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Using Combined Forecasts with Changing Weights for Electricity Demand Profiling 

Abstract 

Day-ahead half-hourly demand forecasts are required for scheduling and for calculating 

the daily electricity pool price. One approach predicts turning points on the demand curve and 

then produces half-hourly forecasts by a heuristic procedure, called profiling, which is based on 

a past demand curve. This paper investigates possible profiling improvements. Using a cubic 

smoothing spline in the heuristic leads to a slight improvement. Often, several past curves could 

reasonably be used in the profiling method. Consequently, there are often several demand curve 

forecasts available. Switching and smooth transition forecast combination models are 

considered. These models enable the combining weights to vary across the 48 half-hours which 

is appealing as different forecasts may be more suitable for different periods. Several criteria 

are used to control the changing weights, including weather, and the methodology is extended 

to the case of more than two forecasts. Empirical analysis gives encouraging results. 
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Introduction 

The role of electricity demand forecasting has developed with the changing structure of 

the electricity supply industry in England and Wales. The forecasts of the National Grid 

Company (NGC), which is responsible for the transmission of electricity, have always been a 

crucial input to operational planning where the generation output is scheduled to meet customer 

demand.1 However, since the re-structuring of the industry in 1990, and the introduction of the 

daily electricity ‘power pool’, demand forecasts have also been used to set the price of 

electricity in the pool. The subsequent economic importance of the day-ahead forecasts has led 

to interest in NGC’s demand predictions, from the industry regulator, generators and suppliers, 

who now view the predictions as a major influence on the business dynamics of the industry. 2,3 

With the anticipated new structure of the industry, accurate short-term demand forecasting will 

also be required by utilities who will need to predict their customers’ demand, and by those 

wishing to trade electricity on financial markets. 

This paper considers the approach currently used by NGC to produce day-ahead 

forecasts. At 10:30am each day, forecasts must be produced for the total electricity demand for 

England and Wales at half-hourly intervals throughout the 24 hours of the next day. The 

approach taken is to first forecast the demand at the curve’s 10 or 11 turning points, which are 

known as cardinal points. The half-hourly forecasts are then obtained by a procedure known as 

profiling which involves fitting a curve to the cardinal points. Baker4 describes how this 

procedure evolved from the days when computing power limited cost optimisation to particular 

critical periods of the day, the cardinal points. As computer storage and processing capabilities 

developed, the approach was augmented with curve fitting to provide load predictions at 

periods between the cardinal points. The current approach to profiling fits a demand profile 

from a previous day, which is subjectively selected based on weather and calendar date 

considerations. There is a tendency for smaller errors to occur at the cardinal points than 
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between them. Hence, there is strong motivation to try to improve the profiling procedure. This 

is the aim of this study. 

The use of a two-stage procedure which relies heavily on the heuristic approach of 

profiling may seem unappealing. However, there is no consensus as to the best approach to 

short-term electricity demand forecasting. Bunn5 reviews a wide variety of methods and the 

recent competition organised by the Puget Power Company in Seattle witnessed a range of 

different approaches including: time-varying splines6, artificial neural networks7, multiple 

regression models8, judgemental forecasts produced by Puget Power’s own personnel, and Box-

Jenkins transfer function intervention-noise models. NGC’s cardinal point forecasts are 

produced by separate regression models which are functions of seasonal and weather 

variables.4,9 This is similar to the approach of the overall winners of the Seattle competition, 

Ramanathan et al.8, who produced hourly forecasts by using separate models for each hour of 

the day. 

It has been suggested that the profiling methodology should allow more than one past 

curve to be used in profiling for the 48 half-hours of the next day. In view of this, there may be 

value in implementing a switching or combining mechanism within the profiling methodology. 

Ramanathan et al.8 suggest the use of switching procedures as an extension of their demand 

forecasting approach. Switching models and the related theme of smooth transition combining 

models are investigated by Deutsch et al.10 in the context of economic data. This paper adapts 

and develops the use of these models for load profiling. The next section describes the profiling 

procedure that is currently used. It is then shown how slight improvements can be achieved 

through the use of cubic splines. The two sections that follow consider switching and traditional 

combining models. The next four sections introduce smooth transition combining models which 

use the shape of the base curve and weather data to set the weights on different forecasts. 

Improvement in ex ante forecast accuracy is evaluated for the new models and, in the final 

section, a summary and concluding comments are provided. 
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The Profiling Heuristic 

The current approach used by NGC for profiling proceeds by selecting a past demand 

curve which is likely to be similar to the demand profile for the next day. The success of the 

profiling procedure depends heavily on the choice of this base curve. Two common choices are 

the demand curve from the same weekday one year previously and one week previously, 

provided weather conditions are predicted to be similar. The base curve is fitted by first 

calculating the ratio of forecast to base curve demand for each cardinal point. These are termed 

the scaling ratios. In addition to the turning points, the first and last half-hours of the day and 

several strategically positioned points are also chosen as cardinal points. Scaling ratios for the 

half-hours between two cardinal points are then calculated by linear interpolation of the scaling 

ratios at the two points. Demand forecasts are then calculated from the product of the base 

curve’s demand and the scaling ratio for each half-hour. The procedure is slightly complicated by 

the fact that it is common for a forecast curve to result that has cardinal points at different half-

hours to the base curve. This would tend to lead to poor forecasts, and so when this occurs, the 

profiling procedure is repeated a sufficient number of times, with the most recent forecast curve 

as base curve, until the cardinal points occur at identical periods on the new base and forecast 

curves. Typically two or three profiling repetitions are required. Locating the cardinal points is 

thus rather ad hoc and is one of the least appealing aspects of the heuristic. 

Evaluating half-hourly forecasts for a four week period, 19 May to 15 June 1997, shows 

slightly greater accuracy at the cardinal points. This supports the view of the company’s 

forecasters, and motivates consideration of improvements to profiling. It is difficult to discern 

whether  the forecast errors at the half-hours between cardinal points are due to profiling 

error or cardinal point forecast error. In order to study profiling improvements, in the next 

seven sections cardinal point forecasts are not used. Instead profiling is performed using 

actual demand at the cardinal points. In the penultimate section of the paper, profiling with 

cardinal point forecasts is reconsidered in order to evaluate whether the new proposals for 



 4

profiling improve ex ante forecasting performance. Figure 1 shows the result of profiling for 

2 June 1997, using actual demand at the cardinal points, and the same weekday one year 

previously as base curve. The resultant forecast accuracy is impressive which is perhaps 

surprising, given the heuristic nature of the profiling procedure. 

----------  FIGURE 1 ---------- 

 

Using Cubic Splines Within the Profiling Heuristic  

A cubic spline is a continuous piecewise cubic polynomial with continuous first and 

second derivatives.11 Splines have been used in a variety of ways for electricity load 

forecasting.6,12,13 Using cubic interpolating and smoothing splines to profile between the 

cardinal points leads to very poor forecasts. However, there is some potential for using cubic 

splines within the traditional profiling method. Figure 2 shows scaling ratios for 2 June 1997 

using the same weekday one year previously as base curve. Fairly constant scaling ratios for all 

half-hours would indicate that the base curve and forecast curve are of similar shape. The change 

in the scaling ratio therefore indicates how the similarity changes. Figure 2 shows how a linear 

interpolation leads to a discontinuous change in the similarity at the cardinal points. This seems 

intuitively unappealing and so, instead, a cubic smoothing spline could be used. As the location 

of the cardinal points on the forecast curve often do not coincide with the location of those on 

the base curve, the spline profiling would be performed a second time using the forecast 

curve as the new base curve. 

----------  FIGURE 2  ---------- 

Table 1 compares traditional profiling with the new spline version, using actual 

demand instead of forecasts at the cardinal points and three different base curves: the same 

weekday of the previous week, previous year and two years previously. The new version 

slightly outperforms traditional profiling whilst maintaining its basic simplistic appeal. As in 

the study of Islam and Meade14, this paper uses a conventional root mean square error 
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measure in order to be consistent with the objective functions used later for model estimation. 

The rest of this paper describes how switching and combining methods can be incorporated 

in the profiling method to achieve improved results. The new spline profiling method is used 

throughout, although all proposals are applicable to the traditional method. 

----------  TABLE 1  ---------- 

 

Switching Models 

Rather than choosing one base curve to use in profiling, it often seems that different 

base curves should be used for different periods of the day. For example, the same weekday 

one year previously may seem preferable for the morning but the same weekday in the 

previous week may seem better for the afternoon. This motivates consideration of regime 

switching models (see Granger and Teräsvirta15). A simple switching model for two forecasts, 

ft,1 and ft,2, can be expressed as: 

f I t I f I t I ft S t t, , ,( ) ( ( ))= ∈ + − ∈1 1 1 21    (1) 

where I1 is the regime. I(t0I1) = 1 if t0I1 and I(t0I1) = 0 if t⌠I1. The regime is chosen to reflect 

whether forecast ft,1 is likely to be superior to ft,2 for each half-hour t. Deutsch et al.10 

investigate these models in the context of economic forecasting using either lagged forecast 

errors or an economic variable as the regime. The implementation in this study is rather 

different as forecasts are required for all 48 half-hours of the next day whilst they consider 

the more standard time series forecasting problem of extrapolation to the next period. 

The choice of regime is of crucial importance for the success of the method. The 

fundamental criterion that is used to judgementally select the base curve for profiling is the 

similarity of the shape of the base curve to the shape indicated by the cardinal point forecasts. 

A natural measure of the similarity, between the past base curve used in profiling and the 

shape mapped out by the cardinal points, is the change in the scaling ratios which result from 

profiling. Consequently, in this study the switching regime is defined such that the forecast is 
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chosen for a particular half-hour, if that forecast has associated scaling ratios that change less 

than those associated with the alternative forecast. The change in the scaling ratios at a 

particular half-hour t can be defined simply as: 

∆ ratio ratio ratio ratio ratiot t t t t= − + −+ −
1

2 1
1

2 1    (2) 

Figure 3 shows the scaling ratios from the new spline profiling method for 2 June 

1997 using the same weekday of the previous week and the same weekday one year 

previously as base curves. The change in the scaling ratios is less for the latter profiling for 

half-hours 6 to 43, so this forecast would be chosen for this period. In fact, the same weekday 

of the previous week was a bank holiday which explains why the shape is very inappropriate 

for profiling for 2 June 1997. Although Figure 3 is useful in illustrating the idea, a bank 

holiday would not normally be used as a base curve and so the two sets of scaling ratios are 

unlikely to differ by as much as those in the figure. 

----------  FIGURE 3  ---------- 

 

Traditional and Switching Combinations 

If several forecasts are produced for the same period from different information 

sources, then a combination of the forecasts may be able to synthesise this information to 

deliver an improved prediction.16 This is the main motivation for combining instead of 

selecting a single preferred prediction. There will be different information in two load curve 

forecasts produced by profiling which has used different past days as base curve. Combining 

is therefore a natural alternative to selecting one of the two load curve forecasts. This paper 

considers three popular traditional combining methods: the optimal method17, regression18 

and the simple average. The optimal method is equivalent to regression with no constant term 

and the weights restricted to sum to one. The regression method is particularly useful if the 

forecasts are biased, although multicollinearity can be a problem. However, bias is unlikely 

to be an issue for the NGC forecasts as they carefully monitor their day-ahead predictions. 



 7

The weights are restricted to be nonnegative in the combining models, as advocated by 

Gunter19. 

In this paper, the empirical analysis uses a two week period for model estimation (19 

May 1997 to 1 June 1997) and a two week period for post-sample evaluation (2 June 1997 to 

15 June 1997). With half-hourly data, this implies estimation and evaluation data sets each of 

length 672 observations. Consider forecasts, ft,1, produced by profiling using the same 

weekday one year previously and forecasts, ft,2, produced using the same weekday of the 

previous week. Table 2 shows the post-sample performance for the various models 

introduced so far. The “Benchmark” model (Model 1) represents the new spline profiling 

method using, as base curves, the past demand curves which were actually chosen by 

forecasters in 1997. The forecasters were not restricted in their choice of base curve which is 

obviously an advantage over the combination methods. The forecasts, ft,2, have a very poor 

RMSE because for one day in the evaluation period (Monday 2 June) the day used as base 

curve in profiling was a bank holiday (Monday 26 May). Although, in practice, a bank holiday 

would not be used as base curve in profiling for a normal weekday, it is useful in illustrating 

just how poorly profiling can perform given a poor choice of base profile. Table 2 shows that 

the optimal and regression combining methods (Methods 3 and 4) are preferable to a policy 

of using only ft,1, or only ft,2, throughout the fourteen day evaluation period, but that they are 

poorer than the benchmark forecast (Model 1). 

Deutsch et al.10 argue that, since combining is often useful, one could adapt the 

‘simple’ switching model of expression (1) to switch between two forecast combinations.  

f I t I a a f a f I t I a a f a ft S t t t t, , , , ,( ) ( ) ( ( )) ( )= ∈ + + + − ∈ + +1 1 2 1 3 2 1 4 5 1 6 21  

where the ai are combining parameters. The results in Table 2 suggest that simple switching 

(Model 5) is no better than the traditional optimal and regression combining methods 

(Models 3 and 4), but that switching between optimal and regression combinations (Models 6 

and 7) leads to improved performance. 
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----------  TABLE 2  ---------- 

 

Smooth Transition Combining Models 

Deutsch et al.10 also propose the use of smooth transition combining models. In 

contrast to switching between two forecasts, these models enable a combination where the 

weights are changed gradually according to some criterion (see Granger and Teräsvirta15). A 

simple smooth transition model can be defined using a logistic function: 

f
e

f
e

ft S V t V tt t, , ,( ) ( )
=

+
+ −

+
⎛
⎝
⎜

⎞
⎠
⎟+ +

1
1

1
1

11 2α β α β    (3) 

where α and β are parameters, and Vt is a variable controlling the change in the weights. 

Consider for illustrative purposes β >0. As Vt varies from a large negative value to a large 

positive value, the weight on ft,1 varies from near 1 to near 0, and correspondingly the weight 

on ft,2 varies from near 0 to near 1. The expression in (3) can be rewritten as 

f
e

f
e

ft S V t V tt t, , ,( ) ( )
=

+
+

++ − −

1
1

1
11 2α β α β  

This expression shows that if the parameters are derived with the two forecasts interchanged, the 

parameters will simply change their sign, with the result that the respective weights will remain 

the same. The combining method is therefore symmetrical as between the two forecasts being 

combined. 

Deutsch et al.10 also propose a more general smooth transition model where the 

transition is between two combined forecasts: 

f
e

a a f a f
e

a a f a ft S V t t V t tt t, , , , ,( )
( )

( )
( )=

+
+ + + −

+
⎛
⎝
⎜

⎞
⎠
⎟ + ++ +

1
1

1
1

11 2 1 3 2 4 5 1 6 2α β α β  (4) 

Although Deutsch et al.10 do not consider the parameter α, it is included here as it 

generally improves forecasting performance. The controlling variable Vt can be defined as: 

V ratio ratiot t t= −∆ ∆, ,1 2      (5) 
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where ∆ratiot,1 and ∆ratiot,2 are the changes in the scaling ratios at period t, for ft,1 and ft,2 

respectively, as defined in expression (2). The intuition for this definition of Vt can be seen 

by considering again β >0 in expression (3). If, at period t, the base curve used to produce ft,2 

is much more similar to the curve mapped out by the cardinal points than the base curve used 

to produce ft,1, then ∆ratiot,2 will be much less than ∆ratiot,1, and so Vt will be large and 

positive. A large positive value of Vt implies a low weight on ft,1 and a large weight on ft,2 

which seems sensible since the base curve used for ft,2 was superior to that used for ft,1. 

Table 3 shows the results of fitting the simple transition model given in expression (3) 

(Model 8) and also combination models as in expression (4). “Transition with optimal 

combining” (Model 9) refers to models with no constant term and weights restricted to be 

nonnegative and to sum to 1, and “Transition with regression combining” (Model 10) refers 

to combinations with a constant term and weights only restricted to be nonnegative. As in the 

work of Deutsch et al. (1994), model parameters are estimated by minimising the sum of 

squared in–sample forecast errors. The results for the smooth transition combining models 

are an improvement on those for the switching models and also the traditional fixed weight 

combinations in Table 2, which suggests that allowing weights to change across the 48 half-

hours leads to improved profiling. 

----------  TABLE 3  ---------- 

Expression (6) shows the simple smooth transition model (Model 8) with the 

estimated parameters. The general form of the model was presented in expression (3). 

Importantly, β, the coefficient of Vt, is of the correct sign; the positive value for β implies that 

a large positive value for Vt will result in a smaller weight on ft,1. This is sensible because a 

large positive value for Vt indicates that the change in the scaling ratios of ft,1 is much larger 

than of ft,2. In fact, β was of the correct sign in all of the models considered in our work.  

      Model 8:         f
e

f
e

ft S V t V tt t, . . , . . ,( ) ( )
=

+
+ −

+
⎛
⎝
⎜

⎞
⎠
⎟− + − +

1
1

1
1

10 69 53 12 1 0 69 53 12 2   (6) 
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It is interesting to investigate the combining weights that result from the transition 

models. Figure 4 shows the cardinal point forecasts for 2 June 1997, as well as the load curve 

from the same weekday of the previous week (a bank holiday). Figure 5 shows the same 

cardinal points with the load curve of the same weekday one year previously. These historic 

load curves can be used to produce profiled forecasts ft,2 and ft,1, respectively. Figures 4 and 5 

show, plotted against the axis on the right, the combining weights produced by the simple 

smooth transition model in expressions (3) and (6) (Model 8). In Figure 4, for certain periods 

of the day, such as between half-hours 13 and 20, the shape of the curve mapped out by the 

cardinal points is radically different to the base profile. By contrast, in Figure 5, between 

half-hours 13 and 20, the base curve is of the right shape. The combining weights can be seen 

to vary accordingly. 

----------  FIGURE 4  ---------- 

----------  FIGURE 5  ---------- 

 

Using Weather Variables in the Transition Models 

Forecasters select a base curve for profiling by considering not only the shape of the 

curve, but also the weather forecasts for the next day. NGC use three weather variables in 

their various forecasting operations: temperature, illumination and cooling power of the 

wind.4,9 Temperature is the most important variable in the cardinal point regression models, 

but illumination is often the most useful when choosing a base curve for profiling. Of 

particular concern is nightfall which, during the 4 week period considered in this study, is 

steadily moving later in the evening. There is thus strong motivation for using weather 

variables to control the smooth transition combining weights. Ramanathan et al.8 propose the 

use of switching procedures as an extension to their load forecasting approach, and suggest that 

different forecasts could be selected depending upon weather considerations. 
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Deutsch et al.10 use just one variable to control the smooth transition weights. 

However, it is straightforward to extend the methodology to use more than one variable. In 

addition to the variable Vt which relates to the shape of the base curves used to produce ft,1 

and ft,2, a variable can be included which relates to the weather conditions on the days from 

which the base curves were taken. This leads to models of the following form: 

f
e

a a f a f
e

a a f a ft S V W t t V W t tt t t t, , , , ,( )
( )

( )
( )=

+
+ + + −

+
⎛
⎝
⎜

⎞
⎠
⎟ + ++ + + +

1
1

1
1

11 2 1 3 2 4 5 1 6 2α β γ α β γ  

where α, β and γ are parameters and Vt is defined in expression (5). Wt is a variable 

representing whether the day used as base curve in profiling for ft,1 had weather more similar 

to the forecast for tomorrow than the day used as base curve to produce ft,2. Vt and Wt are thus 

defined in order to influence the weighting of the two forecasts for each half-hour of the day. 

A significant difficulty is that NGC only receive day-ahead weather forecasts for five 

different times in the following day: 9am, 12pm, 3pm, 5pm and 9pm. Given the limited 

weather forecast information, it seems wise to keep the definition of Wt simple. For example, 

one variable that gives reasonable results is defined as a dummy variable taking a value of 1 

for half-hours 1 to 21, if and only if the day used as base curve in profiling for forecast ft,1 had 

illumination at 9am more similar to tomorrow’s forecast for 9am, than the day used as base 

curve to produce forecast ft,2. In a similar way, the variable takes a value of 1 for half-hours 

22 to 27, depending on the illumination information for 12pm, and a value of 1 for half-hours 

28 to 32, depending on the illumination information at 3pm, etc. Table 4 reports the 

performance of the simple smooth transition model (Model 11) and two combining versions 

(Models 12 and 13) using Wt as just defined, and Vt. The results are an improvement on those 

for the transition models without weather given in Table 3. 

----------  TABLE 4  ---------- 

Expression (7) shows the simple smooth transition model (Model 11) with the 

estimated parameters. Importantly, the coefficients of Vt and Wt are of the correct sign. In the 
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previous section, we discussed how the parameter β should take a positive value. 

Reassuringly, this is the case in expression (7). The definition of the dummy variable Wt 

implies that if it takes a value of 1, the weight on ft,1 should be greater than if Wt takes a value 

of 0. The coefficient, γ, should thus be negative. This is indeed the case, as can be seen from 

expression (7). In fact, γ was of the correct sign in all of the models considered in our work.  

Model 11:    f
e

f
e

ft S V W t V W tt t t t, . . . , . . . ,( ) ( )
=

+
+ −

+
⎛
⎝
⎜

⎞
⎠
⎟+ − + −

1
1

1
1

10 05 82 33 0 96 1 0 05 82 33 0 96 2   (7) 

The parameters in all of the smooth transition models should be re-estimated 

periodically, as the optimal values are likely to vary throughout the year. For example, when 

using the smooth transition model with regression combining (Models 13) for a four week 

Autumn period, the best results were achieved using two weather variables, temperature and 

illumination. Apart from this, the relative performance of the various models was broadly 

similar for this Autumn period to the results obtained for the Summer period presented in this 

paper. 

 

A Flexible Combining Model 

The combining models described so far combine forecasts ft,1 and ft,2 which are 

produced using the same weekday one year and one week previously. However, in practice, 

the choice of base curve varies greatly from day to day. The benchmark forecast (Model 1), 

included in Table 2, was constructed using the base curves that were actually judgementally 

selected by the company in 1997. For most of the evaluation period, the forecasters chose the 

same weekday of the previous year, however, for several days they selected the same 

weekday 51 weeks previously, and also a different weekday of the previous week. It seems 

likely that the combining models described so far in this paper would benefit by the use of 

subjective judgement in the choice of base curves used to produce the forecasts. In fact, if the 

parameter α is omitted from the simple smooth transition model in expression (3), then this 



 13

model can be used to combine forecasts produced using any base curve, regardless of the 

forecasts used to estimate the model parameters. This is because the weights will adjust to 

reflect the relative suitability of the base curves used. The simple smooth transition model 

with shape and weather variables can also be used, provided α is omitted.  

As an illustration, consider the situation where parameters β and γ are estimated using 

the forecasts ft,1 and ft,2, defined earlier in the paper. For the evaluation period, ft,1 can be 

replaced by forecasts constructed using the base curves that were judgementally selected in 

1997. The results in Table 5 for these ‘flexible’ models (Models 14 and 15) are the best so 

far. The weather variable used in Model 15 is the same as that used in the models of Table 4. 

----------  TABLE 5  ---------- 

 

Using More than Two Forecasts 

Deutsch et al.10 investigate the combination of only two forecasts. Since forecasters 

often consider more than two past curves when profiling, it seems sensible to adapt the 

switching and combining models presented so far to the case of three forecasts. The 

switching models can be extended to three forecasts by using the same regime that was used 

for the two forecast case. The smooth transition models can be extended by using the 

multinomial logit function (see Greene20 and Kamstra and Kennedy21). The model is then 

written as: 

f
e e
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e e
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2 2 2 3 3 31 2 3α β α β

α β

α β α β

α β

α β α β  

where α2, α3, β2 and β3 are parameters, and Vt,2 and Vt,3 are variables controlling the change in 

the weights. Vt,2 must convey the quality of ft,2 relative to ft,1, and Vt,3 must convey the quality 

of ft,3 relative to ft,1. Vt,2 and Vt,3 can be conveniently defined as: 

V ratio ratiot t t, , ,2 1 2= −∆ ∆    V ratio ratiot t t, , ,3 1 3= −∆ ∆  
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where ∆ratiot,1, ∆ratiot,2 and ∆ratiot,3 are the changes in the scaling ratio at period t, for 

forecasts ft,1, ft,2 and ft,3 respectively, as defined in expression (2). 

The model can also include weather variables Wt,2 and Wt,3 defined in a similar way to 

the weather variable for the two forecast case in the previous section. Wt,2 conveys the quality 

of ft,2 relative to ft,1, and Wt,3 conveys the quality of ft,3 relative to ft,1. Better results are 

achieved by imposing the restrictions α2 = α3, β2 = β3 and γ2 = γ3. Using base curve shape 

and weather as criteria, the simple smooth transition model is then written as:  

f
e e
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e

e e
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e
e e
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1 2α β γ α β γ

α β γ

α β γ α β γ

α β γ

α β γ α β γ ⎠
⎟ ft ,3

   

Table 6 reports post-sample results for combining and switching models involving 

three forecasts. ft,1 and  ft,2 are the forecasts defined and used earlier, and ft,3 is produced using 

the same weekday two years previously as base curve in profiling. The weather variable used 

in several of the models is the same as that used in the models of Table 4. The flexible 

smooth transition models (Models 14 and 15) use forecasts ft,1, ft,2 and ft,3 to estimate model 

parameters; and then, as in the previous section, for the evaluation period, ft,1 is replaced by 

forecasts constructed using the base curves that were judgementally selected in 1997. For 

almost all the models, the results are better than those achieved with two forecasts. As for the 

two forecast case, the transition models (Models 8 to 15) outperform the switching models 

(Models 5 to 7), and there appears to be some potential for the use of weather variables. All 

the smooth transition models comfortably outperform the benchmark forecasts (Model 1) 

which represents the performance achieved by the company using the traditional approach. 

----------  TABLE 6  ---------- 
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Using Demand Forecasts at the Cardinal Points 

So far in this paper, actual demand has been used at the cardinal points in order to 

focus solely on profiling accuracy. However, to establish the robustness of the results, it is 

important to repeat the analysis with demand forecasts at the cardinal points. With forecasts 

at the cardinal points, almost identical forecasting performance results from the traditional 

profiling approach and from the new spline version which applies a cubic smoothing spline to 

the scaling ratios. It seems that the improvement in profiling that was seen when profiling 

with actual demand at the cardinal points has been clouded by the error in the cardinal point 

forecasts. The results for switching and combination models involving two forecasts are 

given in Table 7. The general pattern of the results is similar to the case where actual demand 

was used at the cardinals. The smooth transition regression model with the shape and weather 

variables (Model 13) performs the best. 

----------  TABLE 7  ---------- 

----------  TABLE 8  ---------- 

With actual demand used at the cardinal points, the models involving three forecasts 

were more accurate than those using two. However, as Table 8 testifies, when using forecasts 

at the cardinal points, the results for the three forecast case are poorer. It is interesting to see 

that the superiority of the smooth transition models (Models 8 to 15) over the switching 

models (Models 5 to 7) is repeated, and that, as with two forecasts, the smooth transition 

regression combining model with shape and weather variables (Model 13) performs the best. 

We performed nonparametric sign tests on the difference between the magnitude of 

the NGC benchmark forecast errors and those from Models 13, 14 and 15. Under the null 

hypothesis that there is no difference, 50% of the signs would be positive and 50% negative. 

We found that for the models involving two forecasts, the magnitude of the forecast errors 

from Models 13 and 14 (in Table 7) were significantly lower than those of the NGC 

benchmark forecasts (at the 5% significance level). The magnitude of the errors from Model 
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15 were not significantly lower. For the models involving three forecasts, the magnitude of 

the errors of Model 13 (in Table 8) were significantly lower, whilst those of models 14 and 

15 were not. We have reservations regarding the application of this test, as it assumes that 

each set of forecast errors has no autocorrelation. This seems unlikely for this day-ahead 

profiling application, since an overestimation at half-hour t will often be followed by an 

overestimation at half-hour t+1. 

 

Summary and Conclusion 

 This paper has addressed the problem of profiling, which is essentially a heuristic used 

to fit a past demand curve to day-ahead forecasts for the 10 or 11 turning points of the next 

day’s demand curve, in order to produce half-hourly forecasts. The heuristic was adapted to 

include a cubic smoothing spline. Although the resulting method is more intuitively 

appealing, ex ante forecasting performance remained the same. The study investigated the 

use of the switching and smooth transition combining models proposed by Deutsch et al.10 

These models were applied to the profiling heuristic, using the shape of the past curve and 

weather as criteria in selecting between two or three sets of half-hourly day-ahead forecasts. 

The models gave improved post-sample forecasting performance. The forecasts actually used 

in practice had a RMSE of 417 MW; the best of the new models had a RMSE of 384 MW. 

The relatively moderate size of the improvement indicates the power of the traditional human 

heuristic in choosing past demand curves in the profiling procedure. Nevertheless, any small 

improvement in day-ahead electricity demand forecasts has a significant impact. Electricity 

cannot be stored and so even small reductions in forecast error will lead to savings in scheduling 

and despatch commitment of generating plant.  

Although, in this study, switching and smooth transition combining models have been 

used within the profiling heuristic, there is strong potential for their use in the more standard 

context where forecasts are produced using different methodologies. For example, they could 
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be used, as an alternative to the framework of Smith22, to combine very short-term online 

electricity demand forecasts. 
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 Last year Last week Two years ago Overall 
Traditional profiling        RMSE 233 421 206 302 
New spline profiling        
RMSE 

223 407 205 293 

 

Table 1: Comparison of forecast errors (measured in MW) for traditional 
and the new spline profiling. Actual demand used at the cardinal points. 

 
 
 

 RMSE 
ft,1 208 
ft,2 421 
Model 1:   Benchmark 164 
Model 2:   Simple average 240 
Model 3:   Fixed weight optimal combination 192 
Model 4:   Fixed weight regression combination 192 
Model 5:   Simple switching - shape 194 
Model 6:   Switching with optimal combining – shape 184 
Model 7:   Switching with regression combining - shape 182 

 

Table 2: Post-sample evaluation of combining and switching models for two forecasts. 
Base curve shape used as switching criterion. Actual demand used at the cardinal points. 

 
 
 

 RMSE  
Model 8:   Simple smooth transition - shape 169 
Model 9:   Transition with optimal combining - shape 169 
Model 10:   Transition with regression combining - shape 176 

 

Table 3: Post-sample evaluation for smooth transition combining 
models involving two forecasts using base curve shape as a criterion. 

 
 
 

 RMSE 
Model 11:   Simple smooth transition - shape & weather 162 
Model 12:   Transition with optimal combining - shape & weather 165 
Model 13:   Transition with regression combining - shape & weather 172 

 

Table 4: Post-sample evaluation for smooth transition models 
involving two forecasts, using base curve shape & weather as criteria. 

 
 
 

 RMSE 
Model 14:   Flexible simple smooth transition - shape 152 
Model 15:   Flexible simple smooth transition - shape & weather  152 

 

Table 5: Post-sample evaluation for flexible smooth 
transition models. Actual demand used at the cardinal points. 
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  RMSE 
ft,1 208 
ft,2 421 
ft,3 197 
Model 1:   Benchmark 164 
Model 2:   Simple average 191 
Model 3:   Fixed weight optimal combination 166 
Model 4:   Fixed weight regression combination 166 
Model 5:   Simple switching - shape 196 
Model 6:   Switching with optimal combining - shape 161 
Model 7:   Switching with regression combining - shape 165 
Model 8:   Simple smooth transition - shape 152 
Model 9:   Transition with optimal combining - shape 157 
Model 10:   Transition with regression combining - shape 161 
Model 11:   Simple smooth transition - shape & weather  148 
Model 12:   Transition with optimal combining - shape & weather 151 
Model 13:   Transition with regression combining - shape & weather 150 
Model 14:   Flexible simple smooth transition - shape 146 
Model 15:   Flexible simple smooth transition - shape & weather  145 

 
Table 6: Post-sample evaluation for smooth transition models involving 

three forecasts, using base curve shape alone or shape & weather as criterion. 
 
 
 
 

 RMSE 
ft,1 413 
ft,2 596 
Model 1:   Benchmark 417 
Model 2:   Simple average 456 
Model 3:   Fixed weight optimal combination 412 
Model 4:   Fixed weight regression combination 426 
Model 5:   Simple switching - shape 415 
Model 6:   Switching with optimal combining - shape 419 
Model 7:   Switching with regression combining - shape 406 
Model 8:   Simple smooth transition - shape 393 
Model 9:   Transition with optimal combining - shape 393 
Model 10:   Transition with regression combining - shape 388 
Model 11:   Simple smooth transition - shape & weather 398 
Model 12:   Transition with optimal combining - shape & weather 398 
Model 13:   Transition with regression combining - shape & weather 384 
Model 14:   Flexible simple smooth transition - shape 396 
Model 15:   Flexible simple smooth transition - shape & weather  397 

 
Table 7: Post-sample evaluation for models involving two 

forecasts. Demand forecasts used at the cardinal points. 
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 RMSE 
ft,1 413 
ft,2 596 
ft,3 434 
Model 1:   Benchmark 417 
Model 2:   Simple average 431 
Model 3:   Fixed weight optimal combination 406 
Model 4:   Fixed weight regression combination 406 
Model 5:   Simple switching - shape 415 
Model 6:   Switching with optimal combining - shape 419 
Model 7:   Switching with regression combining - shape 449 
Model 8:   Simple smooth transition - shape 405 
Model 9:   Transition with optimal combining - shape 425 
Model 10:   Transition with regression combining - shape 415 
Model 11:   Simple smooth transition - shape & weather 404 
Model 12:   Transition with optimal combining - shape & weather 424 
Model 13:   Transition with regression combining - shape & weather 397 
Model 14:   Flexible simple smooth transition - shape 401 
Model 15:   Flexible simple smooth transition - shape & weather  407 

 
Table 8: Post-sample evaluation for models involving three 

forecasts. Demand forecasts used at the cardinal points. 
 
 
 
 
 
 

Figure 1: Actual demand and predicted demand for 2 June 1997, using 
the same weekday one year previously as base curve in profiling. Actual 

demand used as forecasts at the cardinal points.
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Figure 2: Linear interpolation of scaling ratios from the traditional NGC 
profiling method for 2 June 1997 using 3 June 1996 as base curve. Actual 

demand used as forecasts at the cardinal points.
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Figure 3: Scaling ratios for 2 June 1997 resulting from two different base 
curves in the new spline profiling procedure. Actual demand used at the 

cardinal points.

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Half-hours

Scaling ratios using 26 May
1997 as base curve

Scaling ratios using 3 June
1996 as base curve

 
 
 
 
 
 

 



 23

Figure 4: Smooth transition combining weights for forecasts produced
for 2 June 1997 using 26 May 1997 (a bank holiday) as base curve. 

Actual demand used at the cardinal points.
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Figure 5: Smooth transition combining weights for forecasts
produced for 2 June 1997 using 3 June 1996 as base curve.

Actual demand used at the cardinal points.
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