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ABSTRACT 
 

Site-specific probability density rainfall forecasts are needed to price insurance 

premiums, contracts, and other financial products based on precipitation. We investigate 

the spatio-temporal correlations in UK daily rainfall amounts over the Thames Valley and 

construct statistical, Markov chain generalised linear models (Markov GLM) of rainfall. 

We compare point and density forecasts of total rainfall amounts, and forecasts of 

probability of occurrence rain from these models and from other proposed density 

models, including persistence, statistical climatology, Markov chain, unconditional 

gamma and exponential mixture models, and density forecasts from GLM regression 

post-processed NCEP numerical ensembles, at up to 45 day forecast horizons. The 

Markov GLMs and GLM processed ensembles produced skilful one-day ahead and short-

term point forecasts. Diagnostic checks show all models are well-calibrated, but GLMs 

perform best under the continuous-ranked probability score. For lead times of greater 

than one day, no models were better than the GLM processed ensembles at forecasting 

occurrence probability. Of all models, the ensembles are best able to account for the 

serial correlations in rainfall amounts. In conclusion, we recommend GLMs for future 

site-specific density forecasting. Investigations explain this conclusion in terms of the 

interaction between the autocorrelation properties of the data and the structure of the 

models tested. 
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1. Introduction 

The source of most atmospheric rainwater is the sea, rain forming when large 

droplets eventually become heavy enough to fall to the ground. Rainfall over land 

eventually flows back to the sea, completing the cycle (Brutsaert, 2005). Water is vital to 

life also immensely destructive: understanding the movement of atmospheric water is 

critical. Forecasting rainfall is therefore important in many disciplines, for example 

economics and finance, hydrology, meteorology, ecology, agriculture and renewable 

energy. 

The UK climate is temperate and strongly influenced by the oceans, with cool 

summers and mild winters (Barry and Chorley, 2003). Rainfall forecasting has taken on 

new urgency in the UK due to recent flooding caused by extreme rainfall: evidence exists 

that such extremes may increase in frequency with global temperature increases 

(Easterling et al., 2000). The river Thames runs directly through London and several 

major midland and southern towns. Flooding on this river has significant costs to the UK 

economy, and insurance premiums have increased substantially due to these recent severe 

events. 

Rainfall forecasts can therefore help quantify the risk of floods and droughts with 

which to price products such as flood and crop insurance, weather derivatives and other 

commodities (Cao et al., 2004; Diebold et al., 1998; Taylor and Buizza, 2006). All 

forecasts have errors due to combined uncertainty in observational data and model 

structure. Comprehensive quantification of this forecast uncertainty is critical to risk 

assessment, motivating interest in density forecasting producing a distribution over all 
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possible future rainfall events, rather than a single point forecast misrepresenting these 

uncertainties. Density forecasts are particularly flexible, allowing the calculation of the 

probability of any event of interest, such as the probability of occurrence of rain or of 

extreme rainfall above any threshold. Complementing density forecast comparisons 

between models, we can also issue the density median as a point forecast. 

Numerical weather predictions (NWP) are highly complex, nonlinear systems 

producing a single or a set (ensemble) of point forecasts, allowing the anticipation of 

distinct meteorological events. Statistical time series models are mathematically simple, 

produce full density forecasts capturing statistical properties of the data. NWP now 

routinely outperforms purely statistical methods for medium-range (one day to one week 

ahead) operational forecasts, but for very short term (a few hours) and very long term 

(greater than 10 days ahead), statistical approaches remain competitive (Wilks, 2006). 

Density prediction for product pricing requires accurate forecasts at specific 

locations, for a wide range of forecast lead times, for which unified approaches to site-

specific density forecasts seamlessly covering short to long-range timescales are needed. 

For product pricing applications, medium-range global forecasts are currently more 

useful than short-range regional forecasts, because short-range forecasts do not have 

sufficiently long forecast horizons. 

Since the primary application is the precision quantification of the probability of 

rain, rather than the anticipation of particular meteorological events, dynamical and 

statistical forecasting, although fundamentally different in approach, can be combined to 
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produce accurate, site-specific density forecasts. Statistical post-processing (ensemble 

calibration) (Applequist et al., 2002; Wilks, 2006) is one such combination approach. 

Precipitation measurement is mostly by ground-based rain gauge measurement of 

total rainfall depth (Upton et al., 2005). Strong evidence exists that total rainfall amount 

distributions are discontinuous at zero depth (no rainfall) motivating separate modeling of 

occurrence (rain/no rain) and intensity (non-zero amount) (Cao et al., 2004; Grunwald 

and Jones, 2000; Wilks, 1998). These separate models are combined in a mixture density 

of daily rainfall totals. Similarly, rainfall is non-negative and non-Gaussian. A wide range 

of proposed statistical rainfall probability models could be used and it is instructive to test 

as many as possible. This includes powerful generalised linear models (GLMs) 

(Grunwald and Jones, 2000) which allow flexible, nonlinear, non-Gaussian regression, 

but any new method must demonstrate performance superiority over existing, simpler 

approaches before being considered successful. 

To build time series density forecast models, we explore spatio-temporal 

correlation and seasonality properties that could be captured and hence exploited. Here 

we analyse Thames Valley time series and construct Markov-chain GLMs incorporating 

information from neighbouring gauges and past time steps (Grunwald and Jones, 2000). 

We test these models against simple benchmarks, and ensemble NWP forecasts post-

processed with GLMs. 

Our main contribution here is to conduct direct tests of a range of methods 

proposed in the existing literature for producing site-specific, full density forecasts 

against novel GLM methods, and hence to suggest an improved NWP post-processing 
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method. Our investigations explain the performance of these different methods in terms 

of the autocorrelation properties of the data and the structure of each model, for full 

density and point forecasts. 

The paper is organised as follows. Section 2 reviews the current state of rainfall 

measurement, modeling and forecasting. Section 3 describes the data used and details the 

correlation structure analysis. Section 4 describes model construction and forecast 

performance comparison methods used in this study. Section 5 discusses the results of the 

forecast comparison, and finally Section 6 summarises the paper and concludes with the 

relevance of these results for future site-specific rainfall forecasting. 

2. Review of Rainfall Measurement and Forecasting 

Methods 

Ground-based rain gauges capture precipitation, recording the total amount as 

rainfall depth, usually in millimeters (Upton et al., 2005). The temporal measurement 

resolution can be high, but accuracy can be site-dependent and unreliable in extreme 

weather, and can include melted snow or hail in addition to rain. Radar measurements, by 

contrast, detect low-altitude atmospheric water content, have excellent spatio-temporal 

resolution, but current geographic coverage is restrictive, and the historical record short 

(Upton et al., 2005). 

Rainfall forecasting models depend on the application. Thunderstorms implicated 

in flash floods typically take place on scales of minutes to hours (Battan, 1984), requiring 

forecasts on the shortest timescales. Localised flooding often occurs when medium to 
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heavy rain falls in the same location over several days, inundating rivers and urban 

drains, requiring forecasts from hours to days. Predicting droughts requires forecasts on 

longer timescales of weeks to months. 

NWP solves equations of atmospheric dynamics and produces rainfall predictions. 

Calibrated against atmospheric measurements, they vary in spatial scale from synoptic 

(on the order of 1000 kilometres) to mesoscale (approximately 50 kilometres); current 

operational models have minimum resolutions of approximately 1.3km (limited-area 

mesoscale), forecasting days to a few weeks ahead (Buizza, 2003). Sophisticated NWP 

systems generate an ensemble of predictions by varying the model initial conditions 

and/or by varying physical parameterization schemes. The frequency distribution of the 

ensembles estimates the probability density (Buizza, 2003; Buizza et al., 1998; Molteni et 

al., 1996; Palmer et al., 1993). The high computational complexity of running many 

different parallel forecasts limits most operational NWP systems to single point forecasts 

or low spatial resolution ensembles, and important precipitation sources such as isolated 

thunderstorms and small-scale details are not well resolved. 

Classical statistical forecasting identifies relationships between past observations 

and their temporal successors, using observations at the current forecast origin as 

predictors for the future state of the atmosphere based solely on these relationships and 

no explicit meteorological information (Wilks, 2006). Methods include conditional 

climatology (issuing successors of past observational data closest to the current state as a 

forecast for the future state), and applications of more sophisticated multiple nonlinear 

regression such as neural networks (Moura and Hastenrath, 2004). Included in this 

category are statistical time series models that can forecast at the spatio-temporal 
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resolution of rainfall measurements, and are univariate or multivariate (comprising a 

vector of rainfall measurements from a number of sites simultaneously), producing 

density forecasts. They are either temporally unconditional or conditional on past time 

steps. 

Statistical post-processing methods such as the analog method or model output 

statistics (Applequist et al., 2002; John, 2003; Wilks, 2006) determine the statistical 

relationships between forecast NWP variables and actual observations, acting as post-

processors to improve NWP forecasts. 

Unconditional daily rainfall models are commonly split into occurrence and 

intensity (Cao et al., 2004; Grunwald and Jones, 2000; Wilks, 1998), occurrence often 

modeled as a Bernoulli random variable (Grunwald and Jones, 2000). Intensity models 

usually use exponential family distributions, e.g. gamma densities (Grunwald and Jones, 

2000; Hyndman and Grunwald, 2000), exponential mixtures (Cao et al., 2004; Wilks, 

1998) or truncated normals (Sanso and Guenni, 1999). In non-parametric methods, kernel 

density techniques can model intensity (Cao et al., 2004). 

For conditional occurrence models, first order Markov chains are common (Cao et 

al., 2004; Wilks, 1998). For conditional intensity, generalized linear and generalized 

additive Markov chain regression models (GLM/GAM) have been used (Grunwald and 

Jones, 2000; Hyndman and Grunwald, 2000). 
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3. Data 

The data is comprised of daily rainfall depth measurements from all 295 Met 

Office MIDAS WADRAIN rain gauges in the Thames Valley, UK, within the square grid 

latitude 51 to 52.5 degrees, longitude -2 to 0.5 degrees east, covering an area 

approximately 400km by 400km. Observations cover the time range of 2004 until late 

September 2007. Fig. 1 shows selected examples of the rainfall time series. 

Spatio-temporal correlation structure for all 295 gauges is tested. However, only a 

few of the sites have sufficiently complete record overlapping the available NWP 

ensemble forecasts, so that, in forecast comparisons, a much smaller subset (10 sites) of 

this data was selected. These sites are chosen as a compromise between minimizing the 

number of missing observations, economic relevance (Heathrow in London), and 

hydrological interest (Brize Norton received some of the highest rainfall totals during the 

recent flooding). Table 1 lists location and number of rainfall observations available for 

these selected sites; the inset in Fig. 5 shows their physical layout. All gauges have 

missing measurements and consistent procedures, described below for each forecast 

model, ensure fair comparisons. 

In this section we explore the spatio-temporal correlations in the data. We denote 

the total rainfall amount on day Nn K2,1=  for each site m = 1, 2 … M as m
nx , where N is 

the maximum length in days of the time series, and M = 10 is the number of selected sites 

for modeling. We denote occurrence with the indicator variable m
nq , which is zero for dry 

days and one for days where rainfall m
nx is nonzero. 
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We first calculate the autocorrelation function, and the standard Bartlett 95% 

confidence intervals. Although the autocorrelation function tests the dependence up to 

second-order statistical moments, such highly non-Gaussian rainfall data could have non-

zero higher order moments. A more general test of independence at different time lags is 

the time-delayed mutual information (TDMI) (Kantz and Schreiber, 2004; Little et al., 

2006): 
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Marginal densities ( ) ( )m
n

m
n xPxP τ+,  and joint densities ( )m

n
m
n xxP τ+,  are estimated 

using histograms of m
nx . We assume that m

nx  are weakly stationary stochastic processes; 

then only the relative time lag τ is important and we can assume that ( ) ( )m
n

m
n xPxP τ+,  are 

the same. The joint density is estimated using histograms formed by counting the number 

of times that m
nx  falls into the same histogram bin as m

nx τ+ . The integrals are 

approximated using summations. TDMI significance tests use the null hypothesis of no 

mutual information using bootstrap i.i.d. time series, generated by randomly permuting 

individual days’ measurements, destroying any original temporal ordering. The TDMI for 

each bootstrap is compared with that of the original series to try to reject the null 

hypothesis at each time lag. If, for a significance probability of α = 0.05, on generating 

2/α – 1 = 39 bootstraps, the TDMI at any time lag of the original data is either the 

smallest or the largest value amongst all the bootstraps, then we can reject the null 

hypothesis at that time lag. 
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Although using histograms to estimate densities is simplistic, we are only 

interested in the TDMI relative to the i.i.d. bootstraps, and, as such, these inaccuracies are 

relatively unimportant to the question of whether significant nonlinear/non-Gaussian 

temporal dependence exists in the time series. 

For spatial correlation analysis of total rainfall amount, the pairwise correlation 

coefficients for all 295 locations are plotted against physical distance between sites. The 

no correlation null hypothesis uses the standard asymptotic normal distribution of 

Fisher’s z-transformation of the correlation coefficient to estimate the p-value, tested at 

5% significance. Finally, for spatial correlations in occurrence, we calculate the pairwise 

conditional probability of non-occurrence of rain for all 295 locations. We take each pair 

of locations, calculate the conditional probability of non-occurrence at one location, 

given that rainfall did/did not occur at the other, and plot these probabilities against 

physical distance between locations. We can then see the contribution of occurrence of 

rainfall to the spatial correlation of the total amount. 

Turning to the results of this correlation analysis, Table 1 shows that, on any one 

day taken at random, it is as likely to be dry as wet. This is to be expected for this 

generally temperate climate, and the average rainfall intensity is small. Regarding spatial 

correlation, from Fig. 3, all locations show similar rainfall patterns, and the maximum 

correlation falls slowly with increasing distance. At any given distance, there is an 

apparent maximum and minimum correlation between gauges. Fig. 4 shows that this 

effect is even stronger for the non-occurrence. This is confirmation that most rainfall 

events are on the meso-alpha scale: resulting from widespread cloud cover due to warm 

fronts or convective complexes spread over hundreds of square kilometres. Similarly, if 
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dry at one location, then it is highly likely to be dry at all the other locations in the 

catchment. This physical effect provides some justification for modelling techniques that 

try to capture catchment-wide spatial cross-correlations. 

Regarding temporal correlation, Fig. 6 shows autocorrelation decaying extremely 

rapidly, and although significant up to four days ahead, the TDMI in Fig. 7 shows a 

slightly different story with significant mutual information to only three days. Similar 

results were obtained for the other selected gauges. The results show that the rapid decay 

of autocorrelation or TDMI is not just due to linearity limitations of the autocorrelation 

function; weather systems move rapidly across the UK and normally dissipate within a 

few hours. However, the lack of obvious annual periodicity is in need of explanation. Due 

to lowering temperatures, all other things being equal, lower saturation vapour causes 

higher average and maximum UK rainfall totals during winter (Brutsaert, 2005), and 

increasing frequency of extremes in early autumn. Fig. 2 shows some seasonal variation 

in the rainfall intensity for each month; but this variation is very slight. This slight 

seasonality is not the strict repetitiveness detectable by autocorrelation and TDMI – exact 

annual pattern start/end days are ill-defined, varying from year to year. For statistical 

modelling, rapid exponential decay of mutual information justifies models with very 

short memory, and regressing on past rainfall at annual time lags is unlikely to provide 

significant model improvements, particularly for the short lead times tested here. Instead, 

regressing on a seasonal variable should allow exploitation of these slight seasonal 

variations. 

Taking these cross-correlation and temporal correlation results together, there 

may be some time-delayed cross-correlation that could be captured by multisite models 
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(that use past information from many nearby or distant sites). Nonetheless spatial 

correlation at time lag zero dominates over temporal correlation at any time lag. 

4. Methods 

This section details spatio-temporal statistical models of rainfall totals at the 10 

selected Thames Valley locations, and the forecast performance comparisons of these 

models against unsophisticated benchmarks, and post-processed ensemble NWP. 

a. Forecasting Models 

The time series models for daily rainfall compared in this paper can be grouped 

into simple non-parametric benchmarks and sophisticated parametric/numerical methods. 

For all the models, any missing rainfall observations for each site are ignored in the 

model parameter estimation and forecast comparisons, such that comparisons are only 

made on days for which forecasts from all models are available. Parameters are estimated 

using observations in the years 2004 and 2005. Model performance is tested on a hold-out 

sample of the years 2006 and 2007. There are two simple benchmarks used in this study: 

(1) Persistence forecast. This is just the rainfall total of the day prior to the 

forecast origin. The persistence is not a density forecast, only a point forecast. This 

forecast is a baseline to assess the point forecast performance of the more sophisticated 

models. 

(2) Climatology forecast. This is the unconditional empirical density of rainfall 

amount on each day. Any missing observations in the estimation period are excluded 
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from the empirical cumulative density (which is used to calculate the z-series probability 

integral transform (PIT) histogram, see below). 

In addition, there are seven models of increasing sophistication used: 

(1) Unconditional gamma/Bernoulli density. The shape and scale parameters for 

the gamma intensity model were estimated using the maximum likelihood method, with a 

single parameter Bernoulli model for occurrence. Any missing observations in the 

estimation samples are excluded from the gamma and Bernoulli parameter estimation. 

The combined intensity and occurrence model (a Bernoulli-gamma mixture density) is 

constructed and used to make forecasts. 

(2) Cao-Li-Wei model, following (Cao et al., 2004). An unconditional mixture of 

two exponential densities was fitted to the intensity of the estimation samples: 
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The parameters 21,, ggd  were found using an iterative maximum likelihood 

method (Agha and Ibrahim, 1984). For occurrence, this model fits a first-order Markov 

chain to the occurrence in the estimation samples by estimating the transition density 

matrix from counts (Cao et al., 2004). Missing observations are handled as per the above 

gamma model. The combined intensity and occurrence mixture model is constructed and 

used to make forecasts. 

(3) Generalized Linear Markov model (Markov-GLM). This model is described in 

(Grunwald and Jones, 2000). The Markov transition density has the following form: 
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where 0δ  is the Dirac delta function. The transition density for the intensity of the 

estimation samples is a conditional gamma generalized linear model with log link 

function, with conditional meanμ : 

   ( )( ) ( )cxbbx m
n

m
n ++= loglog 10μ .   (4) 

The constant shape parameter for this gamma density is estimated using the 

maximum likelihood method (Venables et al., 2002). In order to improve the model fit, 

the logarithm of the past rainfall amount with a small, additive constant c is used instead 

of the actual rainfall depth. Similarly, the conditional Bernoulli density for the occurrence 

( )m
nxp  is the following generalized linear model using the inverse logit link function l: 
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(4) Joint Generalized Linear Markov model (Markov-JGLM). This model has 

similar structure to the model above, except that the joint distribution of each site is 

captured by sequentially conditioning on adjacent gauges. This exploits the chain rule for 

probabilities that relates the joint probability of all gauges to the conditional probabilities: 

( ) ( ) ( ) ( ) ( )12112312121 ,,, xxxxPxxxPxxPxPxxxP MMMM KLK −−= . (6) 

Thus it is possible to reproduce the entire joint density by sequentially modeling 

the conditionals, i.e. first modeling the marginal density of the first time series, followed 
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by the second conditional on the first, followed by the third conditional on the second and 

first and so on. The Markov transition density of this model is: 
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and so on. Thus, only historical information is used to produce forecasts for each time 

series. Similar to the above, the intensity transition density is: 
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The constant gamma shape parameter is estimated using the maximum likelihood 

method as above. Similarly, the conditional Bernoulli density for the occurrence ( )m
np x  

is: 

( ) ( ) ( ) .ˆloglog
1

1
1110 ⎟

⎠

⎞
⎜
⎝

⎛
++++= ∑

−

=

−
++

m

i

im
ni

m
n

m
n cxacxaalp x   (9) 

(5) Generalized Linear Markov Multisite (Markov-MGLM) model. This model is 

similar to model (3) as it uses the same distribution, but for each site, the regressors are 

the past rainfall value from all sites, rather than just that particular site. Thus, if there is 
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any time-delayed cross-correlation, as we might expect for catchment-wide events that 

last for more than one day, this model should be able to capture them. This forms an 

alternative approach to model (4) which regresses on the predicted rainfall for the other 

sites, and models (non-time-delayed) cross-correlations. The Markov transition density is: 
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where the vector ( )TM
nnnn xxx ,, 21 K=x contains the past rainfall amount of all the sites. As 

above, the intensity transition density is: 
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Again, the constant gamma shape parameter is estimated using the maximum 

likelihood method. The conditional Bernoulli density for the occurrence ( )np x  is: 

( ) ( ) .log
1

0 ⎟
⎠

⎞
⎜
⎝

⎛
++= ∑

=

M

i

m
nin cxaalp x     (12) 

Note that this model differs from model (4) in that it uses information from all 

sites on the previous day to make a forecast at each individual site, whereas model (4) 

uses past information from only the first site to make a forecast for that site, whereupon 

this forecast is used to make the forecast for the next site, and so on. Therefore, we expect 

this model to reproduce spatial cross-correlations where the time series have been shifted 

by one day relative to each other, whereas the model (4) will reproduce spatial cross-

correlations where there is no time shift between sites. 
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(6) Generalized Linear Markov Seasonal Multisite (Markov-SMGLM) model. This 

model is similar to model (5), except that it also regresses on seasonal variables, to 

attempt to exploit any slight seasonal variations. These variables have the form 

( )3652cos n
w
n wds π=  where nd is the day number in the year, running from 0 to 364, 

and w = 1, 2, 3 … is the harmonic number. We use three harmonics, as more did not lead 

to any significant improvements. These variables are appended to the end of the vector 

nx  in Eqs. (10), (11) and (12), but without a logarithmic transformation. Note that this 

model ceases to be strictly Markovian, as the transition function depends on the day in 

the year. The transition density has the same form as for model (5). 

(For notational brevity, we are using the same functions f, p and μ to represent the 

unconditional or conditional model density, Bernoulli probability and gamma means 

functions, and the parameters a, b, c for all the models. In practice they are different 

functions and parameters, but they serve analogous roles in each model.) 

To clarify further the GLMs above, the transition density in Eq. (3) and 

conditional means specified in Eqns. (4) and (5), can be explained by considering the 

analogous situation for linear Gaussian AR models. Informally, the transition density in 

Eq. (3) describes how the probability of any given forecast rainfall depth m
nx 1+  depends on 

the rainfall depths m
nx . In the perhaps more familiar context of the linear AR model, the 

transition density is a conditional Gaussian with mean that is a linear combination of past 

observations. The GLM framework extends this idea in two ways: firstly by generalizing 

the Gaussian density to the more general exponential family (of which the Gaussian, 

gamma and Bernoulli densities are special cases), and secondly by allowing a nonlinear 
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transformation of the density mean, this transformation being called the link function. In 

the current GLM, the transition density in Eq. (3) is a mixture of two densities: the 

Bernoulli occurrence density with conditional mean ( )m
nxp , and the gamma intensity 

model. The Dirac delta function encodes the fact that, with probability ( )m
nxp−1 , zero 

rainfall depths will be forecast by the model, and alternately, with probability ( )m
nxp , 

non-zero rainfall depths will be produced. In this linear mixture combination, the 

transition density is appropriately normalized. 

(7) Post-Processed NCEP Ensembles. Finally, we use post-processed, NCEP 

Global ENSemble (GENS) ensemble NWP model outputs. This uses supercomputing 

resources producing 10 different forecasts of the rainfall amounts, each forecast 

generated by a different perturbation of the initial atmospheric state assimilated from 

observations (Buizza et al., 2005). An additional unperturbed control forecast makes a 

total of 11 forecasts. The spatial resolution is one degree longitude/latitude, 

corresponding to approximately 110km. Forecasts are available at six hourly intervals out 

to 16 days’ forecast horizon. Here, due to data size constraints, we have been able to 

access forecasts up to eight days ahead. 

The ensembles are first downscaled to the location of each site, using bilinear 

interpolation (linear in both North-South and East-West directions). After interpolation, 

the forecasts are calibrated using a mixture of generalized linear models (Sloughter et al., 

2007): 
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where m
tkny ,,  is the interpolated ensemble member k = 1, 2 … 11, for site m on day n, for 

forecast horizons t = 1, 2 … 8, forming the density forecast for the rainfall sample m
tnx + . 

The density for the intensity of rain is a conditional gamma generalized linear model with 

log link function, with conditional meanμ , such that ( )( ) m
tnktktk

m
tnk ybby ,,,,1,,0,,log +=μ . 

Also, the probability of occurrence of rain is given by ( ) ( )3
,,,,1,,0,,

m
tkntktk

m
tkn yaalyp += . 

Thus, any miscalibration due to bias in any ensemble member at any forecast horizon is 

removed by regression with the ensembles as predictors, and rainfall intensity and 

occurrence as predictands, using the same GLM parameter estimation as described for the 

Markov models above. The cube root of rainfall amount in the probability of occurrence 

was found to improve the model fit (Sloughter et al., 2007). 

b. Comparing Daily Rainfall Point Forecasts 

Here we compare the ability of the models to produce point forecasts of daily total 

rainfall amount, which for the appropriate models is the combined model of 

occurrence/intensity. The point forecast from each model is the median of the model’s 

forecast density. The Mean Absolute Error (MAE) score is used: 
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where m
nx̂ is a forecast of total rainfall amount and L is the test data length. This score is 

proper (Gneiting and Raftery, 2007) meaning that lower MAE scores imply more 

accurate forecasts, and the score is minimized by the perfect forecast. 
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c. Comparing Daily Rainfall Density Forecasts 

The assessment of density forecasts is somewhat more complex than point 

forecasts. Specifically, it is important that the forecast produces the correct density of the 

observations: it must be well calibrated, and at the same time maximise sharpness: each 

forecast density must have a high probability around the actual observations (Diebold et 

al., 1998; Gneiting et al., 2007). Here we use the continuous ranked probability score 

(CRPS) (Gneiting and Raftery, 2007) which is also proper, and it can be shown 

decomposable into separate components of both calibration and sharpness. Thus, small 

values indicate forecasts that are both well calibrated and sharp. We use the empirical 

form (Gneiting and Raftery, 2007): 
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where X and X’ are independent random variables drawn from model’s forecast density 

function p, and E denotes expectation. 

We also perform diagnostic checks of the forecast calibration using the 

probability integral transform (Diebold et al., 1998; Gneiting et al., 2007): 

    ( )∫=
x

n uupz
0

d      (18) 

(for notational clarity we have nxx = ). Here the function p is the (unconditional or 

conditional) forecast density function (or transition function) of each of the models, at 

forecast lead time of one day. For the perfectly calibrated model, nz  will be i.i.d. with 

uniform density in the interval between 0 and 1. Therefore, measuring calibration 
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requires assessing the extent of deviation from uniformity of this time series. Typically, if 

the histogram is ‘U-shaped’ it will be because the spread of the forecasts is too narrow. 

Conversely, a humped-shaped histogram will indicate overdispersed forecasts (i.e. their 

range is too large) (Gneiting et al., 2007). 

Similarly, if the model captures the serial dependence in the time series, then nz  

will be serially independent. Tests for serial independence using the autocorrelation are 

most often applied in this context, and we follow this practice here (Gneiting et al., 2007), 

displaying the standard Bartlett 95% autocorrelation confidence intervals. We employ the 

stochastic interpolation method to calculate the PIT, by drawing 1000 samples from each 

predicted density and constructing the empirical cumulative density function. This 

defines a discrete distribution that approximates the underlying mixed discrete-

continuous density function, see (Smith, 1985) for further details. 

d. Comparing Daily Rainfall Occurrence Probability Forecasts 

We compare probability forecasts of occurrence using the Brier score, which is 

also a proper score (Brier and Allen, 1951): 
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where m
nq̂ is the forecast probability of occurrence, and L is the test data length. 
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5. Results 

For point forecasting performance MAE of rainfall totals, Fig. 8 shows that at lead 

times of one to eight days ahead, the multisite non-seasonal/seasonal Markov-SMGLM 

rank slightly better than the processed ensembles. At lead times of between nine and 25 

days ahead, the Markov-MGLM is best. The post-processed ensembles have skill over 

climatology at the available lead times. The i.i.d. gamma/Bernoulli model does not have 

skill at any forecast horizon. The Markov-GLM is an improvement over the climatology 

for the first day, but after, ceases to have skill. The exponential mixture model only has 

skill on the first day, and thereafter loses skill. The persistence forecast is consistently the 

worst forecast over all horizons. 

Turning to the density forecasts, the diagnostic checks in Fig. 9 show that all of 

the models are reasonably well-calibrated, although there is some residual over- and 

under-dispersion in most models. From the autocorrelation functions of the z-series, as 

expected the unconditional climatology and i.i.d. Gamma/Bernoulli models fail to capture 

the small amount of serial correlation in the data for the first four or five days time lag. 

The conditional models naturally fare better in this regard, and the post-processed 

ensembles perform best. The results are consistent with these findings for the other 

gauges, with some negligible differences. The diagnostic check of Fig. 5 shows that the 

Markov-JGLM is capable of reproducing the spatial correlations to a reasonable extent, 

although the correlations are smaller than those in the original time series because the 

mixed GLM density model of the actual probability densities of rainfall at each site is not 

perfect. 
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Regarding combined calibration and sharpness of the density forecasts, Fig. 10 

shows that the non-seasonal/seasonal multisite Markov GLMs are the best performer on 

the first day. The joint-site GLM has some skill at one day ahead, but thereafter lacks 

appreciative skill. At two to eight days ahead, the post-processed ensembles rank first, 

just ahead of the Markov-MGLM/SMGLMs, which have some skill for some forecast 

horizons between nine and 25 days ahead. 

The i.i.d. gamma/Bernoulli model does not have skill over climatology at any 

horizon. The rest of the conditional models show slight improvements at one day ahead, 

but then show similar performance to the unconditional models. 

For the occurrence Brier score, the post-processed ensembles have the best score 

for forecast horizons of two to eight days, outperforming all other models. However, the 

conditional models, in particular the Markov-MGLM/SMGLMs all show skill relative to 

climatology for the first day, thereafter they lose skill. The i.i.d. gamma/Bernoulli model 

does not have skill at any forecast horizon, and the persistence forecast is the worst at 

every horizon. 

It is worth noting that Markov GLMs involve highly nonlinear feedback 

mechanisms, particularly noticeable when propagating information from many 

neighbouring sites. Although often drifting to zero, unlike the simple, unconditionally 

stable Markov chains such as the Cao-Li-Wei model, it is possible for Markov GLMs to 

produce growing responses as well. This is noticeable in the MAE, CRPS and Brier 

scores, where the performance of some of the more complex Markov models varies 

somewhat with forecast horizon. The other, simpler models produce smoother results. 
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Another note is that experiments with shuffling the order of sites used in the Markov-

JGLM method did not lead to substantial differences in performance, either in MAE, 

CRPS or Brier score. 

These forecasting results raise the question of why some of the statistical methods 

have comparable or better performance than the post-processed ensembles, in some 

aspects as described above. Turning first to point forecast performance, temporal 

correlations in the data beyond one day ahead are very small. Nonetheless, the Markov 

GLMs are well-equipped to exploit this small, one-day ahead autocorrelation. 

Secondly, with regard to density forecasts, the CRPS results show that 

incorporating all the information from every site on the previous day when forecasting 

each site individually, improves the calibration of the Markov multisite models relative to 

all the other models (including the Markov-JGLM joint site method). Therefore, 

neighbouring sites do contain useful information that can be exploited to improve 

forecasts at short lead times. 

Regarding the occurrence forecast performance, the ensemble calibration 

regression method is successfully able to remove bias in the interpolated ensembles to 

produce the best forecasts. However, the training data is very similar to the test data, both 

having long, consecutive runs of dry days, followed by shorter, consecutive runs of wet 

days. Thus the occurrence time series is highly autocorrelated one day ahead, diminishing 

rapidly with increasing forecast horizon. The conditional Markov-MGLM and Markov-

SMGLMs use the most information from the past in order to produce forecasts. As can be 
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seen in Fig. 11, these conditional models, which are designed to capture temporal 

autocorrelation, do very well in exploiting this one-day ahead autocorrelation. 

6. Conclusions 

In this paper, we investigated the autocorrelation and cross-correlation structure of 

a large number of rain gauges in the Thames Valley, UK, and demonstrated that while 

autocorrelation in the rainfall depth amount is of minor importance, spatial cross-

correlation is highly dominant. We also showed some slight seasonal variations in the 

mean intensity of rainfall on wet days. We used this information to produce a set of new, 

site-specific statistical density forecast models in this spatial area, based on variations of 

a Markov GLM, non-Gaussian regression method in a couple of different configurations. 

We tested these models against a set of simple benchmarks and some more sophisticated 

models proposed in the literature, and against ensemble NWP forecasts combined with 

GLM regression in a post-processing approach. The tests involved the comparison of 

rainfall forecast performance of all the models for each rain gauge, up to 45 days ahead. 

The tests demonstrated that Markov GLMs can be configured to produce good one-day 

ahead forecasts, and reasonably skilful short-term forecasts up to a couple of weeks 

ahead. They also show that combining GLM regression with ensembles can effectively 

calibrate the ensembles to produce skilful density forecasts up to a week ahead. The 

results do not support the use of any of the other proposed models. 

In terms of overall density forecasting, all the models were well calibrated, but in 

summary, the GLMs, either alone or in combination with ensembles, performed best 

when both calibration and sharpness were considered simultaneously. In terms of ability 
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to forecast occurrence of rain, except at lead times of one day, no models were capable of 

bettering the post-processed ensembles. We also demonstrated the superior ability of the 

post-processed ensembles to reproduce the (small) serial correlation in the rainfall data. 

A similar study (Taylor and Buizza, 2004) compared temperature forecasts from 

simple autoregressive time series models, post-processed ECMWF ensemble mean, and a 

high resolution point NWP; it was found that the ensemble mean was the best under the 

MAE at up to 10 days ahead. Similarly (Campbell and Diebold, 2005) found that point 

forecasts from time series models could not outperform NWP forecasts. Our findings 

disagree as we have found it possible to produce time-series point forecasts slightly better 

than calibrated NWP forecasts up to eight days ahead. We believe this is because 

precipitation is notoriously difficult to predict, particularly at local sites, and time series 

models exploiting correlations can contribute to making useful forecasts. 

The results lead us to suggest ways in which ensemble forecasts might best be 

calibrated for full density forecast applications. Contrary to other reports (Cao et al., 

2004; Robertson et al., 2004), we believe this study can act as a caution against the use of 

simple unconditional density models and the more elaborate two-state Markov chains 

combined with exponential mixtures for this purpose. In particular, we believe our results 

suggest that Markov GLMs could be effective new techniques in this regard, which 

concurs with other studies (Sloughter et al., 2007). 
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List of Figures 

Fig. 1: Three selected rainfall time series from the Thames Valley catchment. Vertical 

axis is rainfall depth in millimeters, horizontal is the number of days since 1st January, 

2004. 

Fig. 2: Monthly average rainfall depth on rainy days, for the 10 gauges selected for the 

modeling part of the study (see Table 1). The horizontal axis is month; the vertical axis is 

average rainfall depth. 

Fig. 3: Pairwise correlation coefficients and (inset) position of all 295 gauging stations in 

the Thames Valley. For inset, horizontal axis is horizontal location in kilometres east of 

Greenwich, and vertical axis is vertical location in kilometres north of the equator. 

Fig. 4: Variation of conditional probability of non-occurrence of rainfall against pairwise 

distance between all locations, given non-occurrence/occurrence at the other location. 

The black dots show probability of non-occurrence of rainfall at a location, given that 

rainfall did not occur at the other location. Grey dots show probability of non-occurrence 

of rainfall at a location, given that rainfall did occur at the other location. Horizontal axis 

is distance between locations in kilometers, vertical axis is conditional probability. 

Fig. 5: Pairwise correlation coefficient of selected gauges used in the modeling, against 

distance. Also shown are the simulated Markov-JGLM rainfall correlation coefficients for 

the same gauges. Inset: position of modeled gauges (refer to Table 1 for the gauge 

numbering), horizontal axis is horizontal location in kilometres east of Greenwich, and 

vertical axis is vertical location in kilometres north of the equator. 
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Fig. 6: Autocorrelation function for the Brize Norton gauge, from τ = 1 to τ = 400 day’s 

time lag. The dotted lines are the 95% Bartlett confidence intervals; the blue line is the 

autocorrelation coefficient. Inset: short range zoom for τ = 1 up to τ = 20 day’s time lag. 

Fig. 7: Time delayed mutual information for the Brize Norton gauge, from τ = 1 to τ = 

400 day’s time lag. The dotted lines are the maximum and minimum mutual information 

over all the bootstraps and over all time lags; the blue line is the mutual information for 

the original time series. Inset: short range zoom for τ = 1 up to τ = 20 day’s time lag. 

Fig. 8: Forecast Mean Absolute Error (MAE) for all models, out to a forecast horizon of 

45 days, averaged over the 10 gauges selected for modelling. The horizontal axes are 

forecast horizon in days, and the vertical axes are MAE. The dashed line on each plot is 

the climatological forecast MAE for comparison. 

Fig. 9: Probability Integral Transform z-series for the Brize Norton gauge, for the one day 

ahead forecast horizon. The first column and third columns are the estimated distribution 

of the z-series; the second and fourth columns are the autocorrelation function for z, 

associated with the bar plot on the left. The dotted horizontal lines are the estimated 95% 

confidence intervals, the bars are the estimated distributions, and the black lines are the 

autocorrelation at time lag τ. 

Fig. 10: Continuous Ranked Probability Score (CRPS) results over all density forecast 

models, averaged over all 10 gauges selected for the modeling part of the study. The 

horizontal axes are forecast horizon in days, and the vertical axes are CRPS. The dashed 

line on each plot is the climatology CRPS for comparison. 
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Fig. 11: Brier score of forecast of the probability of occurrence of rainfall, results 

averaged over all 10 gauges selected for the modeling part of the study. The horizontal 

axes are forecast horizon in days, and the vertical axes Brier score. The dashed line is the 

climatology Brier score for comparison. 
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Table 1: Selected Thames Valley catchment rain gauge stations used in the modeling part 
of the study. 
Rain 

gauge 

number 

Rain gauge 

station name 

Latitude 

(fractional 

degrees) 

Longitude 

(fractional 

degrees 

East) 

Height 

above 

sea level 

(m) 

Available 

observations 

in days 

(missing) 

Percentage 

dry days 

(%) 

Average 

rainfall 

depth on 

rainy days 

(mm) 

1 BRIZE 

NORTON 

51.76 -1.58 81 1168 (293) 48.9 4.1 

2 HEATHROW 51.48 -0.45 25 791 (670) 51.7 3.1 

3 ABINGDON S 

WKS NO 2 

51.65 -1.29 50 1280 (181) 50.4 3.4 

4 BOSCOMBE 

DOWN 

51.16 -1.75 126 1222 (239) 47.9 3.9 

5 DARNICLE 

HILL P STA 

51.73 -0.10 73 1186 (275) 46.5 3.2 

6 ROYSTON 

AINTREE 

ROAD 

52.05 -0.01 78 1309 (152) 46.2 3.1 

7 ABINGTON 

PIGOTTS 

HALL 

52.08 -0.10 30 1309 (152) 50.0 3.2 

8 ICKLETON 

GRANGE 

52.06 0.13 76 1309 (152) 48.2 3.0 

9 ARKESDEN 51.98 0.15 114 1309 (152) 50.0 3.7 

10 OAKINGTON 

NO 2 

52.26 0.07 12 1309 (152) 56.5 3.8 
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Fig. 1: Three selected rainfall time series from the Thames Valley catchment. Vertical 
axis is rainfall depth in millimeters, horizontal is the number of days since 1st January, 
2004. 



 - 36 - 

J F M A M J J A S O N D
0

5

BRIZE NORTON

D
ep

th
 (m

m
)

J F M A M J J A S O N D
0

5

HEATHROW

D
ep

th
 (m

m
)

J F M A M J J A S O N D
0

5

ABINGDON S WKS NO 2
D

ep
th

 (m
m

)

J F M A M J J A S O N D
0

5

BOSCOMBE DOWN

D
ep

th
 (m

m
)

J F M A M J J A S O N D
0

5

DARNICLE HILL P STA

D
ep

th
 (m

m
)

J F M A M J J A S O N D
0

5

ROYSTON, AINTREE ROAD

D
ep

th
 (m

m
)

J F M A M J J A S O N D
0

5

ABINGTON PIGOTTS HALL

D
ep

th
 (m

m
)

J F M A M J J A S O N D
0

5

ICKLETON GRANGE

D
ep

th
 (m

m
)

J F M A M J J A S O N D
0

5

ARKESDEN

D
ep

th
 (m

m
)

J F M A M J J A S O N D
0

5

OAKINGTON NO 2

D
ep

th
 (m

m
)

 

Fig. 2: Monthly average rainfall depth on rainy days, for the 10 gauges selected for the 
modeling part of the study (see Table 1). The horizontal axis is month; the vertical axis is 
average rainfall depth.
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Fig. 3: Pairwise correlation coefficients and (inset) position of all 295 gauging stations in 
the Thames Valley. For inset, horizontal axis is horizontal location in kilometres east of 
Greenwich, and vertical axis is vertical location in kilometres north of the equator. 
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Fig. 4: Variation of conditional probability of non-occurrence of rainfall against pairwise 
distance between all locations, given non-occurrence/occurrence at the other location. 
The black dots show probability of non-occurrence of rainfall at a location, given that 
rainfall did not occur at the other location. Grey dots show probability of non-occurrence 
of rainfall at a location, given that rainfall did occur at the other location. Horizontal axis 
is distance between locations in kilometers, vertical axis is conditional probability. 
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Fig. 5: Pairwise correlation coefficient of selected gauges used in the modeling, against 
distance. Also shown are the simulated Markov-JGLM rainfall correlation coefficients for 
the same gauges. Inset: position of modeled gauges (refer to Table 1 for the gauge 
numbering), horizontal axis is horizontal location in kilometres east of Greenwich, and 
vertical axis is vertical location in kilometres north of the equator. 



 - 40 - 

50 100 150 200 250 300 350 400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BRIZE NORTON

Time delay τ (days)

A
ut

oc
or

re
la

tio
n 
ρ(
τ)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time delay τ (days)
A

ut
oc

or
re

la
tio

n 
ρ(
τ)

 
Fig. 6: Autocorrelation function for the Brize Norton gauge, from τ = 1 to τ = 400 day’s 
time lag. The dotted lines are the 95% Bartlett confidence intervals; the blue line is the 
autocorrelation coefficient. Inset: short range zoom for τ = 1 up to τ = 20 day’s time lag. 
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Fig. 7: Time delayed mutual information for the Brize Norton gauge, from τ = 1 to τ = 
400 day’s time lag. The dotted lines are the maximum and minimum mutual information 
over all the bootstraps and over all time lags; the blue line is the mutual information for 
the original time series. Inset: short range zoom for τ = 1 up to τ = 20 day’s time lag. 
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Fig. 8: Forecast Mean Absolute Error (MAE) for all models, out to a forecast horizon of 
45 days, averaged over the 10 gauges selected for modelling. The horizontal axes are 
forecast horizon in days, and the vertical axes are MAE. The dashed line on each plot is 
the climatological forecast MAE for comparison. 
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Fig. 9: Probability Integral Transform z-series for the Brize Norton gauge, for the one day 
ahead forecast horizon. The first column and third columns are the estimated distribution 
of the z-series; the second and fourth columns are the autocorrelation function for z, 
associated with the bar plot on the left. The dotted horizontal lines are the estimated 95% 
confidence intervals, the bars are the estimated distributions, and the black lines are the 
autocorrelation at time lag τ. 
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Fig. 10: Continuous Ranked Probability Score (CRPS) results over all density forecast 
models, averaged over all 10 gauges selected for the modeling part of the study. The 
horizontal axes are forecast horizon in days, and the vertical axes are CRPS. The dashed 
line on each plot is the climatology CRPS for comparison. 
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Fig. 11: Brier score of forecast of the probability of occurrence of rainfall, results 
averaged over all 10 gauges selected for the modeling part of the study. The horizontal 
axes are forecast horizon in days, and the vertical axes Brier score. The dashed line is the 
climatology Brier score for comparison. 
 
 


