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A COMPARISON OF TEMPERATURE DENSITY FORECASTS FROM GARCH AND 

ATMOSPHERIC MODELS 

 

Abstract 

Density forecasts for weather variables are useful for the many industries exposed to weather 

risk. Weather ensemble predictions are generated from atmospheric models and consist of 

multiple future scenarios for a weather variable. The distribution of the scenarios can be used as 

a density forecast, which is needed for pricing weather derivatives. We consider one to 10 day-

ahead density forecasts provided by temperature ensemble predictions. More specifically, we 

evaluate forecasts of the mean and quantiles of the density. The mean of the ensemble scenarios 

is the most accurate forecast for the mean of the density. We use quantile regression to debias 

the quantiles of the distribution of the ensemble scenarios. The resultant quantile forecasts 

compare favourably with those from a GARCH model. These results indicate the strong 

potential for the use of ensemble prediction in temperature density forecasting. 

 

Keywords: Weather Ensemble Predictions; GARCH; Quantile Regression; Quantile 

Autoregression; Quantile Forecast Evaluation. 
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INTRODUCTION 

Weather has an important influence on many different industries, including agriculture, 

energy, retail and transportation. Due to the complexity of the earth’s atmosphere, there is 

uncertainty in every weather forecast. To enable users of a forecast to plan for the different 

possible outcomes, it is important for the forecast to be accompanied by a measure of forecast 

uncertainty (Chatfield, 1993).  

In this paper, we consider a new type of weather forecast, weather ensemble predictions, 

that are produced by large meteorological models of the earth’s atmosphere. An ensemble 

prediction consists of multiple scenarios (51 in our specific case) for the future value of weather 

variables. The different scenarios are known as ensemble members. The ensemble prediction, 

therefore, conveys the degree of uncertainty in the weather variable. The distribution of the 

scenarios can be used as a forecast of the conditional density function of the weather variable. 

Density forecasts are particularly important in the area of weather derivatives because of their 

use in pricing the derivative (see Cao and Wei, 2000; Campbell and Diebold, 2002). 

This study investigates the accuracy of the density forecasts based on temperature 

ensemble predictions for lead times from one to 10 days ahead. More specifically, we evaluate 

forecasts of the quantiles of the conditional density. The θ quantile of the conditional density of 

a variable yt is the value, Qt(θ), for which P(yt≤Qt(θ))=θ. We compare the ensemble-based 

quantile forecasts with those from a univariate time series model with variance modelled as a 

GARCH process. These models are widely used to forecast volatility in finance, but recently 

they have also been applied to temperature series. Campbell and Diebold (2002) estimate such 

models for US temperature data and compare the point forecasts produced from these models 

with those from meteorological atmospheric models. In this study, we compare both point 

forecasts and density forecasts from univariate time series models with those based on ensemble 

predictions from an atmospheric model. We analyse daily temperature at five UK locations. 
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In the next section, we review the literature on univariate time series models for 

temperature density forecasting before presenting our models for the temperature series 

considered in this paper. We then describe weather ensemble predictions. The next section 

compares point forecast accuracy of the different methods, and the section that follows compares 

quantile forecast performance. The final section provides a summary and conclusion. 

 

UNIVARIATE MODELS FOR TEMPERATURE DENSITY FORECASTING 

Previous Models for Temperature Time Series 

Franses et al. (2001) estimate and evaluate a univariate model for weekly mean Dutch 

temperature data. Their preliminary analysis revealed four features of the time series: a yearly 

seasonal pattern in the mean; a yearly seasonal pattern in the volatility; large absolute deviations 

from the mean tend to cluster, as do small deviations; and the impact of temperatures lower than 

expected on conditional volatility is different from the impact of temperatures higher than 

expected, and this impact is seasonal. Since volatility clustering is also evident in high-frequency 

financial returns, Franses et al. consider generalized autoregressive conditional heteroskedastic 

(GARCH) models (Engle, 1982; Bollerslev, 1986), which have become widely used for 

modelling financial volatility. The simple GARCH(1,1) model is given by 

2
1

2
1

2
−− ++= ttt σβεαωσ        (1)  

where σt is the conditional standard deviation (volatility), εt is a stochastic error term, and ω, α 

and β are parameters. Tol (1996) uses a GARCH(1,1) model for the volatility in daily mean 

Dutch temperature data, and an autoregressive (AR) model for the mean. He addresses the 

seasonality issue by estimating separate models for the summer and winter. By contrast, Franses 

et al. try to capture all of the four features that they had observed in their weekly data by 

estimating the following AR-GARCH model: 
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where Tt is the temperature variable, ηt is an i.i.d. error term, and µ, ω and γ are vectors of 

parameters. The seasonality term, s(µ,t), appears in the equation for the mean along with a first 

order autoregressive term. Similar terms, s(ω,t) and s(γ,t), are employed to model the seasonality 

in the volatility, and the asymmetric seasonal impact of temperatures lower and higher than 

expected on conditional volatility. Franses et al. model the seasonality as a quadratic function:   

    2
210 )()(),( twtwts λλλ ++=λ  

where w(t) is a repeating step function that numbers the weeks from 1 to 52 within each year.  

 Campbell and Diebold (2002) estimate AR-ARCH time series models for average daily 

US temperature data. By contrast with the model of Franses et al., Campbell and Diebold do not 

include either the lagged variance term, σt
2, nor the asymmetric seasonality term, s(γ,t), in the 

variance model of expression (2), leaving a symmetric ARCH formulation. In addition, 

Campbell and Diebold use a low ordered Fourier series to model the seasonality, instead of a 

quadratic function. A second order Fourier modelling of seasonality has the form: 
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where d(t) is a repeating step function that numbers the days from 1 to 365 within each year. 

Campbell and Diebold removed 29 February from each leap year in order to maintain 365 days 

in each year. Torró et al. (2001) fit an AR-GARCH model to daily Spanish temperature data. In 

order to try to model the seasonality in the variance, they use a GARCH(1,1) model, as in 

expression (1), multiplied by a power function of lagged temperature.  

The lagged temperature term, Tt-1, in expression (2) enables the model to fit an annual 

seasonal cycle that is not constant from one year to the next. An appealing alternative approach 

would be to allow the parameters, µ, of the seasonal term s(µ,t) to vary over time, as in the 
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dynamic harmonic regression (DHR) model of Young et al. (1999). Young et al. (1997) use the 

DHR approach to model the mean of a temperature time series. In order to produce density 

forecasts, it would be interesting to see the approach extended for the modelling of both the 

mean and variance. Hyndman and Wand (1997) find that the autocorrelation in a daily time 

series of Australian maximum temperatures varies throughout the year. In terms of AR-GARCH 

modelling, this also motivates the possible inclusion of time varying parameters.   

 

Modelling Daily UK Temperature Time Series 

We analyse daily air temperature, recorded at midday from 1 January 1994 to 1 July 

2000 and measured at a height of 2 meters at the following five locations in the UK: 

Birmingham, Bristol, Heathrow, Leeds and Manchester. Weather data recorded at these 

locations is used in the electricity demand forecasting models at National Grid Transco, which is 

the company responsible for electricity transmission in England and Wales. Since hedging 

electricity load is one of the main uses for weather derivatives, temperature recorded at these 

locations is an obvious candidate for underlying reference in derivative contracts (see Torró et 

al., 2001). 

Figure 1 shows a plot of the Heathrow temperature series. As one would expect, there is 

strong within-year seasonality in the mean of the series, and a reasonable degree of variation 

about that seasonal pattern. We used the first five years of each of our daily UK temperature 

time series to identify and estimate AR-GARCH models. In later sections, we use the remaining 

18 months for post-sample forecast comparison. 

*****  Figures 1 and 2  ***** 

To gain further insight into the seasonality, in Figure 2, we plot Heathrow temperature 

against the day of the year for the five-year estimation period. The plot indicates that the 

seasonality in the mean of the series does not appear to be quadratic, so an initial reaction is that 

Campbell and Diebold’s Fourier modelling of seasonality is likely to be more effective than a 
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quadratic function of the type employed by Franses et al. There is slight evidence in Figure 2 of 

seasonality in the variance; it seems to be greatest in the winter months and least in the autumn. 

However, it is interesting to note that the seasonality in the variance is far less pronounced in our 

UK data than in the Dutch data of Franses et al. and the US data of Campbell and Diebold. 

 We estimated AR-GARCH models, as in expression (2), for our five daily UK 

temperature series using the standard approach of maximum likelihood to estimate parameters 

under the assumption that ηt was Gaussian. The estimation, and, indeed, all computational work 

in this paper, was performed using the statistical programming package, Gauss. Autoregressive 

terms of order greater than one and moving average terms of all orders were not significant for 

any of our five series. This was also the conclusion of Franses et al. for their Dutch data. We 

found that Campbell and Diebold’s Fourier series modelling of seasonality gave better fit than 

quadratic modelling, which was used by Franses et al. Indeed, the quadratic terms, d(t) and d(t)2, 

were not significant when included alongside Fourier terms. We did not find significant Fourier 

terms of order more than two in any of the three seasonal features of the model in expression (2). 

We therefore used the seasonal function in expression (3) to represent seasonality. We followed 

Campbell and Diebold in removing 29 February from each leap year in our sample. 

In Table I, we present our preferred model for each of our five temperature series. We 

selected models using the Schwarz Bayesian Criterion (SBC) to judge fit. For each model, the 

table presents each parameter with its t-statistic, adjusted R2, SBC and Ljung-Box Q-statistic to 

test for autocorrelation in standardised residuals ( ttt σεη ˆˆˆ = ) and squared standardised 

residuals. The only significant Q-statistic is for the residuals from the Bristol model (critical 

value is 12.59). This value is not significant at the 1% level (critical value is 16.81), and since 

we could not find a simple alternative model with better residuals, we decided to use this model. 

Table I shows that, for all but the Heathrow model, we found significant parameters within the 
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seasonal GARCH function, s(ω,t). Interestingly, with all five series, when fitting GARCH 

models, we found significant parameters in the asymmetric seasonal variance function, s(γ,t).  

*****  Table I  ***** 

The AR-GARCH models enable predictions to be made for the mean and variance at a 

given forecast horizon. A temperature density forecast can then be constructed using a Gaussian 

assumption or the empirical distribution of standardised residuals (see Granger et al., 1989). 

 

WEATHER ENSEMBLE PREDICTIONS 

The weather is a chaotic system. Small errors in the initial conditions of a forecast 

grow rapidly, and affect predictability. Furthermore, predictability is limited by model errors 

due to the approximate simulation of atmospheric processes in a numerical model. These two 

sources of uncertainty limit the accuracy of traditional single point forecasts, generated by 

running the model once with best estimates for the initial conditions.  

The weather prediction problem can be described in terms of the time evolution of an 

appropriate probability density function in the atmosphere’s phase space. An estimate of the 

density function provides forecasters with an objective way to gauge the uncertainty in single 

point predictions. Ensemble prediction aims to derive a more sophisticated estimate of the 

density function than that provided by the distribution of past atmospheric states. Ensemble 

prediction systems generate multiple realisations of numerical predictions by using a range of 

different initial conditions in the numerical model of the atmosphere. The frequency 

distribution of the different realisations, which are known as ensemble members, provides an 

estimate of the density function. The initial conditions are not sampled as in a statistical 

simulation because this is not practical for the complex, high-dimensional weather model. 

Instead, they are designed to sample directions of maximum possible growth (Molteni et al., 

1996; Palmer et al., 1993; Buizza et al., 1998). 
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The benefit of using ensemble predictions is illustrated in Figure 3. pdf0, represents 

the initial uncertainties. From the best estimate of the initial state, a single point forecast is 

produced (bold solid curve). This point forecast fails to predict correctly the future state 

(dashed curve). The ensemble forecasts (thin solid curves), starting from perturbed initial 

conditions, can be used to estimate the probability of future states. In this example, the 

estimated probability density function, pdft, is bimodal. The figure shows that two of the 

perturbed forecasts almost correctly predicted the future state. Therefore, at time 0, the 

ensemble system would have given a non-zero probability of the future state. 

*****  Figure 3  ***** 

Since December 1992, both the US National Center for Environmental Predictions 

(NCEP, previously NMC) and the European Centre for Medium-range Weather Forecasts 

(ECMWF) have integrated their deterministic prediction with medium-range ensemble 

prediction (Palmer et al., 1993, Toth and Kalnay, 1993, Tracton and Kalnay, 1993). The 

number of ensemble members is limited by the necessity to produce forecasts in a reasonable 

amount of time with the available computer power. Traditional single point forecasts are 

produced using a high-resolution grid spacing of 40 km. In December 1996, after different 

system configurations had been considered, a 51-member system with a horizontal grid 

resolution of 120 km at mid-latitude was installed at ECMWF (Buizza et al., 1998). The 51 

consist of one forecast started from the unperturbed, best estimate of the atmosphere initial 

state plus 50 others generated by varying the initial conditions. Stochastic physics was 

introduced into the system in October 1998 (Buizza et al., 1999). This aims to simulate model 

uncertainties due to random model error. In November 2000, the resolution of the ECMWF 

ensemble system was further increased to a grid spacing of 80 km at mid-latitudes.  

Taylor and Buizza (2002, 2003) consider the use of weather ensemble predictions in 

electricity demand forecasting. They use the ensemble members to produce scenarios for 

demand, which are then used as a basis for estimating the uncertainty in a demand forecast.  
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During the period spanned by the data used in this study, ensemble forecasts were 

produced every day for lead times from 12 hours ahead to 10 days ahead. The ensemble 

forecasts were archived every 12 hours, and are thus available for midday and midnight. The 

archived weather variables include both upper level variables (typically temperature, wind 

speed, humidity and vertical velocity at different heights) and surface variables (e.g. 

temperature, wind speed, precipitation, cloud cover). In our work, we used ECMWF 

ensemble predictions for midday air temperature, recorded from 1 January 1997 to 1 July 

2000 and measured at a height of 2 meters at the five UK locations specified earlier. 

 

EMPIRICAL COMPARISON OF POINT FORECASTS 

Although the main aim of this paper is density forecasting, it is also interesting to 

consider the quality of the point forecasts produced by the different approaches to density 

estimation. The point forecast is, of course, the mean of the density, and so by evaluating its 

accuracy, we gain an understanding of the accuracy of the central location of the density 

forecast. We used the period from 1 January 1999 to 1 July 2000 for post-sample evaluation of 

forecasts for lead times from one to 10 days.  

 

Forecasting Methods 

Methods P1 to P4 are univariate time series approaches. The first uses the well-specified 

AR-GARCH models, while Methods P2 to P4 are naïve benchmark approaches. Methods P5 

and P6 use predictions from an atmospheric model.  

 

Method P1 - The AR-GARCH models in Table I were used to produce point forecasts.  

Method P2 - Random walk forecasts were created, where the forecast for all lead times is the 

most recent period’s observed value. 
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Method P3 - The average of the observed temperature on the corresponding day in each of the 

previous five years. 

Method P4 - The average of the observed values on the five most recent days was used as the 

forecast for all lead times. 

Method P5 - Traditional meteorological point forecasts generated by running the atmospheric 

model once at high resolution with best estimates for the initial conditions.  

Method P6 - The mean of the 51 ensemble members. Perhaps surprisingly, this has been found 

to be a more accurate point forecast than the traditional high-resolution point forecast (Leith, 

1974; Molteni et al., 1996), indicating that the ensemble contains information not captured 

by the traditional forecast.  

 

Results 

 We calculated the mean absolute error (MAE), root mean squared error (RMSE) and 

median absolute error (MedAE) for the post-sample forecast errors from the six methods for 

each of the 10 forecast horizons and for each of the five temperature series. We discuss only the 

MAE results because the relative performance of the methods was similar for all three measures.  

In Figure 4, we present the MAE results for the Heathrow series. Reassuringly, the three 

more sophisticated methods, Methods P1, P5 and P6, outperform the three simple benchmark 

methods, Methods P2, P3 and P4. The one exception to this is that, beyond seven days ahead, 

the traditional high-resolution atmospheric model, Method P5, is beaten by the average of the 

corresponding day of the year from the previous five years, Method P4. Beyond seven days 

ahead, the traditional high-resolution atmospheric model is also outperformed by the AR-

GARCH model, Method P1. These results are similar to those of Campbell and Diebold (2002), 

who found, for their US daily temperature series, that traditional atmospheric model forecasts 

outperform univariate time series model forecasts up to a horizon of about eight days. 

Interestingly, the method that outperforms all others, at all forecast horizons, is the mean of the 
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51 ensemble members, Method P6. Note that, up to about 9 days ahead, the MAE for this 

method is substantially lower than for the AR-GARCH model, with the difference being about 

1oC for two and three days ahead. The relative rankings of the MAE results for the other four 

temperature series are similar to the results in Figure 4 for Heathrow, with the ensemble mean 

approach, Method P6, dominating for all horizons. 

*****  Figures 4  ***** 

 

EMPIRICAL COMPARISON OF QUANTILE FORECASTS 

A probability density function can be described by its constituent quantiles. In this paper, 

we compare the ability of different methods to forecast the quantiles of the density. We focus on 

the following nine quantiles: 1%, 2.5%, 5%, 25%, 50%, 75%, 95%, 97.5% and 99%. We 

selected six quantiles in the tails of the density because this part of the distribution is of great 

importance from a risk management perspective. We compare post-sample quantile forecasts 

from five methods for lead times from one to 10 days for the same 18-month post-sample period 

considered in the previous section. Before introducing the methods, we briefly present quantile 

regression, which is used in three of the methods.  

 

Quantile Regression 

 If the conditional θ quantile, Qt(θ), of a variable yt is a linear function of explanatory 

variables, we can write Qt(θ) = xtβ(θ), where xt is a vector of explanatory variables and β(θ) is a 

vector of parameters dependent on θ. Koenker and Bassett (1978) showed that the quantile 

regression minimisation in (4) delivers parameters that asymptotically approach β(θ). Note 

that for computational convenience this minimisation can be formulated as a linear program.  

   ⎟⎟
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Quantile Forecasting Methods 

Method Q1 is a pure univariate approach. Methods Q2 and Q3 construct quantiles using 

the ensemble mean and a univariate model for the variation about the mean. Methods Q4 and Q5 

base estimation on the quantiles of the distribution of ensemble members. 

 

Method Q1 - AR-GARCH with Empirical Distribution 

We used the AR-GARCH models in Table I to produce mean and variance forecasts. 

Quantiles were constructed separately using a Gaussian assumption and the empirical 

distribution of standardised residuals. The empirical distribution led to slightly more accurate 

quantile forecasts, and so for simplicity, in this paper we report only these results. 

 

Method Q2 - Ensemble Mean with GARCH and Empirical Distribution 

 In the previous section, we found that the mean of the 51 ensemble members is a better 

point forecast than that provided by the univariate AR-GARCH models for all 10 lead times. In 

view of this, an alternative to the AR-GARCH models is to construct the density forecast using 

the ensemble mean as the estimate of the mean of the density with a univariate model for the 

uncertainty. The k-step-ahead conditional quantile estimator for the quantile of Tt+k, the 

temperature in period t+k, is then: 

)(ˆ)(ˆ
||| θµθ e
tkt

ENS
tkttkt QQ +++ +=      (5) 

where ENS
tkt |+µ  is the mean of the k-step-ahead 51 ensemble members, )(ˆ

| θe
tktQ +  is the univariate 

estimator of the conditional quantile of the k-step-ahead forecast error, et+k|t = Tt+k – ENS
tkt |+µ . In 

estimating )(ˆ
| θe
tktQ + , the forecast errors for each lead time must be considered separately. Rather 

than laboriously specifying a different GARCH model for each lead time for each series, we 

opted to estimate a GARCH(1,1) model, as in expression (1), for them all. As with the AR-
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GARCH model, an empirical distribution of standardised residuals led to slightly better quantile 

forecasts than using a Gaussian distribution.  

 

Method Q3 - Ensemble Mean with Quantile Autoregression 

We also estimated )(ˆ
| θe
tktQ +  in expression (5) using the following quantile 

autoregression approach devised by Engle and Manganelli (2002) for modeling the quantiles of 

financial returns: 

( )[ ])(ˆ)()(ˆ)(ˆ
||1|1| θθθγθθ e

kttkttk
e

tkt
e

tkt QeIQQ −−−+−+ ≤−+=   (6) 

I() is an indicator function taking a value of one when the expression in the parentheses is true 

and zero otherwise. The parameter, γk(θ), was estimated separately for each of the nine quantiles, 

θ, and 10 lead times, k, using the quantile regression minimisation in expression (4). The 

expected value of the expression within the square parentheses is zero if the probability of the 

error falling below the θ quantile estimator is θ. The indicator function has the effect of reducing 

the next quantile estimate if, in the current period, the error is less than the estimated error 

quantile. If the error exceeds the quantile estimate, the next estimate is increased. The model 

focuses directly on the autoregressive nature of the quantiles. By contrast, GARCH approaches 

model autoregression in the variance, and then infer from this for the quantiles. We used an 

extensive grid search to initialise the parameters, prior to numerical nonlinear optimisation.  

 

Method Q4 - Ensemble Quantiles Debiased Using Quantile Regression 

Although the distribution of the 51 ensemble members can be used as a temperature 

density forecast, we found that this tends to underestimate substantially the true uncertainty. For 

example, the 99% ‘ensemble quantile’ considerably underestimated the true 99% quantile. In 

view of this, we used quantile regression to debias the ensemble quantiles with temperature as 

dependent variable and the ensemble quantile as regressor (see Granger, 1989). We used 
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ensemble predictions from 1 January 1997, the earliest date in our ensemble dataset, to 31 

December 1998, the final date in our estimation sample. The form of the resultant estimator is:  

)()()()(ˆ
|| θθθθ ENS
tktkktkt QbaQ ++ +=  

where )(| θENS
tktQ +  is the quantile of the k-step-ahead 51 ensemble members, and ak(θ) and bk(θ) 

are parameters. The debiasing is performed separately for each quantile, θ, and lead time, k. 

An alternative to basing quantile estimation on the quantiles of the ensemble members is 

to use their standard deviation. This produced similar results to the ensemble quantiles. 

 

Method Q5 - Ensemble Quantiles Debiased Using TVP Quantile Regression 

The use of OLS regression to debias a point forecast was proposed by Theil (1971). In 

the context of judgmental point forecasting, Goodwin (1997) describes an approach that allows 

the debiasing regression parameters to vary over time if there is a changing relationship between 

actuals and point forecasts, such as when the quality of the forecasts are considered to have 

improved over time. In view of the developments in the ensemble generating system, such as the 

introduction of stochastic physics in October 1998, there is some appeal to debiasing the 

ensemble member quantiles using time varying parameters (TVP). We developed the following 

TVP quantile regression debiasing approach: 

)()()()(ˆ
|||| θθθθ ENS
tkttkttkttkt QbaQ ++++ +=  
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where Tt is the temperature variable, and αk(θ) and βk(θ) are parameters. The structure of the 

TVP parameters, at+k|t(θ) and bt+k|t(θ), is based on the quantile autoregression models of Engle 

and Manganelli (2002). The effect of the indicator function is to reduce at+k|t(θ) and bt+k|t(θ), if, 
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in the current period, the observed value for the temperature variable is less than the estimated 

quantile. Conversely, if temperature exceeds the quantile estimate, the parameters are increased. 

 

Post-Sample Quantile Forecasting Results 

Unconditional Coverage 

The most fundamental requirement of a θ quantile estimator is that the percentage of 

observations falling below it is θ. This is termed unconditional coverage by Christoffersen 

(1998). Figure 5 compares the unconditional coverage of the five methods for estimation of the 

5% quantile for the Heathrow data at the 10 different lead times for the post-sample period of 18 

months. The dashed horizontal lines in Figure 5 are the bounds of the acceptance region for the 

test of whether the percentages are significantly different from 5% at the 5% level. The bounds 

are calculated using a Gaussian distribution and the standard error formula for a proportion.  

*****  Figure 5 and 6  ***** 

To summarise the unconditional coverage of the methods across the nine quantiles, we 

calculated chi-squared goodness of fit statistics for each of the 10 lead times and for each 

temperature series. For each method, at each lead time, we calculated the statistic for the total 

number of post-sample observations falling within the following 10 categories: below the 1% 

quantile estimator, between each successive pair of quantile estimators, and above the 99% 

quantile estimator. Figure 6 shows the resulting chi-squared statistics for the Heathrow data 

(lower values are better). The dashed horizontal line in the figure is the bound of the acceptance 

region for the 5% significance test. Overall, the results of Figure 6 are consistent with those 

shown in Figure 5 for the 5% quantile. The results show that the AR-GARCH approach, Method 

Q1, performs poorly beyond the early lead times. Performance for ensemble quantiles debaised 

using quantile regression, Method Q4, is particularly poor for the first three forecast horizons. 

However, it is interesting to see that Method Q5, which uses TVP quantile regression debiasing, 

offers substantial improvement. The best results are achieved with Method Q3, which uses the 



 15

ensemble mean with quantile autoregression. This method comfortably outperforms Method Q2, 

which uses the ensemble mean with a GARCH model for the variance. The relative 

performances of the methods, in terms of the unconditional coverage chi-squared statistic, for 

the other four locations are very similar to those for Heathrow.  

 

Dynamic Quantile Test Statistic 

Simply testing for unconditional coverage is insufficient, as it does not assess the 

dynamic properties of the quantile (Christoffersen, 1998). Engle and Manganelli (2002) test for 

conditional coverage by jointly testing whether the following hit variable is distributed i.i.d. 

Bernoulli with probability θ, and is independent of the value of the quantile estimator.  

( ) θθ −≤≡ − )(ˆ
| ktttt QyIHit  

where )(ˆ
| θkttQ −  is the quantile estimator for the variable of interest, yt. A similar hit variable was 

used in the quantile autoregression in expression (6). For an ideal quantile estimator, the hit 

variable has zero unconditional and conditional expectations. Engle and Manganelli consider 

only one period-ahead forecasting, for which the Hitt variable should be serially uncorrelated. 

We can extend the test to the multi-period forecasting context by noting that the Hitt variable 

should have no autocorrelation at lags of k or more, where k is the forecast horizon. The test can 

then proceed by running the following OLS regression: 

tkttktt uQHitHit +++= −− )(ˆ
|210 θδδδ  

Rewriting this in matrix form, we get: 

⎩
⎨
⎧

−
−−

=+=
θθ
θθ

yprobabilitwith
yprobabilitwith

uuHit ttt )1(
)1(

δX  

The appropriate null hypothesis is that δ = 0. Engle and Manganelli provide the following 

dynamic quantile test statistic for this null hypothesis: 
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 Figure 7 shows the resulting dynamic quantile chi-squared statistics for estimation of the 

5% quantile for the Heathrow data (lower values are better). The horizontal dashed line is the 

5% critical value. The method constructed from the ensemble mean with quantile 

autoregression, Method Q3, performed well in terms of unconditional coverage for all lead times 

in Figure 5, but in Figure 7 the results for the dynamic quantile statistic are poor beyond five 

days-ahead. This shows that, although the estimator has acceptable unconditional coverage, it 

does not co-vary with the true 5% quantile at the longer lead times; it is not able to capture the 

dynamic behaviour of the true 5% quantile. The performance in Figure 7 is qualitatively similar 

to that in Figures 5 and 6 for Method Q1, which uses the AR-GARCH model, and also for 

Method Q4, which involves the ensemble quantile being debiased using quantile regression.  

*****  Figure 7  ***** 

To summarise overall performance, for each lead time, we calculated the ranking of each 

method, according to the dynamic quantile statistic, for each of the nine quantiles for each of the 

five series, and then calculated the average of these 45 rankings. The two methods that 

performed the best were Method Q3, which uses the ensemble mean with quantile 

autoregression, and Method Q5, which involves the ensemble quantiles being debiased using 

TVP quantile regression. The former was better for the early lead times, and the latter for the 

later lead times.  

 

Informational Content 

The third measure that we use for post-sample evaluation is the R1(θ) measure, which 

was proposed by Koenker and Machedo (1999) as a measure of in-sample goodness-of-fit. R1(θ) 

is the quantile regression analogue of the OLS regression R2. Instead of using a sum of squares 

cost function, R1(θ) uses the quantile regression cost function given in expression (4). In view of 
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the popularity of the OLS regression R2 for evaluating the informational content of post-sample 

volatility forecasts, Taylor (1999) proposes the use of R1(θ) to evaluate post-sample quantile 

forecasts. R1(θ) is recorded for the quantile regression performed using post-sample data with 

the quantile estimator as sole regressor. The measure then assesses the degree to which the 

estimator co-varies with the true quantile, and, unlike the dynamic quantile statistic, R1(θ) 

controls for unconditional coverage by first debiasing the estimator using quantile regression.  

The R1(θ) results for the 5% quantile for the Heathrow data are presented in Figure 8 

(higher values are better). The most noticeable feature of the figure is the 20% to 30% difference 

between the R1(θ) values for Methods Q4 and Q5, which use the ensemble quantiles, and 

Method Q1, which is based on the AR-GARCH model. This difference is largely due to the 

superiority of the ensemble-based methods in forecasting the mean of the series. However, it is 

important to note that in Figure 8, at all lead times, the methods based on ensemble quantiles, 

Methods Q4 and Q5, outperform those based on just the ensemble mean, Methods Q2 and Q3. 

This shows that there is informational content in the distribution of the 51 ensemble members 

that is not captured by the ensemble mean with univariate modelling of the uncertainty. 

*****  Figure 8  ***** 

To summarise R1(θ) performance at each lead time, we calculated the ranking of each 

method for each of the nine quantiles for each of the five series, and then calculated the average 

of these 45 rankings. The relative performances of the methods were very similar to those shown 

in Figure 8 for the 5% Heathrow quantile.  

 

SUMMARY AND CONCLUDING COMMENTS 

Density forecasts provide an understanding of the uncertainty in weather variables, 

which is useful for the many industries exposed to weather risk. We have investigated the use of 

ensemble predictions in forecasting the density of temperature at five locations in the UK. We 
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first considered estimation of the mean of the density, or, in other words, point forecasting. Our 

results confirm that the mean of the 51 ensemble members is a better point forecast than the 

traditional high-resolution point forecasts from a meteorological atmospheric model. In addition, 

we found that the ensemble mean comfortably outperformed the point forecast from the AR-

GARCH models for all lead times considered.  

Although the distribution of the 51 ensemble members can be viewed as a temperature 

density forecast, this tends to underestimate substantially the true uncertainty. Some form of 

recalibration is, therefore, needed. Using a TVP quantile regression approach to debias the 

quantiles of the 51 ensemble members led to an estimator that performed consistently well 

across all three evaluation measures used. Overall, we found that quantiles produced from the 

AR-GARCH method did not match the quality of the ensemble-based methods. This should 

come as no great surprise given that the AR-GARCH models are based on far simpler 

information than the ensemble predictions. Therefore, our conclusion is that there is strong 

potential for the use of ensemble predictions in temperature density forecasting. We also 

considered combinations of quantile forecasts from the AR-GARCH and the ensemble-based 

methods (see Granger et al., 1989), but it did not offer improvement on the performance of the 

ensemble quantile debiased using TVP quantile regression. It would seem that this approach 

provides a good synthesis of univariate and ensemble information.  

An area for further research is the analysis of other weather variables. From an energy 

perspective, wind speed is particularly interesting because it influences both demand and 

generation. Indeed, wind generation of electricity is currently receiving a lot of attention in 

Europe because of subsidies for renewable energy. Precipitation is important for hydroelectric 

power production, as well as for other industries, such as agriculture and transportation. 

Hyndman and Grumwald (2000) provide a promising time series model for precipitation.  
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Table I.  Parameter estimates for the temperature AR-GARCH model in expression (2)  
with seasonality modelled using Fourier terms as in expression (3). Parentheses contain 
parameter t-statistics. Models estimated using daily data from 1994 to 1998, inclusive. 

 
 

   Model 
   

Parameters Birmingham Bristol Heathrow Leeds Manchester 
 

Equation 
for Mean 

     

µ0 

 

3.37 
(16.80) 

3.40 
(15.81) 

3.61 
(15.98) 

3.31 
(16.93) 

3.49 
(16.53) 

µ1 

 

-0.75 
(-8.99) 

-0.72 
(-9.12) 

-0.75 
(-9.10) 

-0.78 
(-9.16) 

-0.81 
(-9.37) 

µ2 
 

-1.89 
(-14.92) 

-1.73 
(-15.69) 

-1.87 
(-14.72) 

-1.90 
(-14.65) 

-1.93 
(-15.00) 

µ3 
 

0.33 
(4.49) 

0.24 
(3.76) 

0.26 
(3.69) 

0.32 
(4.16) 

0.35 
(4.65) 

µ4 
 

 
     

φ1 

 

0.71 
(42.47) 

0.72 
(43.29) 

0.72 
(42.37) 

0.71 
(41.19) 

0.70 
(38.43) 

      
 

Equation  
for Variance 

     

ω0 

 

0.85 
(3.06) 

0.49 
(1.83) 

1.40 
(2.94) 

0.70 
(1.62) 

1.32 
(3.43) 

ω1 
 

 
     

ω2 
 

0.68 
(2.96)   0.93 

(2.16) 
0.74 

(3.10) 
ω3 

 
 
     

ω4 
 

 
 

-0.42 
(-2.28)    

α 
 

0.08 
(4.30) 

0.07 
(4.21) 

0.08 
(3.29) 

0.05 
(2.33) 

0.09 
(4.49) 

β 
 

0.62 
(9.88) 

0.60 
(8.80) 

0.50 
(4.27) 

0.66 
(8.09) 

0.52 
(5.83) 

γ0 

 

-1.60 
(-3.48) 

-0.04 
(-0.11) 

-0.40 
(-0.93) 

-3.09 
(-2.32) 

-1.65 
(-3.80) 

γ1 
 

 
     

γ2 
 

3.04 
(4.29) 

4.66 
(5.00) 

3.37 
(3.36) 

3.22 
(2.17) 

3.02 
(4.45) 

γ3 
 

 
     

γ4 
 

 
     

      
Diagnostics      

LB Q(7) for tη̂  8.17 15.98 10.23 5.85 7.69 

LB Q(7) for 2
t̂η  9.14 7.91 3.83 5.32 7.62 

Adj R2 (%) 86.5 88.0 87.7 86.1 85.6 

SBC 4.41 4.16 4.32 4.23 4.43 
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Figure 1.  Daily midday temperature observations at Heathrow 
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Figure 2.  Daily midday temperature observations at Heathrow plotted 
against the day of the year for the estimation period 1994 to 1998 
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Figure 3.  Schematic of ensemble prediction. Bold solid curve is the single point forecast. 
Dashed curve is the future state. Thin solid curves are the ensemble of perturbed forecasts. 

 
 
 
 
 
 

forecast lead time, t 

pdf0 

pdft 



 26

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  MAE for each of the different approaches to  
point forecasting applied to the Heathrow temperature series.  
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Figure 5.  Unconditional coverage percentage for the different approaches 
to forecasting the 5% quantile of the Heathrow temperature data.  
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Figure 6.  Unconditional coverage chi-square statistic for the different 
approaches to forecasting the quantiles for the Heathrow temperature data. 

The statistic summarises performance across all nine quantiles.   
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Figure 7.  Dynamic quantile chi-square statistic for the different approaches 
to forecasting the 5% quantile for the Heathrow temperature data.  
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Figure 8.  R1(θ) for the different approaches to forecasting 
the 5% quantile for the Heathrow temperature data.  
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