood function. We did not find any significant 

ARMA terms. We concluded that the most suitable model was GARCH(1,1) with the 
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conditional mean assumed to be a constant. This is consistent with numerous analyses of 

exchange rate data in the literature (e.g. Jorion, 1995; Xu and Taylor, 1995; Andersen and 

Bollerslev, 1997). We produced quantile estimates based on the GARCH variance forecasts and 

a Gaussian distribution. A second GARCH quantile estimator was constructed from the 

GARCH variance forecasts and the empirical distribution of in-sample standardised residuals. A 

standardised 1-period return is calculated by dividing the 1-period residual by the 1-step-ahead 

volatility forecast, 1ˆ +tσ . A standardised multiperiod residual is the k-period residual divided by 

the multiperiod volatility forecast, kt ,σ̂ . 

 We also estimated quantiles using the quantile regression neural network procedure 

described in the previous section. The returns vector, used as dependent variable, consisted of 

returns from holding periods of length 1, 3, 5, 7, 10, 12 and 15. We used GARCH(1,1) 1-step-

ahead volatility forecasts, 1ˆ +tσ , and the length of the holding period, k, as explanatory variables. 

We acknowledge that if the GARCH model is misspecified, then the quantile regression neural 

network approach will suffer. In view of this, there is a strong argument for using another 

method, such as a moving average, to produce the 1-step-ahead forecasts for the new approach. 

However, since GARCH(1,1) forecasts are the most obvious benchmark to use with exchange 

rate data, we felt that the simplest and least controversial option was to use GARCH(1,1) 1-step-

ahead forecasts in our method. Furthermore, if we were to use 1-step-ahead forecasts from 

another method in the new approach, and the multiperiod forecasting results were found to be 

notably different to those of the GARCH(1,1) benchmark, we would wonder whether the 

difference was due largely to the choice of 1-step-ahead forecast used. 

 We applied separate tenfold cross-validation for each of the six quantiles to determine the 

optimal number of hidden units and values of the regularisation parameters, λ1 and λ2. This led 

to either one or two hidden units being used in the neural networks. This is consistent with 

several rules-of-thumb for the appropriate number of units; Kang (1991) suggested “n/2”, and 
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Tang and Fishwick (1993) proposed “n”, where n is the number of inputs. We did not re-

estimate the neural network weights for each of the 1000 moving windows used in the study. 

Instead, we simply used the first window of 1014 daily observations. We felt that if the neural 

network quantile model was to be re-estimated, then best practice would dictate that the penalty 

function parameters and network architecture should also be re-estimated. This is clearly not 

practical in this kind of study. For consistency, we also did not re-estimate the GARCH 

parameters for each moving window. The quantile regression neural network minimisation in 

expression (6) was carried out in Gauss for UNIX. We used the quasi-Newton optimisation 

algorithm of Broyden, Fletcher, Goldfarb and Shanno (see Luenberger, 1984, page 269).  

 

5.2.  Post-Sample Results 

 As with volatility forecasting, the unobservable nature of quantiles implies that the 

conventional measures of forecast accuracy, such as MSE, are not directly applicable. The most 

popular measure of quantile estimator accuracy is the percentage of observations falling below 

the quantile estimator. For an unbiased estimator of the θth quantile, this will be θ%. This 

criterion is employed by Alexander and Leigh (1997) in a value at risk study, and is used 

extensively for evaluating quantile estimators and prediction intervals (e.g. Granger et al., 1989; 

Taylor and Bunn, 1999; Taylor, 1999b). In this paper, we use this measure as a basis for 

comparison of the three estimators.  

 Table I compares estimation of the 1st, 5th, 25th, 75th, 95th and 99th quantiles for the 

1000 post-sample German deutsche mark returns at the different holding periods. The table 

shows the percentage of post-sample returns falling below the quantile estimators. The asterisks 

indicate the entries that are significantly different from the ideal value at the 5% significance 

level. The acceptance region for the hypothesis test is constructed using a Gaussian distribution 

and the standard error formula for a proportion. We have highlighted in bold the best measures 
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for each quantile at each holding period. Table II compares post-sample estimation for the 

Japanese yen. 

 ----------  TABLES I & II  ---------- 

 Table I shows that for the deutsche mark data, the GARCH volatility estimator with 

empirical distribution performs very well for the 5th, 25th 75th and 95th quantiles. The quantile 

regression method matches the GARCH model with empirical distribution for the 5th and 95th 

quantiles, and outperforms it for the 99th. The GARCH model with Gaussian distribution 

appears to be the overall winner only for the 1st quantile. Interestingly, all three methods 

severely underestimate the 25th quantiles. 

 Table II shows that for the yen data the quantile regression method outperforms the other 

two methods for four of the six quantiles. The GARCH model with empirical distribution is the 

most successful for the 75th quantile and the GARCH model with Gaussian distribution 

performs the best for the 99th quantile. 

 In order to give some indication of the relative overall performance for the three 

methods at the different holding periods, we calculated chi-squared goodness of fit statistics 

(see Hull and White, 1998). For each method, at each holding period, we calculated the 

statistic for the total number of post-sample German deutsche mark and Japanese yen returns 

falling within the following seven categories: below the 1st quantile estimator, between the 

1st and 5th estimators, between the 5th and 25th, between the 25th and 75th, between the 

75th and 95th, between the 95th and 99th, and above the 99th. Table III shows the resulting 

chi-squared statistics. The table shows that the GARCH model with empirical distribution 

performs the worst. The GARCH model with Gaussian distribution is better than the quantile 

regression approach for four of the seven holding periods, but overall there is little to choose 

between the two. Unfortunately, we cannot sum the chi-squared statistics across holding 

periods to give a single summary measure for each of the three methods because these 
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statistics are not independent. To provide another indication of the relative overall 

performance, we summed the number of times that each method outperformed the other two in 

Tables I and II. These results, which are reported in Table IV, confirm our conclusion from 

Table III that the quantile regression method is very competitive. 

 ----------  TABLE III & IV  ---------- 

 In our initial empirical work with the deutsche mark returns, we used just 436 

observations to estimate the neural network quantile regression model. However, the results for 

1-step-ahead quantile estimation were poor so we decided to expand the estimation data set to 

1014. The need for a large estimation data set is, perhaps, not surprising since both neural 

networks and empirical approaches to density estimation generally require sizeable amounts of 

data.  

 

6.  SUMMARY AND CONCLUSIONS 

 We have presented a nonparametric approach to estimating the conditional density of 

multiperiod returns. The method uses historical returns from a range of different holding periods 

and produces quantile models which are functions of the holding period, k, and the 1-step-ahead 

volatility forecast, 1ˆ +tσ , as suggested by theoretically derived variance expressions. We avoided 

the need to specify appropriate explanatory variables by using an artificial neural network to 

estimate the nonlinear quantile models. Using exchange rate data, we performed comparative 

analysis which gave encouraging results. Research investigating the usefulness of the method for 

other exchange rates is currently in progress. Although in this paper we used 1-step-ahead 

volatility forecasts from a GARCH(1,1) model as input to the quantile regression method, other 

1-step-ahead volatility forecasting methods could certainly be used for exchange rates and for 

other applications.  
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Table I. Percentage of post-sample German deutsche mark returns falling below quantile 
estimates 
 
 

  Holding Period 
  1 3 5 7 10 12 15 

 GARCH(1,1) 
& Gaussian 

1.3 1.3 0.8 0.9 0.3* 0.4 0.4 

1st GARCH(1,1) 
& Empirical 

1.0 1.6 2.2* 3.0* 3.2* 2.3* 1.7* 

 Quantile 
Regression 0.6 2.0* 2.3* 2.9* 2.1* 1.3 0.9 

 GARCH(1,1) 
& Gaussian 

4.0 4.0 3.9 4.1 4.3 3.1* 2.3* 

5th GARCH(1,1) 
& Empirical 

4.1 4.9 5.3 5.2 5.9 5.7 4.6 

 Quantile 
Regression 3.3* 4.6 5.2 5.0 5.6 5.0 4.3 

 GARCH(1,1) 
& Gaussian 

19.0* 19.1* 17.9* 18.4* 16.7* 16.8* 17.7* 

25th GARCH(1,1) 
& Empirical 

22.3* 21.0* 19.9* 20.0* 17.8* 17.6* 18.4* 

 Quantile 
Regression 19.2* 21.0* 20.5* 19.2* 17.1* 17.4* 17.0* 

 GARCH(1,1) 
& Gaussian 

77.6 76.5 76.7 74.1 73.8 72.7 72.8 

75th GARCH(1,1) 
& Empirical 

74.4 76.5 75.8 74.8 74.0 75.0 74.4 

 Quantile 
Regression 76.2 73.5 73.5 72.4 73.8 74.3 76.2 

 GARCH(1,1) 
& Gaussian 

96.0 95.4 94.8 94.9 93.7 94.2 94.4 

95th GARCH(1,1) 
& Empirical 

95.7 95.3 94.7 94.9 94.7 94.9 94.6 

 Quantile 
Regression 95.4 94.1 93.6* 94.9 94.2 94.6 95.3 

 GARCH(1,1) 
& Gaussian 

98.5 98.7 98.6 98.4 98.5 98.5 98.6 

99th GARCH(1,1) 
& Empirical 

98.9 98.8 98.6 98.5 98.4 98.3* 98.5 

 Quantile 
Regression 99.2 98.7 98.7 98.5 99.4 99.1 99.4 

 
*  significant at 5% level 
bold indicates best performing method for each quantile at each holding period 
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Table II. Percentage of post-sample Japanese yen returns falling below quantile estimates 
 
 

 
  Holding Period 

  1 3 5 7 10 12 15 

 GARCH(1,1) 
& Gaussian 

2.0* 2.5* 2.3* 2.4* 1.8* 2.2* 2.9* 

1st GARCH(1,1) 
& Empirical 

1.0 2.5* 2.7* 2.8* 3.3* 3.1* 4.2* 

 Quantile 
Regression 0.7 1.7* 1.4 1.2 1.3 1.8* 2.3* 

 GARCH(1,1) 
& Gaussian 

4.9 5.7 6.2 6.8* 6.5* 6.8* 7.3* 

5th GARCH(1,1) 
& Empirical 

4.7 5.8 6.8* 7.2* 7.6* 7.9* 8.7* 

 Quantile 
Regression 3.2* 5.4 6.5* 6.8* 5.5 4.7 5.1 

 GARCH(1,1) 
& Gaussian 

21.4* 21.6* 22.6 22.6 25.0 25.3 26.4 

25th GARCH(1,1) 
& Empirical 

24.8 23.0 23.7 22.4 24.8 23.9 24.4 

 Quantile 
Regression 21.0* 24.9 25.9 26.0 27.0 26.9 26.8 

 GARCH(1,1) 
& Gaussian 

78.2* 78.1* 79.1* 79.4* 77.4 76.2 76.1 

75th GARCH(1,1) 
& Empirical 

73.8 75.9 74.7 74.8 73.4 73.2 72.1* 

 Quantile 
Regression 77.7* 75.4 77.1 77.8* 77.7* 77.5 77.3 

 GARCH(1,1) 
& Gaussian 

95.8 96.9* 96.1 95.7 95.4 96.5* 97.1** 

95th GARCH(1,1) 
& Empirical 

94.6 93.5* 93.5* 92.9* 92.6* 93.1* 93.5* 

 Quantile 
Regression 95.8 94.9 95.3 95.1 95.1 95.5 96.5* 

 GARCH(1,1) 
& Gaussian 

98.2* 98.9 98.8 99.1 98.8 99.3 99.2 

99th GARCH(1,1) 
& Empirical 

98.7 98.1* 97.4* 96.6* 97.0* 97.1* 97.5* 

 Quantile 
Regression 99.5 98.5 98.0* 97.5* 98.0* 98.2* 98.2* 

 
*  significant at 5% level 
bold indicates best performing method for each quantile at each holding period 
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Table III. Chi-squared goodness of fit statistics summarising the overall performance of the three 
estimators for the post-sample German deutsche mark and Japanese yen returns  
 

Holding Period  

1 3 5 7 10 12 15 

GARCH(1,1) 
& Gaussian 

85.9* 82.6* 80.4* 74.9* 97.0* 59.6* 80.2* 

GARCH(1,1) 
& Empirical 

8.7 61.4* 100.5* 174.2* 195.4* 157.3* 173.7* 

Quantile 
Regression 47.3* 32.9* 57.6* 110.3* 127.3* 64.8* 88.5* 

 
*  significant at 5% level 
bold indicates best performing method for each holding period 
 
 
 
 
 
 
 
 
 
Table IV.  Number of times an estimator outperformed the others for the post-sample German 
deutsche mark and Japanese yen returns  
 

 Deutsche Mark 
(Table I summary) 

Japanese Yen 
(Table II summary) Total 

GARCH(1,1) 
& Gaussian 

8 13 21 

GARCH(1,1) 
& Empirical 

24 10 34 

Quantile 
Regression 17 21 38 

 
bold indicates best performing method 
 


