Coherent Probabilistic Forecasts for Hierarchical Time Series

Souhaib Ben Taieb 1 James W. Taylor 2 Rob J. Hyndman 1

Abstract

Many applications require forecasts for a hierarchy comprising a set of time series along with aggregates of subsets of these series. Although forecasts can be produced independently for each series in the hierarchy, typically this does not lead to coherent forecasts — the property that forecasts add up appropriately across the hierarchy. State-of-the-art hierarchical forecasting methods usually reconcile the independently generated forecasts to satisfy the aggregation constraints. A fundamental limitation of prior research is the focus on forecasting the mean of each time series. We consider the situation where probabilistic forecasts are needed for each series in the hierarchy, and propose an algorithm to compute predictive distributions rather than mean forecasts only. Our algorithm has the advantage of synthesizing information from different levels in the hierarchy through a sparse forecast combination and a probabilistic hierarchical aggregation. We evaluate the accuracy of our forecasting algorithm on both simulated data and large-scale electricity smart meter data. The results show consistent performance gains compared to state-of-the-art methods.

1. Introduction

Producing forecasts that support decision-making in a hierarchical structure is a central problem for many organizations. For example, retail sales forecasts typically form a hierarchy, with the inventory control system of a retail outlet relying on forecasts for store-level demand, while forecasts of regionally aggregated demand are needed for managing inventory at a distribution centre (Kremer et al., 2016). Another context where a hierarchy naturally arises is electricity demand, where the bottom level might consist of time series of the electricity consumption of individual customers, while the top level could be the total load on the grid. Forecasts of electricity consumption are needed at various levels of aggregation in order to operate the power grid efficiently and securely (van Erven & Cugliari, 2015).

Producing accurate forecasts for these hierarchical structures is particularly challenging. First, the many time series involved can interact in varying and complex ways. In particular, time series at different levels of the hierarchy can contain very different patterns (see, for example, Figure 3); time series at the bottom level are typically very noisy sometimes exhibiting intermittency, while aggregated series at higher levels are much smoother. As a result, a naive bottom-up approach whereby forecasts of aggregates are generated by summing the forecasts of the corresponding series in the lower levels is unlikely to deliver accurate results when the aggregation involves a large number of series (Hyndman et al., 2011). Second, in order to ensure coherent decision-making at the different levels of a hierarchy, it is essential that the forecast of each aggregated series should equal the sum of the forecasts of the corresponding disaggregated series. Unfortunately, independently forecasting each time series within each level is very unlikely to deliver coherent forecasts. Finally, the bottom level can consist of several thousand or even millions of time series, which can induce a massive computational load.

Recent work in this area (Wickramasuriya et al., 2015; van Erven & Cugliari, 2015) has focused on a two-stage approach in which base forecasts are first produced independently for each series in the hierarchy; these are then combined to generate coherent revised forecasts (see Section 2). The rationale behind this approach is both to improve forecast accuracy due to the synthesis of information from different forecasts, as well as to produce coherent forecasts. A fundamental limitation of actual research is that it has looked only at the problem of forecasting the mean of each time series. This contrasts with the shift in the forecasting literature over the past two decades towards probabilistic forecasting (Gneiting & Katzfuss, 2014). This form of prediction quantifies the uncertainty, which enables improved decision making and risk management (see, for example, Berrocal et al. (2010)).

We address the key problem of generating probabilistic forecasts for large-scale hierarchical time series. This is
particularly challenging since it is requires the estimation of the entire distribution of future observations, not only the mean (Kneib, 2013; Hothorn et al., 2014). Furthermore, because of the hierarchical structure, this problem also involves computing the distribution of hierarchical sums of random variables in high dimensions. Finally, another challenge is the possible variety of distributions in the hierarchy. In fact, although the distributions become more normally distributed with the aggregation level as a consequence of the central limit theorem, the series at lower levels often exhibit non-normality including multi-modality and high levels of skewness.

We propose an algorithm that computes predictive distributions under the form of random samples for each series in the hierarchy. First, probabilistic forecasts are independently computed for all series in the hierarchy, and samples are computed from the associated predictive distributions. Then, a sequence of permutations extracted from estimated copulas are applied to the multivariate samples in a hierarchical manner to restore the dependencies between the variables before computing the sums (see Section 3). Finally, the algorithm computes sparse forecast combinations for all series in the hierarchy, where the combination weights are estimated by solving a possibly high-dimensional LASSO problem (see Section 3.2). The result is a set of coherent probabilistic forecasts for each series in the hierarchy.

Our algorithm has multiple advantages compared to the state-of-the-art hierarchical forecasting methods: (1) it quantifies the uncertainty in the predictions for the entire hierarchy while satisfying the aggregation constraints; (2) it is scalable to high-dimensional hierarchies since the problem is decomposed into multiple lower-dimensional subproblems; and (3) it synthesizes information from different levels in the hierarchy to estimate the marginal distributions and the dependence structures through the mean forecast combination and the hierarchical aggregation, respectively.

We evaluate our algorithm using both simulated data sets (see Section 4.2) and a large scale electricity smart meter data set (see Section 4.3).

2. Mean Hierarchical Forecasting

A hierarchical time series is a multivariate time series with a hierarchical structure. Figure 1 gives an example with five bottom series and three aggregate series. The different observations in the hierarchy satisfy the following aggregation constraints: \(y_t = y_{A,t} + y_{B,t}, y_{A,t} = y_{AA,t} + y_{AB,t} + y_{AC,t} \) and \(y_{B,t} = y_{BA,t} + y_{BB,t} \) for all time periods \(t = 1, \ldots, T \).

Let \(\alpha_t \) be an \(r \)-vector containing the observations at the different levels of aggregation at time \(t \), \(\beta_t \) be an \(m \)-vector with the observations at the bottom level only, and \(y_t = (\alpha_t, \beta_t)' \) be an \(n \)-vector that contains the observations of all series in the hierarchy with \(n = r + m \). For the example in Figure 1, we have \(a_t = (y_t, y_{A,t}, y_{B,t})' \), \(\beta_t = (y_{AA,t}, y_{AB,t}, \ldots, y_{BB,t})' \), \(r = 3 \), and \(m = 5 \). We can then write

\[
\hat{y}_t = S b_t,
\]

where \(S = [S_a', I_m]' \in \{0, 1\}^{n \times m} \) is the summing matrix, \(S_a \in \{0, 1\}^{r \times m} \) and \(I_m \) is an identity matrix of order \(m \).

Suppose we have access to \(T \) historical observations, \(y_1, \ldots, y_T \), of a hierarchical time series. Under mean squared error (MSE) loss, the optimal \(h \)-period-ahead forecasts are given by the conditional mean (Gneiting, 2011), i.e.

\[
\mathbb{E}[y_{T+h}|y_1, \ldots, y_T] = S \mathbb{E}[b_{T+h}|y_1, \ldots, y_T],
\]

where \(h = 1, 2, \ldots, H \).

It is possible to compute forecasts for all series at all levels independently, which we call base forecasts. For example, we can estimate \(\mathbb{E}[y_{i,T+h}|y_{i,1}, \ldots, y_{i,T}] \) for \(i = 1, \ldots, n \), i.e. for all series in the hierarchy. This approach is very flexible since we can use different forecasting methods for each series and aggregation level. However, the aggregation constraints will not necessarily be satisfied.

Definition 1. The coherency errors of the \(h \)-period-ahead base forecasts \(\hat{y}_{T+h} = (\hat{a}_{T+h}, \hat{b}_{T+h})' \) are given by \(\hat{r}_{T+h} = \hat{a}_{T+h} - S_a b_{T+h} \).

In other words, \(\hat{r}_{T+h} \) is a vector containing the magnitude of constraint violations for each aggregate series.

Definition 2. The \(h \)-period-ahead base forecasts \(\hat{y}_{T+h} = (\hat{a}_{T+h}, \hat{b}_{T+h})' \) are (mean) coherent if \(\hat{r}_{T+h} = 0 \), i.e. if there are no coherency errors.

Since the optimal mean forecasts in (1) are coherent by definition, it seems sensible to impose the aggregation constraints when generating hierarchical mean forecasts. Also, from a decision-making perspective, coherent forecasts will guarantee coherent decisions over the entire hierarchy.
2.1. Best Linear Unbiased Mean Revised Forecasts

Hyndman et al. (2011) proposed coherent hierarchical mean forecasts of the following form:

\[\hat{y}_{T+h} = SP\hat{y}_{T+h}, \]

(2)

for some appropriately chosen matrix \(P \in \mathbb{R}^{m \times n} \), and where \(\hat{y}_{T+h} \) are some base forecasts.

This approach has multiple advantages: (1) the forecasts are coherent by construction; (2) the forecasts are generated by combining forecasts from all levels; and (3) multiple hierarchical forecasting methods can be represented as particular cases, including bottom-up forecasts with \(y \) and top-down forecasts with \(y \) when \(P = [p_{m \times 1}] \) where \(P \) is a vector of proportions that sum to one.

Theorem 1. (Adapted from Wickramasuriya et al., 2015)

Let \(W_h \) be the positive definite covariance matrix of the \(h \)-period-ahead base forecast errors, \(e_{T+h} = y_{T+h} - \hat{y}_{T+h} \), i.e. \(W_h = \mathbb{E}[e_{T+h}e_{T+h}^T] \).

Then, assuming unbiased base forecasts, the best (i.e. having minimum sum of variances) linear unbiased revised forecasts are given by (2) with \(P = (S W_{h}^{-1} S)^{-1} S W_{h}^{-1} \). We will denote this method MinT.

In practice, the error covariance matrix \(W_h \) needs to be estimated using historical observations of the base forecast errors. Wickramasuriya et al. (2015) estimated \(W_1 \), and assumed that \(W_h \propto W_1 \), since the estimation of \(W_h \) is challenging for \(h > 1 \). To trade off bias and estimation variance, structural assumptions on the entries of the sample covariance matrix have also been considered in Hyndman et al. (2016).

2.2. Optimal Mean Combination and Reconciliation

The approach presented in the previous section applies both combination and reconciliation of the forecasts at the same time. van Erven & Cugliari (2015) proposed splitting the problem into two independent steps: “first one comes up with the best possible forecasts for the time series without worrying about aggregate consistency; and then a reconciliation procedure is used to make the forecasts aggregate consistent”.

Given some possibly incoherent base forecasts \(\hat{y}_{T+h} \), and a weight matrix \(A \in \mathbb{R}^{n \times n} \), they proposed a method called GTOP, which solves the following quadratic optimization problem:

\[
\min_{x_a \in \mathbb{R}^n, x_b \in \mathbb{R}^m} \left\| A \hat{y}_{T+h} - A \left(\begin{array}{c} x_a \\ x_b \end{array} \right) \right\|^2 \quad \text{subject to} \quad (x_a, x_b)^T \in A \cap B,
\]

(3)

where \(A = \{(x_a, x_b)^T : x_a = S_a x_b \} \) is the set of coherent vectors, and \(B \) is an additional set that allows the specification of additional constraints.

The solution of the previous problem is also equivalent to an optimal strategy in a minimax problem where the goal is to minimize the maximum error between the loss of the reconciled and the base forecasts. When \(A = I \) and \(B = 0 \), the problem reduces to finding the closest reconciled forecasts to the base forecasts in terms of sum of squared errors (SSE).

A distinctive advantage of the GTOP approach compared to MinT is the guarantee of producing revised forecasts \(\hat{y}_{T+h} = (x_a^*, x_b^*) \) with the same or smaller SSE than the base forecasts \(\hat{y}_{T+h} \). Furthermore, compared to MinT, the base forecasts are not required to be unbiased. Also, by separating forecast combination and reconciliation, the GTOP approach allows the inclusion of regularization in the forecast combination step. One comparative weakness of GTOP is that it does not have a closed-form solution in the general case.

3. Probabilistic Hierarchical Forecasting

There has been a shift in the forecasting literature, over the past two decades, towards probabilistic forecasting (Gneiting & Katzfuss, 2014). This form of prediction quantifies the uncertainty, which enables improved decision making and risk management. GTOP does not provide any quantification of the uncertainty in the predictions, and although MinT allows the calculation of the forecast variances, this might not be enough to fully describe the uncertainty in the predictions.

We propose an algorithm to compute, for all series in the hierarchy, the conditional predictive cumulative distribution function:

\[F_{i,T+h}(y | y_1, \ldots, y_T) = \mathbb{P}(y_{i,T+h} \leq y | y_1, \ldots, y_T), \]

(4)

rather than just the conditional mean \(\mathbb{E}[y_{i,T+h} | y_1, \ldots, y_T] \) and conditional variance \(\mathbb{V}[y_{i,T+h} | y_1, \ldots, y_T] \), with \(i = 1, \ldots, n \).

As with mean forecasts, it is possible to compute probabilistic forecasts for each series in the hierarchy, but, again, these forecasts will not necessarily be coherent as defined below.

Definition 3. Let \(X_i \sim F_i \), where \(F_i \) is defined in (4), and let \(i(1), \ldots, i(n_c) \) denote the \(n_c \) children of series \(i \). The aggregate forecasts \(F_1, \ldots, F_r \) are probabilistically coherent if \(X_i \equiv X_i(1) + \cdots + X_i(n_c) \) for \(i = 1, \ldots, r \), where \(\equiv \) denotes equality in distribution.

In other words, the predictive distribution of each aggregate series must be equal to the distribution of the sum of the
3.1. Bottom-Up Probabilistic Forecasting

With mean forecasts, it was possible to compute coherent bottom-up forecasts for the ith aggregated series by simply summing the associated lowest level mean forecasts, i.e. $\tilde{y}_{it} = s_i b_i$ where s_i is the ith row of the S matrix, and $i = 1, \ldots, r$. Now, given some base probabilistic forecasts for all the bottom series, how do we compute the bottom-up coherent probabilistic forecasts for all aggregated series? Since each aggregate series is the sum of a subset of bottom series, bottom-up probabilistic forecasting is harder to compute than mean forecasting because we need to compute the joint distribution of the component random variables. The marginal predictive distributions are not enough.

Definition 4. Let X_1, \ldots, X_d be a set of continuous random variables with joint distribution function F. Then, the distribution of $Z = \sum_{i=1}^d X_i$ is given by

$$F_{X_1+\cdots+X_d}(z) = \int_{\mathbb{R}^d} 1\{x_1 + \cdots + x_d \leq z\} \, dF(x_1, \ldots, x_d).$$

(5)

To model the joint distribution, we can use the copula framework (Nelsen, 2007). Copulas originate from Sklar’s theorem (Sklar, 1959), which states that for any continuous distribution function F with marginals F_1, \ldots, F_d, there exists a unique function $C : [0, 1]^d \to [0, 1]$ such that F can be written as $F(x_1, \ldots, x_n) = C(F_1(x_1), \ldots, F_d(x_d))$. In other words, starting from marginal predictive distributions for each series, we need to compute the dependence structure from the marginal probabilities, and to compute the joint distribution of the component random variables, we need to compute the joint distribution of the component random variables.

Example 3.1. Let us consider the hierarchy given in Figure 1. A classical bottom-up approach would require modelling the joint distribution of $(y_{AA,t}, y_{AB,t}, y_{AC,t}, y_{BA,t}, y_{BB,t})$. Then, the distribution of all aggregate series $y_{A,t}$, $y_{B,t}$ and y_{t} can be computed using (5).

However, since the marginals and the copula completely specify the joint distribution, the following procedure allows us to compute the marginal predictive distributions of all aggregates using three lower-dimensional copulas in a hierarchical manner:

1. Compute $F_{AA,t}, F_{AB,t}, F_{AC,t}, F_{BA,t}$, and $F_{BB,t}$.
2. Compute $F_{A,t}$ using $C_1(F_{AA,t}, F_{AB,t}, F_{AC,t})$.
3. Compute $F_{B,t}$ using $C_2(F_{BA,t}, F_{BB,t})$.
4. Compute F_t using $C_3(F_{A,t}, F_{B,t})$.

Except in some special cases where the distribution of the sum can be computed analytically, we would typically resort to Monte Carlo simulations.

By Sklar’s theorem, we can write $F(x_1, \ldots, x_d) = \mathbb{P}(X_1 \leq x_1, \ldots, X_d \leq x_d) = C(F_1(x_1), \ldots, F_d(x_d))$. Suppose we have samples $x_k \sim F_i$ and $u_k = (u_{i1}, \ldots, u_{id}) \sim C$, $k = 1, \ldots, K$, then we can compute

$$\hat{F}(x_1, \ldots, x_d) = C(\hat{F}_1(x_1), \ldots, \hat{F}_d(x_d)),$$

where \hat{F}_i are the empirical margins and \hat{C} is the empirical copula (see Rüschendorf, 2009, and the references therein), given respectively by

$$\hat{F}_i(x) = \frac{1}{K} \sum_{k=1}^K 1\{x_k^i \leq x\}, x \in \mathbb{R},$$

and

$$\hat{C}(u) = \frac{1}{K} \sum_{k=1}^K 1\{\frac{rk(u_{i1}^k)}{K} \leq u_{11}, \ldots, \frac{rk(u_{id}^k)}{K} \leq u_{id}\},$$

for $u = (u_1, \ldots, u_d) \in [0, 1]^d$, where $rk(u_i^k)$ is the rank of u_{ik} within the set $\{u_{i1}^1, \ldots, u_{iK}^K\}$.

The procedure of applying empirical copulas to empirical marginals can be efficiently represented in terms of sample reordering. In fact, the order statistics $u_{i1}^1, \ldots, u_{iK}^K$ of the samples u_1, \ldots, u_K induce a permutation p_i of the integers $\{1, \ldots, K\}$, defined by $p_i(k) = rk(u_{ik}^k)$ for $k = 1, \ldots, K$.

If we then apply the permutations to each independent marginal sample $\{x_1^1, \ldots, x_K^1\}$, the reordered samples inherit the multivariate rank dependence structure from the copula C. We can then compute the samples for the sum $\{x_1, \ldots, x_K\}$ where $x_k = \sum_{i=1}^d x_{ik}$.

Introducing a dependence structure into originally independent marginal samples goes back to Iman & Conover (1982) who considered the special case of normal copulas. A similar idea has been considered more recently in
Schefzik et al. (2013) to specify multivariate dependence structure with applications to weather forecasting.

Since we are interested in multivariate forecasting, we will need another version of Sklar’s theorem for conditional joint distributions proposed by Patton (2006):

If \(y_i | F_{t-1} \sim F_i (\cdot | F_{t-1}) \),

with \(y_i | F_{t-1} \sim F_i (\cdot | F_{t-1}) \), \(i = 1, \ldots, n \),

then \(F(y | F_{t-1}) = C(F_1(y_1 | F_{t-1}), \ldots, F_n(y_n | F_{t-1}) | F_{t-1}) \).

As in Patton (2012), we will assume the following structure for our series:

\[
y_{it} = \mu_i(y_{i,t-1}, y_{i,t-2}, \ldots) + \sigma_i(y_{i,t-1}, y_{i,t-2}, \ldots) \varepsilon_{it},
\]

where \(\varepsilon_{it} | y_{i,t-1}, y_{i,t-2}, \ldots \sim F_i(0, 1) \). In other words, each series can have a potentially time-varying conditional mean and variance, but the standardized residual, \(\varepsilon_{it} \), has a constant conditional distribution for simplicity. See Fan & Patton (2014) for a review on copulas in econometrics.

The following algorithm describes how to compute the bottom-up samples using the reordering procedure for a complete hierarchy:

Algorithm 1. (Bottom-up Probabilistic Forecasting)

1. For all series in the hierarchy, as defined in (6), model the conditional marginal distributions; i.e. compute \(\mu_i \) and \(\sigma_i \) for \(i = 1, \ldots, n \).
2. Then, compute the standardized residuals \(\varepsilon_{it} = (y_{i,t} - \mu_{i,t})/\sigma_{i,t} \), and define the permutations \(p_i(t) = rk(\varepsilon_{it}) \), where \(i = 1, \ldots, n \) and \(t = 1, \ldots, T \).
3. For all bottom series \(i = r + 1, \ldots, n \):

 \(a) \) Compute \(h \)-period ahead conditional marginal predictive distributions \(\hat{F}_{i,T+h} \).

 \(b) \) Extract a discrete sample of size \(K = T \), say \(x_{1}^{1}, \ldots, x_{k}^{K} \), where \(x_{k}^{i} = \hat{F}_{i,T+h}(k/K + 1) \), and \(k = 1, \ldots, K \).
4. For all aggregate series \(i = 1, \ldots, r \):

 \(a) \) Let \(i(1), \ldots, i(n_c) \) be the \(n_c \) children series of the aggregate series \(i \).

 \(b) \) Recursively compute \(x_{k}^{i} = x_{p_i(1)(k)}^{i(1)} + \cdots + x_{p_i(n_c)(k)}^{i(n_c)} \),

 where \(x_{k}^{i} \) denotes the \(k \)th order statistics of \(\{x_{1}^{i}, \ldots, x_{k}^{i}\} \), i.e. \(x_{(1)}^{i} \leq x_{(2)}^{i} \leq \cdots \leq x_{(K)}^{i} \).

Similarly to the classical bottom-up algorithm, Algorithm 1 produces coherent samples by construction. Furthermore, the samples of each aggregate are computed using only the predictive distributions of the bottom series. However, Algorithm 1 has two main advantages compared to a classical bottom-up algorithm: (1) instead of estimating a high-dimensional copula for the dependence between all the bottom series, we only need to specify the joint dependence between the child series of each aggregate series, and (2) since each copula is estimated at different aggregate levels, we can benefit from better estimation since the series are smoother, and easier to model and forecast.

3.2. Mean Forecast Combination and Reconciliation

Algorithm 1 computes bottom-up probabilistic forecasts by estimating the copula dependence functions using data from different levels of the hierarchy. However, the resulting mean forecasts are equal to classical bottom-up forecasts, i.e. no data from other levels is used. In order to further improve the accuracy of our probabilistic forecasts, we add a mean forecast combination step, which allows to exploit possibly better mean forecasts from higher levels. Forecast combination is known to improve forecasts in many cases (Timmermann, 2006; Genre et al., 2013). We could adjust the means of our predictive distributions using the MinT revised forecasts. However, as van Erven & Cugliari (2015), we propose to first combine the mean forecasts, and then apply a reconciliation step.

Let \(\hat{y}_{T+h} \) be the means of our predictive distributions. We compute the following forecast combination:

\[
\hat{y}_t = Q \hat{y}_t,
\]

where \(Q = [q_1, \ldots, q_n] \) \(\in \mathbb{R}^{n \times n} \) is a weight matrix.

Since the combined mean forecasts \(\hat{y}_t \) are not necessarily coherent, we also apply a reconciliation step using the GTOP approach described in Section 2.2. More precisely, we solve the quadratic optimization problem in (3), and obtain reconciled forecasts \(\hat{y}_i \).

Since the total number of series in the hierarchy, \(n \), can be very large compared to the number of observations \(T \), it is necessary to use some regularization for the weights. Therefore, we will estimate the weights by solving the following \(L_1 \) optimization problem:

\[
\min_Q \frac{1}{T} \sum_{t=1}^{T} \|y_t - Q \hat{y}_t\|^2 + \sum_{i=1}^{n} \lambda_i \|q_i\|_1,
\]

where \(\lambda_i \geq 0 \) is a regularization parameter for the \(i \)th weight vector \(q_i \). The previous problem can be rewritten as

\[
\min_{q_1, \ldots, q_n} \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n} (y_{it} - \hat{y}_i/q_i)^2 + \sum_{i=1}^{n} \lambda_i \|q_i\|_1,
\]

which is decomposable in the vectors \(q_i \). As a result, we can solve the \(n \) problems independently. Our implementation of the LASSO is based on a cyclical coordinate descent algorithm (Friedman et al., 2007), and the regularization parameters are selected by minimizing time series
cross-validated errors (Hyndman & Athanasopoulos, 2014, Section 2.5).

The forecast combination that we are considering in (7) has multiple advantages compared to the MinT forecast combination in (2). First, since \(Q \in \mathbb{R}^{m \times n} \), all series in the hierarchy can benefit directly from the forecast combination, not only the bottom series as in MinT with \(P \in \mathbb{R}^{m \times n} \). Second, we do not assume the base forecast are unbiased, and we do not seek to compute unbiased revised forecasts as in MinT. We rather seek to optimize the weights in order to obtain combined forecasts with low forecast errors; i.e. with the right trade-off between bias and estimation variance. Finally, even if we start with coherent base forecasts, we can still apply a forecast combination, and eventually reconcile them later. In contrast with MinT, no forecast combination will be applied in that case. Of course, MinT has the advantage of having a closed-form solution, which does not require the solution of \(n \) possibly high-dimensional regression problems. Finally, our reconciled forecasts are guaranteed to have smaller or equal SSE than the combined forecasts, which is guaranteed by the GTOP method as discussed in Section 2.2. Our final algorithm can be summarized as follows:

Algorithm 2. (Mean Combined and Reconciled Probabilistic Forecasting)

1. Run Algorithm 1 to obtain bottom-up samples for all series in the hierarchy, say \(x_1^i, \ldots, x_K^i \) with \(i = 1, \ldots, n \).
2. Extract mean forecasts \(\bar{y}_{T+h} \) from all base predictive distributions \(\bar{F}_{t+1} \), and compute combined forecasts \(y_{T+h} \) given in (7).
3. Given a weight matrix \(A \), and using the combined forecasts \(y_{T+h} \) as base forecasts, solve the optimization problem in (3) to obtain reconciled forecasts \(y_{T+h} \).
4. Compute revised samples \(\hat{x}_1^i, \ldots, \hat{x}_K^i \) where \(\hat{x}_0^i = x_0^i + \theta_i \), and \(\theta_i = (\bar{y}_{t+i} - \bar{y}_{t+i}) + (\bar{y}_{t+i} - \bar{y}_{t+i}) = \bar{y}_{t+i} - \bar{y}_{t+i} \) is an adjustment term, with \(i = 1, \ldots, n \).

Algorithm 2 computes coherent forecasts since both the bottom-up samples (computed using Algorithm 1) and the reconciled means are coherent.

4. **Experiments**

We compare the following forecasting methods: (1) \texttt{BASE}: the base predictive distributions; (2) \texttt{NAIVEBU}: the naive bottom-up forecasts computed by summing independent samples from the bottom predictive distributions (without forecast combination); (3) \texttt{PERMBU}: the bottom-up forecasts computed using Algorithm 1 (without forecast combination); (4) \texttt{PERMBU-MINT}: similar to \texttt{PERMBU} with mean forecasts computed using MinT; (5) \texttt{PERMBU-GTOP1}: the forecasts are computed using Algorithm 2 with \(A = I \); and (6) \texttt{PERMBU-GTOP2}: similar to \texttt{PERMBU-GTOP1} but with \(A = \text{diag}(0, \ldots, 0, 1, \ldots, 1) \); i.e. bottom-up instead of reconciled combined mean forecasts.

4.1. **Probabilistic Forecast Evaluation**

We evaluate our predictive distributions using the continuous ranked probability score (CRPS), which is a proper scoring rule, i.e. the score is maximized when the true distribution is reported (Gneiting & Raftery, 2007). Given an \(h \)-period-ahead cumulative predictive distribution function \(\hat{F}_{t+h} \) and an observation \(y_{t+h} \), the CRPS is defined equivalently as follows (Gneiting et al., 2007; Gneiting & Ranjan, 2011):

\[
\text{CRPS}(\hat{F}_{t+h}, y_{t+h}) = \int_{-\infty}^{\infty} (\hat{F}_{t+h}(z) - \mathbb{1}\{y_{t+h} \leq z\})^2 \, dz
\]

\[
= \int_0^1 \text{QS}_\tau\left(\hat{F}^{-1}_{t+h}(\tau), y_{t+h}\right) \, d\tau,
\]

where \(\text{QS}_\tau \) is the quantile score, defined as

\[
\text{QS}_\tau\left(\hat{F}^{-1}_{t+h}(\tau), y_{t+h}\right) = 2 \left(\mathbb{1}\{y_{t+h} \leq \hat{F}^{-1}_{t+h}(\tau)\} - \tau \right) \left(\hat{F}^{-1}_{t+h}(\tau) - y_{t+h} \right),
\]

which is also known as the pinball or check loss (Koenker & Bassett, 1978).

In order to quantify the gain/loss of the different methods with respect to the base forecasts, we compute the Skill Score defined as \(\text{SCORE}_{\text{BASE}} - \text{SCORE}_{\text{SCORE}} \) where \(\text{SCORE} \) is the considered evaluation score. Low values of the score are desirable, and so high positive values are preferable for the skill score. In the following experiments, \(\text{SCORE} \) will be computed by averaging the CRPS or QS over all observations in the test set. Finally, as proposed by Laio & Tamea (2007), we will plot the \(\text{QS}_\tau \) (skill score) versus \(\tau \) as a diagnostic tool in the comparison of the different methods.

4.2. **Simulated Data**

We begin with simulated time series, implemented using the same processes as Wickramasuriya et al. (2015) to evaluate different hierarchical forecasting methods. However, we focus on distributional forecasts rather than mean forecasts. We used a hierarchy with four bottom series, where the two pairs of bottom series are aggregated in two aggregate series, which are then aggregated in a top series. Hence, the hierarchy is composed of \(n = 7 \) series, \(m = 4 \) bottom series and \(r = 3 \) aggregate series.
Each series in the bottom level is generated from an ARIMA\((p, d, q)\) process, with \(p\) and \(q\) taking values of 0, 1 and 2 with equal probability and \(d\) taking values of 0 and 1 with equal probability. The parameters are chosen randomly from a uniform distribution from a specific parameter space for each each component of the ARIMA process (see Table 3.2 in Wickramasuriya et al. (2015)). The error terms of the bottom-level ARIMA processes have a multivariate Gaussian distribution with a covariance structure that allows a strongly positive correlation among series with the same parents, but a moderately positive correlation among series with different parents.

For each series, we generate \(T = 100, 300\) or 500 observations, with an additional \(H = 10\) observations as a test set. We fit an ARIMA model by minimizing the AIC, and compute 10-period ahead Gaussian predictive distributions as base forecasts. The whole process is repeated 2,000 times.

Figure 2 shows the results for \(T = 100\). The first panel gives the CRPS skill score for each horizon; the second and third panels show the QS skill score averaged over horizons \(h = 1–6\) and \(h = 7–10\), respectively; the last panel gives the CRPS skill score for the bottom level.

In the first panel, we can see that \textsc{permbu} has a better skill score than \textsc{naivebu} until horizon 6, and vice versa for the subsequent horizons. The second panel shows that \textsc{permbu} outperforms \textsc{naivebu} especially in the lower and upper tails. In other word, the independence assumption of \textsc{naivebu} is not valid, and modelling the dependence structure between the children series of each aggregated series provides better tail forecasts for the aggregate series. The third panel shows that \textsc{naivebu} has consistently better QS skill score compared to \textsc{permbu} for horizons 7–10. This suggests that using one-period ahead dependence structure for 7 to 10-period ahead forecasts (i.e. using a misspecified dependence structure) is worse than assuming independence.

The first panel also shows that the methods using forecast combinations have significantly increased the CRPS skill score compared to \textsc{permbu}. This suggests that the mean forecast combination step is particularly useful in further improving the distributional forecasts. Furthermore, we can see that \textsc{permbu–gtop2} has better skill score than \textsc{permbu–mint} until horizon 6. This shows the benefit of our forecast combination, which learns the best combination weights, without making an unbiasedness assumption. The better skill score of \textsc{permbu–gtop2} compared to \textsc{permbu–gtop1} suggests an advantage in splitting the forecast combination and reconciliation steps. The same observations can be made in the last panel for the bottom level.

Finally, with a larger training set size \((T = 300\) and \(T = 500\)), the forecast combination methods have similar skill scores, as can be seen in Figures A1 and A2 in the appendix. With more observations, the fitted ARIMA model becomes more accurate, and therefore, forecast combination is less likely to improve the base forecasts. However, even with a large training set, modeling the dependence structure is still important, as shown by the better skill score of \textsc{permbu} compared to \textsc{naivebu}.

4.3. Electricity Smart Meter Data

We used smart meter electricity consumption data collected by four energy supply companies in Great Britain (AE-\textsc{com}, 2011). Consumption was recorded at half-hourly intervals for more than 14,000 households, along with geographical and demographic information. In our study, we were interested only in relatively long time series without missing values, and this led us to use data recorded at 1,578 meters for the period 20 April 2009 to 31 July 2010, inclusive. Each series, therefore, consisted of \(T = 22, 464\) half-hourly observations. We constructed a hierarchy based on geographical information comprising four levels of aggregation with \(m = 1, 578\) series in the bottom level of the hierarchy, and \(r = 55\) aggregated series in the other three levels of the hierarchy. Figure 3 presents observations for a one-week period for just one series taken from each of the four levels of the hierarchy. The values shown on the right hand side of the figure correspond to the number of
Figure 3. One week of electricity demand with different number of aggregated series.

We consider the problem of one-day-ahead (i.e. the next \(H = 48 \) half-hours) probabilistic demand forecasting, with a forecast origin at 23:30 for each day. We split each time series into training, validation and test sets; the first 12 months for training, the next month for validation and the remaining, approximately, three months for testing. Each model is re-estimated before forecasting each day in the test set using a rolling window of the historical observations.

We used different forecasting methods for the aggregate and bottom series. For the aggregate series, we capture the yearly cycle, the within-day and within-week seasonalities using seasonal Fourier terms with coefficients estimated by LASSO. After extracting the trend and seasonalities, we fitted an ARIMA model and computed Gaussian predictive distributions. This is justified by the fact that aggregate series are often smoother and easier to forecast, and by the central limit theorem. For the base forecasts, we implemented the kernel density estimation approach that performed the best in the work of Arora & Taylor (2016).

In the first panel of Figure 4, we can see that \textsc{PERMBU} has better skill score than \textsc{NAIVEBU} consistently over the horizon. The third panel shows that \textsc{PERMBU}, by modelling the dependence structure, has contributed to significantly decrease the QS in the lower tail. By analyzing the forecasts (not shown here), we noticed that \textsc{NAIVEBU} is penalized both for not being able to capture the trend at the top (i.e. a bad mean forecasts), and for having too sharp predictive distributions (i.e. bad dependence structure). The fact that \textsc{NAIVEBU} seems competitive at moderately large quantiles can be explained by the unnecessarily wide prediction intervals for the other methods, which are penalized by the QS.

Overall, the second panel shows that the mean forecast combination methods have better skill score than the base forecasts. We found that 75% of the series have less than 100 non-zero weights (see appendix); i.e. many forecast combinations were very sparse — an advantage of our approach compared to MinT, which produces dense combination weights. Furthermore, we can see that \textsc{PERMBU-GTOP1} is dominating the other methods consistently over the horizon. This suggests that computing bottom-up mean combined forecasts is better than reconciling the aggregate and bottom combined mean forecasts. This can be explained by the fact that \textsc{PERMBU} already produces competitive forecasts with the base forecasts, and so reconciling the bottom combined forecasts with the aggregate combined forecasts is unlikely to improve the final forecasts.

Finally, the last panel shows that all the mean forecast combination methods have lower skill score than the base forecasts for the bottom series, especially during night hours. This can be explained by the different error variances for each half-hour, which implicitly gives more weight to day hours when solving (8). However, the forecast improvement at the aggregate levels are magnitudes larger than the decrease in accuracy at the bottom level.

5. Conclusion

We have proposed an algorithm to compute coherent probabilistic forecasts for hierarchical time series. The algorithm
provides samples from coherent predictive distributions for each series in the hierarchy. To do so, we first generate independent samples from all series in the hierarchy. Then a sequence of permutations are applied to the samples in order to restore the dependencies between the children series of all aggregate series. Finally, a sparse forecast combination is applied using the base mean forecasts of all series in the hierarchy. Our algorithm has the advantage of synthesizing information from multiple levels in the hierarchy. Using simulated data, and a large scale electricity demand data set, we showed that restoring the dependencies of the children series consistently improves the forecast accuracy, especially in the tails, while the mean forecast combining weights provide an additional improvement by enabling a synthesis of information from the different forecasts. Our algorithm can be used to produce coherent probabilistic forecasts for hierarchical time series in many applications.
References

Sklar, M. *Fonctions de répartition à n dimensions et leurs marges*. Université Paris 8, 1959.
