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Forecasting Value at Risk and Expected Shortfall Using a Semiparametric  

Approach Based on the Asymmetric Laplace Distribution 

 

 

Abstract 

Value at Risk (VaR) forecasts can be produced from conditional autoregressive VaR models, 

estimated using quantile regression. Quantile modeling avoids a distributional assumption, and 

allows the dynamics of the quantiles to differ for each probability level. However, by focusing 

on a quantile, these models provide no information regarding Expected Shortfall (ES), which is 

the expectation of the exceedances beyond the quantile. We introduce a method for predicting 

ES corresponding to VaR forecasts produced by quantile regression models. It is well known that 

quantile regression is equivalent to maximum likelihood based on an asymmetric Laplace (AL) 

density. We allow the density’s scale to be time-varying, and show that it can be used to estimate 

conditional ES. This enables a joint model of conditional VaR and ES to be estimated by 

maximizing an AL log-likelihood. Although this estimation framework uses an AL density, it 

does not rely on an assumption for the returns distribution. We also use the AL log-likelihood for 

forecast evaluation, and show that it is strictly consistent for the joint evaluation of VaR and ES. 

Empirical illustration is provided using stock index data. 

 

Keywords: Quantile regression; CAViaR; Elicitability. 
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1. INTRODUCTION 

Value at Risk (VaR) is a tail quantile of the conditional distribution of the return on a 

portfolio. It has become the standard measure of market risk, and hence has been used by banks 

over the past two decades for setting regulatory capital requirements. Although it is an intuitive 

risk measure, VaR gives no information regarding possible exceedances beyond the quantile. A 

measure addressing this, and which can be viewed as a complement to VaR, is Expected 

Shortfall (ES), which is the conditional expectation of exceedances beyond the VaR. ES 

possesses a number of attractive properties (Acerbi and Tasche 2002). For example, in contrast 

to VaR, ES is a subadditive risk measure (Artzner et al. 1999), which means that the measure for 

a portfolio cannot be greater than the sum of the measure for the constituent parts of the 

portfolio. Future regulatory frameworks are likely to put increased emphasis on ES (Embrechts 

et al. 2014). Although many banks already calculate ES for their own risk measurement 

purposes, estimation is inherently challenging, as ES is a tail risk measure. Furthermore, there is 

no suitable loss function for evaluating ES forecasts (Gneiting 2011). In this paper, we provide a 

new approach to ES estimation, and a new loss function for jointly evaluating VaR and ES. 

Forecasts of ES can be produced as a by-product of many VaR forecasting methods. The 

popular nonparametric methods, namely historical simulation and kernel density estimation, 

produce density forecasts from which VaR and ES predictions can be obtained. This is also the 

case for parametric approaches, which involve a model for the conditional variance, such as a 

GARCH model, and a distributional assumption. Semiparametric approaches to VaR forecasting 

include those that use extreme value theory (EVT) (see, for example, Chavez-Demoulin, 

Embrechts and Sardy 2014), and those that directly model the conditional quantile for a chosen 

probability level using quantile regression, such as conditional autoregressive VaR (CAViaR) 

modeling (see Engle and Manganelli’s 2004). Directly modeling a quantile avoids the need for a 
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distributional assumption, and allows the dynamics of the quantiles to differ for each probability 

level. In empirical studies of VaR forecast accuracy, CAViaR models have performed well (see, 

for example, Sener, Baronyan and Mengütürk 2012). However, by focusing on a particular 

quantile, quantile regression models provide no apparent way of producing ES forecasts. In this 

paper, we address this using the asymmetric Laplace (AL) density. 

 Our approach uses the equivalence between quantile regression and maximum likelihood 

based on an AL density (see Koenker and Machado 1999). In this framework, the location and 

skewness parameters of the AL density are the quantile and probability level, respectively. The 

maximum likelihood estimator for the constant scale of the AL density is equal to the minimized 

quantile regression objective function divided by the sample size. Bassett, Koenker and Kordas 

(2004) highlight the simple relationship between this minimized objective function and the 

unconditional ES. This leads us to propose that a time-varying scale of the AL density can be 

used to produce an estimate of the time-varying conditional ES. This enables a joint model of 

conditional VaR and ES to be estimated by maximizing an AL likelihood. The approach is 

semiparametric because, although a model is specified for the VaR and ES, we do not make a 

distributional assumption for the returns. 

In decision theory, a scoring function is the term for a loss function when used to 

evaluate a prediction of some measure of a probability distribution, such as the mean. The 

measure is referred to as being elicitable if the correct forecast of the measure is the unique 

minimizer of the expectation of at least one scoring function (Fissler and Ziegel 2016). The 

existence of such a scoring function enables the comparison of forecasts from different methods, 

with the best method deemed to be the one with the lowest value of the scoring function. It is 

possible that a measure may not be elicitable on its own, but is elicitable in combination with 

another measure; for example, although the variance is not elicitable, the mean and variance are 
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jointly elicitable (Gneiting 2011). Fissler and Ziegel (2016) show that, although ES is not 

elicitable, VaR and ES are jointly elicitable, and they provide a set of suitable scoring functions. 

We show that the negative of the AL log-likelihood is a member of this set, and hence we 

propose the use of this function to evaluate VaR and ES forecasts. 

Section 2 briefly describes quantile regression and its link to unconditional ES. Section 3 

explains how conditional VaR and ES estimates can be produced using maximum likelihood 

based on an AL density. Section 4 presents candidate joint models of VaR and ES. Section 5 

proposes the use of the AL log-likelihood for jointly evaluating VaR and ES forecasts. Section 6 

uses daily stock indices to illustrate the use of the models and the new evaluation measure. 

 

2. QUANTILE REGRESSION AND ES 

 Quantile regression has been used in a variety of applications for the estimation of the 

parameters in a quantile model (see Koenker 2005). It involves the minimization of the sum of 

tick loss functions, as shown in expression (1), where yt is the dependent variable, Qt is the 

quantile with probability level , I(x) is the indicator function, and n is the sample size. 

              



n

t

tttt QyIQy
1

min             (1) 

As the common probability levels are 1% and 5% for VaR and ES estimation, in this 

paper, for simplicity, we consider only <50%. With the VaR being the conditional quantile Qt, 

the conditional ES is written as  tttt QyyEES  | . Although quantile regression focuses on 

the quantile for a chosen probability level, and seemingly involves no estimation of the 

distribution either side of the quantile, Bassett, Koenker and Kordas (2004) provide an 

interesting link between quantile regression and ES, by showing that ES can be written as:  
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             tttttt QyIQyEyEES  


1
          (2) 

Bassett, Koenker and Kordas suggest that this expression can be evaluated empirically using the 

sample mean y  of yt, and the minimized quantile regression objective function, as follows:  

    



n

t

tttt QyIQy
n

yES
1

ˆˆ1




^

          (3) 

This would seem to show that an estimate of ES is a by-product of quantile regression 

(Komunjer 2007). However, only an unconditional estimate of ES is produced, as expression (3) 

involves averaging over the n values of the tick loss function. Our interest is in conditional ES 

estimation, and, given the heteroscedasticity in daily returns data, such an estimate is likely to be 

time-varying. Taylor (2008) uses exponentially weighted quantile regression for VaR estimation, 

and essentially replaces the summation in expression (3) with the resulting exponentially 

weighted summation to deliver a conditional ES estimate. In this paper, we use the AL 

distribution to provide a more flexible framework for the conditional modeling of VaR and ES.  

 

3. USING THE AL DISTRIBUTION TO ESTIMATE CONDITIONAL VAR AND ES 

Koenker and Machado (1999) point out that the quantile regression minimization of 

expression (1) is equivalent to maximum likelihood based on the AL density of expression (4). 

For this density,  is a scale parameter, and Qt is the time-varying location, which is the quantile 

of the density corresponding to the chosen probability level .  

    
 

     



ttttt QyIQyyf 


 exp

1
         (4) 

The likelihood framework has led to useful developments for quantile regression, such as 

statistical inference via quasi-maximum likelihood (see Komunjer 2005) and Bayesian quantile 
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regression (see, for example, Gerlach, Chen and Chan 2011). In these contexts, the observations 

yt are not assumed to follow an AL distribution. To emphasize this, Gerlach, Chen and Chan 

(2011) note that the parameter  is not estimated, but is a chosen fixed value, and that it is only a 

quantile that is estimated. The AL likelihood simply provides a computationally convenient basis 

with which to enable their Bayesian approach to quantile regression.  

For the scale  of the AL density of expression (4), the maximum likelihood estimator is:  

        



n

t

tttt QyIQy
n 1

ˆˆ1
ˆ              (5) 

This is the average of the tick loss function, which can be interpreted as an unconditional 

estimator of the expectation of this loss function. The unconditional estimator of ES, presented in 

expression (3), can, therefore, be rewritten in terms of the scale estimator of expression (5): 

        


̂
 yES

^

 

Our proposal is to adapt this expression for conditional estimation. With this aim, we 

introduce a conditional AL scale t, which can be viewed as the potentially time-varying 

conditional expectation of the tick loss function. We convey this in the following expression: 

        tttttt QyIQyE    

Using this, we can rewrite expression (2) so that we express the conditional ES in terms 

of the conditional AL scale t and the conditional mean t as follows: 

         



 t

ttES              (6) 

A model for the conditional scale t can be estimated, along with a model for the 

conditional quantile Qt, using maximum likelihood based on the following AL density:  
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 
 

     ttttt

t

t QyIQyyf 






 exp

1
 

Using expression (6), we can rewrite this density in terms of ES, as:  

 
    

  


























tt

tttt

tt

t
ES

QyIQy

ES
yf








exp

1
         (7) 

In this paper, we adopt the common assumption that the conditional mean of a series of 

daily returns rt is a small constant value c, which can be estimated as the mean of the in-sample 

returns. We define yt to be the residual yt = rt – c. The focus of our modeling is, therefore, a 

variable yt with zero mean, and so we rewrite the AL density of expression (7) as: 

    
      










 


t

tttt

t

t
ES

QyIQy

ES
yf




exp

1
          (8) 

Our proposal is to use maximum likelihood based on this AL density to estimate a joint 

model for the conditional quantile and conditional ES. We do not assume that the returns follow 

an AL distribution, because, instead of optimizing , it is selected to be 1% or 5%, which are the 

probability levels of interest. If one also wished to model a time-varying conditional mean, the 

AL density of expression (7) could be used. To generate the parameter covariance matrix, one 

possibility is to draw on the work of Komunjer (2005) who investigates quantile model 

estimation using quasi-maximum likelihood based on a family of ‘tick-exponential’ densities, of 

which the AL density is a special case. An alternative is to use a bootstrapping procedure, and 

this is the approach that we use in our empirical work. To select between model specifications, 

the Bayesian Information Criterion could be calculated using the AL likelihood (see Lee, Noh 

and Park 2014). 

In this section, we have highlighted the link between the scale of an AL density and ES; 

we have proposed that conditional modeling of the scale can deliver a conditional model for ES; 
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and we have suggested that this can be estimated simultaneously with a conditional quantile 

model using maximum likelihood based on an AL density. Although an AL density has 

previously been used within parametric approaches to ES estimation (see Chen, Gerlach and Lu 

2012; Komunjer 2007), we are not aware of any studies that have linked the conditional scale of 

an AL density to conditional ES estimation.  

 

4. JOINT MODELS FOR VAR AND ES 

Our proposal is to model VaR and ES jointly, with parameters estimated by maximum 

likelihood based on the AL density of expression (8). In this section, we consider formulations 

for the VaR component of the model, and then present proposals for the ES component. 

For the VaR component, we simply propose a CAViaR model. Expressions (9)-(10) 

present two of the CAViaR models introduced by Engle and Manganelli (2004). In these models, 

the i are constant parameters. The asymmetric slope CAViaR model aims to capture the 

leverage effect, which is the tendency for volatility to be greater following a negative return than 

a positive return of equal size.  

Symmetric Absolute Value: 12110   ttt QyQ              (9) 

Asymmetric Slope:      131121110 00   tttttt QyyIyyIQ        (10) 

For the ES component, we require model formulations that avoid ES estimates crossing 

the corresponding VaR estimates. For < 50%, the ES estimate must be a value below the 

quantile estimate. It is straightforward to avoid crossing if we specify conditional ES to be a 

function of conditional VaR. This seems reasonable, as ES and VaR are, to some extent, likely to 

vary together, as both will vary with the time-varying volatility. The simple formulation for ES 

in expression (11) shows ES modeled as the product of the quantile and a constant multiplicative 
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factor (see Gourieroux and Liu 2012). To avoid crossing, we ensure this factor is greater than 1 

by expressing it in terms of an exponential function of an unconstrained parameter 0.  

   tt QES 0exp1            (11) 

The simplicity of this formulation is appealing. Furthermore, it correctly describes the 

relationship between ES and VaR for some data generating processes, such as a GARCH process 

with a Student t distribution. However, expression (11) is rather restrictive, as the dynamics of 

VaR may not be the same as the dynamics of ES. An alternative formulation for ES is presented 

in expressions (12)-(13), where the difference xt between ES and the quantile is modeled using 

an autoregressive (AR) expression, which essentially smoothes the magnitude of exceedances 

beyond the quantile. To ensure that the quantile and ES estimates do not cross, we constrain the 

parameters i to be non-negative. 

ttt xQES               (12) 

 



 






otherwisex

QyifxyQ
x

t

ttttt

t

1

11121110 
        (13) 

  In our empirical study of Section 6, we implement this AR formulation for ES, and the 

simpler ES formulation of expression (11). However, a variety of other models could certainly be 

considered for conditional ES. For example, the expression for xt could take the same form as the 

CAViaR models, so that lagged values of ty  or 2

ty  influence, in potentially differing ways, the 

dynamics of both the quantile and the difference between the quantile and ES. Another 

possibility is the use of a dynamic model within the multiplicative factor of expression (11).  
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5. EVALUATION OF VAR AND ES FORECASTS 

5.1. Existing Approaches for Evaluating VaR and ES Forecasts 

VaR forecast evaluation typically focuses on coverage tests. A quantile forecast tQ̂ , for 

the  probability level, has correct unconditional coverage if the variable )ˆ( ttt QyIHit   

has zero unconditional expectation, and correct conditional coverage if Hitt has zero conditional 

expectation (see Engle and Manganelli 2004). An alternative way to evaluate quantile forecasts 

is to use a scoring function. Given its use in quantile regression, a reasonable choice is the tick 

loss function (Giacomini and Komunjer 2005), and this has been termed the quantile score. We 

present this score in expression (14). A risk measure is elicitable if the correct forecast of the 

measure is the unique minimizer of the expectation of at least one scoring function. Such scoring 

functions are called strictly consistent for the risk measure (Fissler and Ziegel 2016). VaR is an 

elicitable risk measure, for which the quantile score is strictly consistent.  

          tttttt QyIQyyQS  ,          (14) 

ES is not elicitable (Gneiting 2011). In the absence of a suitable scoring function for ES, 

the test of McNeil and Frey (2000) is often used. This focuses on the discrepancy between the 

observed return and the ES forecast for the periods in which the return exceeds the VaR forecast. 

The standardized discrepancies should have zero unconditional and conditional expectation. Due 

to the typically small sample of discrepancies, a test of zero conditional expectation is generally 

not performed, which implies that the dynamic properties of the ES estimates are not evaluated. 

McNeil and Frey test for zero unconditional mean using a bootstrap test to avoid a distributional 

assumption. As this test focuses on observations exceeding the VaR forecasts, the assessment of 

ES forecasts is not independent of the VaR forecasts. This, along with ES not being elicitable, 

prompts consideration of a scoring function for jointly evaluating ES and VaR forecasts.  
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5.2. A New Scoring Function for Jointly Evaluating VaR and ES Forecasts 

Fissler and Ziegel (2016) explain that VaR and ES are jointly elicitable, even though ES 

is not elicitable individually. They show that strictly consistent scoring functions, for jointly 

evaluating VaR and ES forecasts, are of the following form:  

        
          

         ttttttttt

ttttttttt

yaESyQQyIQESESG

yGQyIQGQyIyESQS





22

11,,




        (15) 

where G1, G2, 2 and a are functions satisfying a number of conditions, including the properties 

that G2= 2  ; G1 is increasing; and 2 is increasing and convex. (The domain of 2 contains only 

negative values, because we are considering <50%, which implies that ESt is negative.) These 

conditions clearly allow a variety of alternative functions to be chosen. We consider here three 

examples from the set of scoring functions of expression (15). 

 Our first example is the score used in the empirical analysis of Fissler, Ziegel and 

Gneiting (2016). They consider the scoring function produced by using G1(x)=x and 

G2(x)=exp(x)/(1+exp(x)) in expression (15). We set a=ln(2) to give positive values for the 

scoring function. We refer to this as the FZG score, and present it in expression (16). 

      

      

  
   

 


















t

tttttt

t

t

ttttttttt

ES
yQQyIQES

ES

ES

yQyIQQyIyESQS

exp1

2
ln

exp1

,,





      (16)       

A second example from the set of scoring functions of expression (15) is the function 

proposed by Acerbi and Székeley (2014). We present this in expression (17), where W is a 

constant parameter that is large enough to ensure WQt<ESt for <50%. (Note that ESt<0 and 

Qt<0.) We refer to this as the AS score. Fissler and Ziegel (2016) explain that, if WQt<ESt, the 

AS score is a strictly consistent scoring function that can be produced by setting G1(x)=-(W/2)x
2
, 

G2(x)=x and a=0 in expression (15). In our empirical study of Section 6, we implemented the 
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AS score with W=4, as this was the smallest integer that ensured WQt<ESt for all pairs of 

forecasts of ESt and Qt from all methods considered in our study. 

           222,, 2222

tttttttttttttt QyWQyESQyIESQQWESyESQS      (17) 

As a third example of a scoring function of the form of expression (15), let us consider 

G1=0, G2(x)=-1/x, x)=-ln(-x), and a=1-ln(1-). Expression (15) then becomes: 

     
    

t

t

t

tttt

t

ttt
ES

y

ES

QyIQy

ES
yESQS 










 




 1
ln,,          (18) 

As we have defined yt to have zero mean, the expectation of the final summand of expression 

(18) is zero. Therefore, forecasts of VaR and ES that minimize the expectation of expression (18) 

also minimize the expectation of this scoring function if the final summand is removed, as in 

expression (19). This implies that expression (19) is also a strictly consistent scoring function. 

This function is the negative of the AL log-likelihood. We refer to it as the AL log score. 

Averaging the score across a sample gives a joint measure of VaR and ES forecast accuracy. 

       
    

t

tttt

t

ttt
ES

QyIQy

ES
yESQS



 










 


1
ln,,        (19) 

Note that if a scoring function is strictly consistent, it can also be used as the loss function 

in model estimation (Gneiting and Raftery 2007). This section, therefore, provides support for 

our proposal of estimating joint VaR and ES models by maximizing the AL log-likelihood. 

Our proposal of using the AL log score to compare the forecast accuracy of methods 

could be viewed as advantageous for methods estimated using the AL log-likelihood. However, a 

similar criticism could be made for other popular scoring functions, such as the quantile score, as 

it is not the only strictly consistent scoring function for quantile forecasts (Gneiting 2011). Using 

the AL log score to evaluate VaR and ES forecasts has the theoretical appeal of being a member 
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of the set of scoring functions proposed by Fissler and Ziegel (2016), and it has the intuitive 

appeal that the AL likelihood is well established in the literature on quantile estimation. 

 

6. EMPIRICAL STUDY OF VAR AND ES FORECASTS USING STOCK INDICES 

We evaluated day-ahead VaR and ES forecasts for daily log returns of the FTSE 100, 

NIKKEI 225 and S&P 500 stock indices. Following common convention, we considered the 1% 

and 5% probability levels. Each series consisted of the 3500 daily log returns ending on 16 April 

2013. We used a rolling window of 2500 observations for repeated re-estimation of each method, 

and evaluated day-ahead VaR and ES forecasts for the final 1000 observations. As we stated in 

Section 3, our modeling focuses on a residual term, defined as yt = rt – c, where rt is the daily 

return and c is a constant term, which we estimated using the mean of the in-sample returns. 

 

6.1. VaR and ES Forecasting Methods 

Historical Simulation and GARCH Methods 

As a simple benchmark, we produced VaR and ES forecasts using historical simulation 

with a moving window consisting of the 2500 observations in each estimation sample. We also 

considered historical simulation with moving windows of 100 and 25 observations, as in the 

work of Chen et al. (2012a). A short moving window has the potential advantage of enabling fast 

adaptation in VaR and ES estimation during periods when the market experiences major change.  

We estimated GARCH(1,1) and GJRGARCH(1,1) models using maximum likelihood 

based on a Student t distribution. We produced VaR and ES forecasts using three approaches: 

(i) A Student t distribution with degrees of freedom optimized with the model parameters. 

(ii) Filtered historical simulation, which applied historical simulation to all 2500 in-sample 

residuals standardized by the estimated volatility. 
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(iii) The method of McNeil and Frey (2000), which applies the peaks-over-threshold (POT) EVT 

method to the standardized residuals.  

 

Standard CAViaR with Simple ES Methods 

  We fitted the two CAViaR models of expressions (9)-(10), with the parameters estimated 

using quantile regression, as in the work of Engle and Manganelli (2004). We first sampled 10
4
 

candidate parameter vectors from uniform distributions with lower and upper bounds based on 

initial experimentation. Of these vectors, the three giving the lowest quantile regression objective 

function were used, in turn, as the initial vector in a quasi-Newton algorithm. The resulting 

vector, with lowest objective function, was chosen as the final parameter vector. When 

estimating the parameters for the second moving window of 2500 observations, and for all 

subsequent moving windows, we included, as an additional candidate, the parameter vector that 

had been optimized for the previous window of observations. After producing CAViaR model 

quantile forecasts, we used the following two approaches to forecast ES:  

(i) As suggested by Manganelli and Engle (2004), we performed least squares regression, with 

dependent variable set as the vector of observations that exceeded the quantile estimates, and 

regressor set as the vector of quantile estimates. Forecasts from this model were used as ES 

predictions. In our results tables, we refer to this as “QR for VaR: ES = multiple of VaR”, where 

QR emphasizes the use of quantile regression to estimate the CAViaR model. 

(ii) We produced ES forecasts by summing the quantile forecast and the average in-sample 

quantile exceedance. In our tables, we refer to this as “QR for VaR: ES = mean exceedance”. 
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CAViaR with EVT 

 Manganelli and Engle (2004) adapt the EVT-based method of McNeil and Frey (2000). A 

CAViaR model is first estimated for a tail quantile that is not as extreme as the VaR of interest. 

We followed Manganelli and Engle by estimating the 7.5% quantile. POT EVT is then applied to 

exceedances beyond this quantile, after standardizing the exceedances by the corresponding 

quantile estimates. The fitted EVT distribution is then used to obtain the 1% and 5% quantile and 

ES estimates of the returns. The CAViaR model, therefore, only provides the EVT threshold for 

the method. In our results tables, we refer to the method as “QR for 7.5% with EVT”. 

 

Joint Models for VaR and ES Estimated using AL Density 

We implemented our proposed approach of Sections 3 and 4, which involves maximum 

likelihood based on the AL density of expression (8). We considered four joint models for VaR and 

ES, which each involved one of the two CAViaR formulations of expressions (9)-(10), and one of 

the two ES formulations of expressions (11)-(13). In our results tables, we refer to the ES 

formulation of expression (11) as “AL: ES = multiple of VaR”, and the ES formulation of 

expressions (12)-(13) as “AL: ES = AR model”, where AL is used to emphasize that the models 

have been estimated with maximum likelihood based on an AL density.  

The likelihood maximization followed a similar optimization procedure to the one that we 

described for CAViaR models, with two notable differences. First, the quantile regression 

objective function was replaced by the negative of the AL log-likelihood. Second, for the 

candidate parameter vectors, we set the CAViaR parameters to be the values optimized 

separately using quantile regression, while the ES model parameters were randomly sampled. 

We did this to assist the optimization when the AR model of expressions (12)-(13) was used for 

the ES, due to the relatively large number of parameters involved. For this model, we used 10
4
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candidate parameter vectors, while, for the simpler ES formulation of expression (11), we found 

that 10
3
 was sufficient. In using, as starting values, CAViaR model parameters, estimated 

separately using quantile regression, we have followed the approach employed by White, Kim 

and Manganelli (2015) for their multi-equation models. 

For the 5% probability level, expressions (20)-(22) present a joint model with asymmetric 

slope CAViaR formulation for VaR, and the AR formulation for ES. The parameters were 

estimated using the first moving window of 2500 S&P 500 returns. The expressions also present 

parameter standard errors in parentheses below each parameter. The parameter covariance matrix 

was estimated using bootstrapping, as described in the supplementary material to this paper. In 

the quantile model of expression (20), there is asymmetry in the response to the size of the 

previous period’s return, and the AR parameter is relatively close to 1, which is typical of 

CAViaR, as well as GARCH, models. The AR parameter is also quite high in the model for xt in 

expression (22).  
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For the post-sample period, Figure 1 shows the S&P 500 returns and the 5% VaR and ES 

forecasts from the model of expressions (20)-(22), implemented with parameter re-estimation. 

The plot also shows the difference between VaR and ES forecasts, which is represented by xt in 

the model. As shown in expression (22), xt responds to exceedances beyond the VaR. We 
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highlight these exceedances in Figure 1. The figure shows xt varying across the post-sample 

period, with a clear response to the increased volatility around period 3100. 

-7.5%

-5.0%

-2.5%

0.0%
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S&P 500

VaR forecast

ES forecast

ES forecast - VaR forecast

Exceedance beyond VaR forecast
 

Figure 1. For the S&P 500 and 5% probability level, forecasts from asymmetric slope CAViaR 

with AR model for ES, jointly estimated by maximizing the AL likelihood. 

 
The simpler formulation for ES is used in the joint model of expressions (23)-(24), which 

was also estimated for the 5% probability level using the first moving window of 2500 S&P 500 

returns. The parameters of expression (23) are quite similar to those of expression (20). 
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Figure 2 relates to the model of expressions (23)-(24), implemented with repeated re-

estimation of parameters. In addition to the variables plotted in Figure 1, Figure 2 presents the re-

estimated multiplicative factor (1+exp(0)) of expression (11) and (24). Although this factor is 
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constant for a given estimation sample, Figure 2 shows that it varies a little over time, motivating 

the possible use of more complex formulations for the ES. In Figure 2, the difference between 

the VaR and ES forecasts is generally smaller and more variable than in Figure 1. Informally, 

one might take the view that, in Figure 1, the ES forecasts look too extreme in comparison with 

the VaR exceedances. In the next section, we formally evaluate the VaR and ES forecasts. 
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Figure 2. For the S&P 500 and 5% probability level, forecasts from asymmetric slope CAViaR 

with ES modeled as multiple of VaR, jointly estimated by maximizing the AL likelihood. 

 

6.2. Evaluation of Post-Sample VaR and ES Forecasts 

For the 1000 post-sample periods, we evaluated the unconditional coverage of the VaR 

predictions using a test based on the binomial distribution to examine whether the percentage of 

observations falling below the corresponding quantile estimates is significantly different from 

the VaR probability level. We refer to the proportion as the hit percentage, and present the 

results in Table 1 for both the 1% and 5% probability levels. To save space, we do not report the 

results for historical simulation based on a moving window of 25 observations, as this was 
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comfortably outperformed by the use of 100 observations in the moving window. Table 1 shows 

reasonable results for all methods, except perhaps the historical simulation methods. 

 

Table 1. VaR unconditional coverage hit percentages. 
 

  1%     5%   

 FTSE NIKKEI S&P 
No. sig. 
at 5% 

 
FTSE NIKKEI S&P 

No. sig. 
at 5% 

Historical simulation          

     2500 observations 0.2* 0.3* 0.5 2  3.8 3.2* 3.9 1 

     100 observations 2.1* 2.1* 2.1* 3  5.0 5.2 5.5 0 

GARCH          

     Student t 1.1 1.0 1.8* 1  6.6* 5.2 6.0 1 

     Filtered historical simulation      0.7 0.9 1.7* 1  5.3 4.1 5.2 0 

     EVT  0.6 0.7 1.3 0  5.8 4.2 5.3 0 

GJRGARCH          

     Student t 1.8* 1.2 1.8* 2  6.3 4.7 6.2 0 

     Filtered historical simulation      1.0 0.9 1.8* 1  5.5 4.3 5.3 0 

     EVT 0.6 0.8 1.5 0  5.8 4.4 5.4 0 

Symmetric absolute value CAViaR          

     QR for VaR: ES = multiple of VaR 0.7 0.9 1.7* 1  5.6 4.0 5.6 0 

     QR for VaR: ES = mean exceedance 0.7 0.9 1.7* 1  5.6 4.0 5.6 0 

     QR for 7.5% with EVT 0.6 0.6 1.3 0  5.8 4.1 5.7 0 

     AL: ES = AR model 0.7 0.9 1.7* 1  5.8 4.2 5.4 0 

     AL: ES = multiple of VaR 0.7 0.9 1.7* 1  5.8 4.1 5.6 0 

Asymmetric slope CAViaR          

     QR for VaR: ES = multiple of VaR 0.9 0.7 1.7* 1  5.5 4.0 6.1 0 

     QR for VaR: ES = mean exceedance 0.9 0.7 1.7* 1  5.5 4.0 6.1 0 

     QR for 7.5% with EVT 0.9 0.9 1.2 0  6.0 4.0 5.0 0 

     AL: ES = AR model 1.0 0.7 1.6 0  5.6 3.7 6.1 0 

     AL: ES = multiple of VaR 0.9 0.7 1.7* 1  5.7 3.8 5.9 0 

Notes. Bold indicates best method in each column. Significance at 5% level indicated by *. 

 

We tested for conditional coverage using Engle and Manganelli’s (2004) dynamic 

quantile test. We included four lags in the test’s regression to give a test statistic that, under the 

null hypothesis of correct coverage, is distributed 2
(6). Table 2 provides the p-values for the 

test. The results for the simplistic historical simulation methods are poor. For the GARCH 
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models, there was benefit in using the asymmetric model for the 1% quantile. The results are 

reasonable for the models that involve CAViaR quantile formulations, with no clear superiority 

of one of these models over another. 

 

 

Table 2. VaR conditional coverage dynamic quantile test p-values. 

 
  1%     5%   

 FTSE NIKKEI S&P 
No. sig. 
at 5% 

 
FTSE NIKKEI S&P 

No. sig. 
at 5% 

Historical simulation          

     2500 observations 0.000 0.000 0.000 3  0.000 0.013 0.008 3 

     100 observations 0.000 0.000 0.000 3  0.000 0.000 0.000 3 

GARCH          

     Student t 0.273 0.148 0.005 1  0.223 0.715 0.099 0 

     Filtered historical simulation      0.001 0.059 0.004 2  0.868 0.289 0.090 0 

     EVT  0.704 0.002 0.000 2  0.873 0.358 0.095 0 

GJRGARCH          

     Student t 0.390 0.415 0.133 0  0.103 0.544 0.020 1 

     Filtered historical simulation      0.849 0.081 0.165 0  0.371 0.356 0.248 0 

     EVT 0.400 0.019 0.228 1  0.312 0.408 0.136 0 

Symmetric absolute value CAViaR          

     QR for VaR: ES = multiple of VaR 0.923 0.081 0.009 1  0.936 0.201 0.184 0 

     QR for VaR: ES = mean exceedance 0.923 0.081 0.009 1  0.936 0.201 0.184 0 

     QR for 7.5% with EVT 0.783 0.000 0.226 1  0.615 0.215 0.042 1 

     AL: ES = AR model 0.926 0.081 0.010 1  0.754 0.161 0.069 0 

     AL: ES = multiple of VaR 0.926 0.081 0.010 1  0.752 0.297 0.186 0 

Asymmetric slope CAViaR          

     QR for VaR: ES = multiple of VaR 0.972 0.002 0.372 1  0.642 0.169 0.060 0 

     QR for VaR: ES = mean exceedance 0.972 0.002 0.372 1  0.642 0.169 0.060 0 

     QR for 7.5% with EVT 0.630 0.064 0.195 0  0.500 0.180 0.243 0 

     AL: ES = AR model 0.991 0.002 0.346 1  0.646 0.194 0.060 0 

     AL: ES = multiple of VaR 0.988 0.002 0.377 1  0.621 0.333 0.146 0 

Notes. Bold indicates best method in each column.  

 

In addition to the coverage tests, we evaluated the VaR forecasts using the quantile score 

of expression (14). For each method, we calculated the ratio of the score to that of the historical 

simulation method involving 2500 observations, then subtracted this ratio from one, and 

multiplied the result by 100. We term this the quantile skill score, and present the results in 
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Table 3. It is essentially the quantile model pseudo R
2
 presented by Koenker and Machedo 

(1999). Higher values indicate superior accuracy. To summarize performance across the three 

series for each probability level, we calculated the geometric mean of the ratios of the score for 

each method to the score for the historical simulation reference method, then subtracted this from 

one, and multiplied the result by 100. The resulting values are presented in Table 3 in the 

columns entitled “Geo. Mean”. For both the GARCH and CAViaR-based methods, we see that 

the asymmetric versions were more accurate. The CAViaR-based methods compare well with 

the GARCH models. Although our main motivation for jointly modeling VaR and ES is to 

improve ES estimation, it is interesting to see that the best quantile score results, overall, are in 

the final row of Table 3, which corresponds to one of the new joint models. 

We implemented Diebold-Mariano tests to compare the quantile score for pairs of 

methods. We draw on the asymptotic results of Giacomini and White (2006) to justify our use of 

the Diebold-Mariano test without the need for a correction for parameter estimation error. This 

seems reasonable, as we are using moving windows of 2500 observations for estimation and a 

post-sample period of 1000 observations. (For insight into the conditions under which the 

asymptotic results of Giacomini and White apply, see Clark and McCracken 2012.) Due to the 

inherent variability in the quantile score, the test’s standard errors were high, and this resulted in 

few cases of statistical significance. In Table 3, the symbol * indicates that the quantile score for 

the method in that row was significantly worse (at the 5% significance level) than that of the 

method in the final row of the table, which corresponds to the model estimated using the AL 

likelihood, and ES modeled as a multiple of VaR. The symbol † indicates that the method in that 

row was significantly worse than that of the GJRGARCH model with EVT, which is one of the 

more competitive methods in Table 3. The symbol * occurs many more times than the symbol †, 

providing support for the new method in the final row of the table. 



 22 

Table 3. VaR evaluated using quantile skill score. 

 
  1%     5%   

 FTSE NIKKEI S&P 
Geo. 
Mean 

 
FTSE NIKKEI S&P 

Geo. 
Mean 

Historical simulation          

     100 observations 10.5
†
* -0.9

†
* 3.4

†
* 4.4  -2.6

†
* -0.5* -1.1

†
* -1.4 

GARCH          

     Student t 25.4 15.2 16.6* 19.2  7.3 1.8 7.1 5.4 

     Filtered historical simulation      24.0* 15.2 16.6* 18.7  7.9 1.1
†
* 7.3 5.5 

     EVT  23.5* 14.1
†
 17.6* 18.5  7.7 1.3* 7.3 5.5 

GJRGARCH          

     Student t 25.6* 20.0 20.4 22.1  9.0 3.0 8.3 6.8 

     Filtered historical simulation      26.0* 20.1 20.1 22.1  9.0 2.7 8.1 6.6 

     EVT 24.9* 19.8 21.5 22.1  9.1 2.7 8.2 6.7 

Symmetric absolute value CAViaR          

     QR for VaR: ES = multiple of VaR 26.0 17.8 18.5 20.8  8.7 1.1* 6.8 5.6 

     QR for VaR: ES = mean exceedance 26.0 17.8 18.5 20.8  8.7 1.1* 6.8 5.6 

     QR for 7.5% with EVT 26.1 12.2 17.2 18.7  8.6 1.8 6.8 5.8 

     AL: ES = AR model 26.0 17.8 18.5 20.9  8.5 0.8* 6.5 5.3 

     AL: ES = multiple of VaR 26.0 18.1 18.7 21.0  8.4 1.3* 6.9 5.6 

Asymmetric slope CAViaR          

     QR for VaR: ES = multiple of VaR 26.8 18.8 20.5 22.1  9.7 3.1 8.1 7.0 

     QR for VaR: ES = mean exceedance 26.8 18.8 20.5 22.1  9.7 3.1 8.1 7.0 

     QR for 7.5% with EVT 26.6* 16.7 21.9 21.8  10.0 2.9 8.9 7.3 

     AL: ES = AR model 27.7 18.5 20.6 22.4  9.8 3.1* 8.0 7.0 

     AL: ES = multiple of VaR 28.3 19.2 20.7 22.8  10.0 3.5 8.3 7.3 

Notes. Higher values are better. Bold indicates best method in each column.  

† indicates score is significantly worse than ‘GJRGARCH-EVT’ at 5% level using Diebold-Mariano test. 

* indicates score is significantly worse than ‘AL: ES = multiple of VaR’ at 5% level using Diebold-Mariano test. 

 

To evaluate the ES forecasts, we first used McNeil and Frey’s (2000) bootstrap test, 

which we discussed in Section 5.1. We standardized by dividing each discrepancy by the 

corresponding VaR estimate. The results, which are shown in Table 4, provide little insight into 

the relative performance of the methods. This motivates the use of an additional approach to 

evaluating ES forecast accuracy. 
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Table 4. ES evaluated using p-values for bootstrap test for zero mean VaR exceedances.  

 
  1%     5%   

 FTSE NIKKEI S&P 
No. sig. 
at 5% 

 
FTSE NIKKEI S&P 

No. sig. 
at 5% 

Historical simulation          

     2500 observations 0.511 0.513 0.647 0  0.003 0.414 0.111 1 

     100 observations 0.456 0.339 0.157 0  0.038 0.404 0.705 1 

GARCH          

     Student t 0.328 0.283 0.992 0  0.597 0.883 0.054 0 

     Filtered historical simulation      0.068 0.739 0.516 0  0.137 0.888 0.155 0 

     EVT  0.020 0.445 0.710 1  0.013 0.960 0.216 1 

GJRGARCH          

     Student t 0.264 0.884 0.657 0  0.459 0.571 0.012 1 

     Filtered historical simulation      0.449 0.931 0.195 0  0.666 0.953 0.017 1 

     EVT 0.695 0.950 0.288 0  0.237 0.820 0.027 1 

Symmetric absolute value CAViaR          

     QR for VaR: ES = multiple of VaR 0.624 0.901 0.987 0  0.040 0.824 0.117 1 

     QR for VaR: ES = mean exceedance 0.020 0.815 0.468 1  0.001 0.540 0.653 1 

     QR for 7.5% with EVT 0.208 0.347 0.880 0  0.017 0.951 0.422 1 

     AL: ES = AR model 0.371 0.608 0.510 0  0.103 0.782 0.408 0 

     AL: ES = multiple of VaR 0.354 0.830 0.571 0  0.027 0.924 0.374 1 

Asymmetric slope CAViaR          

     QR for VaR: ES = multiple of VaR 0.485 0.291 0.854 0  0.041 0.177 0.025 2 

     QR for VaR: ES = mean exceedance 0.374 0.655 0.324 0  0.197 0.578 0.827 0 

     QR for 7.5% with EVT 0.360 0.426 0.967 0  0.565 0.476 0.008 1 

     AL: ES = AR model 0.124 0.303 0.753 0  0.202 0.581 0.080 0 

     AL: ES = multiple of VaR 0.437 0.459 0.643 0  0.804 0.606 0.036 1 

Notes. Bold indicates best method in each column.  

 

In Section 5.2, we introduced the AL log score of expression (19) for jointly evaluating 

VaR and ES forecasts. In Table 5, we show the AL log skill score, which we calculated as the 

ratio of a method’s AL log score to that of historical simulation using 2500 observations, then 

subtracted one from this ratio, and multiplied the result by 100. Higher values are preferable for 

this skill score, which can be viewed as a pseudo R
2
 for jointly evaluating VaR and ES 

predictions. As with the quantile skill score, we summarize across the three series using the 

geometric mean. The table shows that, overall, the best AL log skill score results are in the final 
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row, which corresponds to the joint model estimated by maximizing the AL likelihood, and with 

ES modeled as a multiple of VaR. The asymmetric slope CAViaR model with EVT and the 

GJRGARCH model with EVT also performed well.  

As with the quantile score, we implemented Diebold-Mariano tests to compare the AL 

log score for pairs of methods. In Table 5, the symbols * and † have the same interpretations as 

in Table 3. In Table 5, the symbol * occurs approximately twice as many times as the symbol †, 

providing support for the new method in the final row of the table. 

 

 

Table 5. VaR and ES evaluated using AL log skill score. 
 

  1%     5%   

 FTSE NIKKEI S&P 
Geo. 
Mean 

 
FTSE NIKKEI S&P 

Geo. 
Mean 

Historical simulation          

     100 observations 6.4
†
* -3.5

†
* -0.4

†
* 0.7  0.0

†
* -0.8

†
* 0.4

†
* -0.2 

GARCH          

     Student t 16.6 12.8 11.4* 13.6  4.9* 3.1 4.4 4.1 

     Filtered historical simulation      15.8 13.0 11.8* 13.5  5.3 2.9
†
* 4.8 4.3 

     EVT  15.4 12.4
†
 13.1 13.6  5.2 3.0

†
* 4.8 4.3 

GJRGARCH          

     Student t 16.2 17.7 13.0 15.6  5.6* 4.2 5.1 5.0 

     Filtered historical simulation      16.6* 17.6 13.0 15.8  5.9 4.1 5.5 5.2 

     EVT 16.3* 17.4 14.9 16.2  5.9 4.1 5.5 5.2 

Symmetric absolute value CAViaR          

     QR for VaR: ES = multiple of VaR 17.6 16.2 13.1 15.6  5.9 2.9* 4.9 4.6 

     QR for VaR: ES = mean exceedance 17.4 15.8 13.3 15.5  5.8 2.8
†
* 5.1 4.5 

     QR for 7.5% with EVT 17.4 10.3
†
 12.9 13.5  5.9 2.8* 4.8 4.5 

     AL: ES = AR model 17.6 15.7 13.0 15.4  5.8 2.8* 4.9 4.5 

     AL: ES = multiple of VaR 17.6 16.3 13.7 15.8  5.8 3.0* 5.0 4.6 

Asymmetric slope CAViaR          

     QR for VaR: ES = multiple of VaR 17.1 17.0 14.3 16.1  6.0 4.1 5.5 5.2 

     QR for VaR: ES = mean exceedance 17.4 16.6 14.5 16.2  6.3 4.0* 5.8 5.4 

     QR for 7.5% with EVT 17.2* 14.9 15.7 15.9  6.5 3.8 6.2 5.5 

     AL: ES = AR model 18.0 16.6 14.3 16.3  6.4 4.2 5.9 5.5 

     AL: ES = multiple of VaR 18.1 17.2 14.4 16.6  6.4 4.4 5.6 5.5 

Notes. Higher values are better. Bold indicates best method in each column.  

† indicates score is significantly worse than ‘GJRGARCH-EVT’ at 5% level using Diebold-Mariano test. 

* indicates score is significantly worse than ‘AL: ES = multiple of VaR’ at 5% level using Diebold-Mariano test. 
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Table 6. VaR and ES evaluated using FZG skill score. 
  

  1%     5%   

 FTSE NIKKEI S&P 
Geo. 
Mean 

 
FTSE NIKKEI S&P 

Geo. 
Mean 

Historical simulation          

     100 observations 10.6
†
* -0.9

†
* 3.5

†
* 4.3  -2.6

†
* -0.5* -1.1

†
* -1.4 

GARCH          

     Student t 25.5 15.4 16.8* 19.2  7.4 1.9 7.2 5.5 

     Filtered historical simulation      24.1* 15.4 16.8* 18.7  8.0 1.3
†
* 7.5 5.5 

     EVT  23.6* 14.3
†
 17.8* 18.5  7.8 1.5* 7.4 5.5 

GJRGARCH          

     Student t 25.8* 20.3 20.6 22.2  9.1 3.2 8.5 6.9 

     Filtered historical simulation      26.1* 20.4 20.3 22.2  9.2 2.8 8.3 6.7 

     EVT 25.0* 20.1 21.7 22.3  9.2 2.8 8.4 6.8 

Symmetric absolute value CAViaR          

     QR for VaR: ES = multiple of VaR 26.1 18.1 18.7 20.9  8.8 1.3* 7.0 5.6 

     QR for VaR: ES = mean exceedance 26.1 18.1 18.7 20.9  8.8 1.3* 7.0 5.6 

     QR for 7.5% with EVT 26.3 12.3 17.4 18.5  8.7 1.9 6.9 5.8 

     AL: ES = AR model 26.2 18.1 18.7 20.9  8.6 1.0* 6.7 5.4 

     AL: ES = multiple of VaR 26.2 18.4 18.9 21.1  8.6 1.4* 7.0 5.6 

Asymmetric slope CAViaR          

     QR for VaR: ES = multiple of VaR 27.0 19.1 20.7 22.2  9.9 3.2 8.3 7.1 

     QR for VaR: ES = mean exceedance 27.0 19.1 20.7 22.2  9.9 3.2 8.3 7.1 

     QR for 7.5% with EVT 26.8* 16.9 22.2 21.9  10.2 3.1 9.1 7.4 

     AL: ES = AR model 27.9 18.7 20.8 22.4  9.9 3.2* 8.1 7.1 

     AL: ES = multiple of VaR 28.4 19.5 20.9 22.9  10.1 3.6 8.5 7.4 

Notes. Higher values are better. Bold indicates best method in each column.  

† indicates score is significantly worse than ‘GJRGARCH-EVT’ at 5% level using Diebold-Mariano test. 

* indicates score is significantly worse than ‘AL: ES = multiple of VaR’ at 5% level using Diebold-Mariano test. 

 

Our use of the AL log score to evaluate VaR and ES forecasts could perhaps be viewed 

as giving an unfair advantage to methods estimated using the AL log-likelihood. We, therefore, 

also evaluate VaR and ES using the FZG and AS scores, which we described in Section 5.2, and 

presented in expressions (16) and (17), respectively. Tables 6 and 7 present the skill score values 

corresponding to these two scores, with benchmark method again chosen as historical simulation 

using 2500 observations. Higher values are again preferable for the skill scores. The results of 

Tables 6 and 7 are broadly consistent with those for the AL log score in Table 5, with the 



 26 

GJRGARCH methods performing relatively well, and the best results overall produced by the 

joint model estimated using the AL likelihood, and with ES modeled as a multiple of VaR. 

 

Table 7. VaR and ES evaluated using AS skill score.  
 

  1%     5%   

 FTSE NIKKEI S&P 
Geo. 
Mean 

 
FTSE NIKKEI S&P 

Geo. 
Mean 

Historical simulation          

     100 observations 20.0
†
* 1.8

†
 10.9

†
* 10.6  -1.6

†
* -2.2* -2.2

†
* -2.0 

GARCH          

     Student t 42.7 20.3 26.8* 29.6  13.7 3.2 12.3 9.6 

     Filtered historical simulation      40.3* 20.4 26.4* 28.8  14.0 2.0* 12.4 9.4 

     EVT  38.9* 19.1 26.6* 27.9  13.9 2.3 12.4 9.4 

GJRGARCH          

     Student t 43.5* 28.1 34.3 35.1  15.9 5.2 14.4 11.7 

     Filtered historical simulation      43.3* 28.5 34.0 35.2  15.4* 4.5 13.4 11.0 

     EVT 40.5* 28.4 34.4 34.3  15.7 4.5 13.8 11.2 

Symmetric absolute value CAViaR          

     QR for VaR: ES = multiple of VaR 42.2* 24.9 27.3 31.3  15.3 2.0* 10.2 9.0 

     QR for VaR: ES = mean exceedance 42.2* 24.4 27.5 31.1  15.3 1.9* 10.3 9.0 

     QR for 7.5% with EVT 42.3* 15.0 24.4* 26.8  15.1 2.7 10.0 9.1 

     AL: ES = AR model 42.1* 24.6 27.1 31.0  14.9 1.4* 9.8 8.6 

     AL: ES = multiple of VaR 41.9* 25.4 27.7 31.5  14.9 2.3* 10.3 9.0 

Asymmetric slope CAViaR          

     QR for VaR: ES = multiple of VaR 44.9 26.6 32.1 34.3  16.6 5.1 13.6 11.7 

     QR for VaR: ES = mean exceedance 45.0 26.2 32.0 34.2  16.8 4.8* 13.6 11.6 

     QR for 7.5% with EVT 43.9* 22.7 33.6 33.1  17.1 5.1 14.2 12.0 

     AL: ES = AR model 46.4 25.6 31.8 34.3  16.8 4.7* 13.6 11.6 

     AL: ES = multiple of VaR 47.1 27.9 32.7 35.7  16.9 5.5 13.9 12.0 

Notes. Higher values are better. Bold indicates best method in each column.  

† indicates score is significantly worse than ‘GJRGARCH-EVT’ at 5% level using Diebold-Mariano test. 

* indicates score is significantly worse than ‘AL: ES = multiple of VaR’ at 5% level using Diebold-Mariano test. 
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Table 8. VaR and ES evaluated using AL log skill score. Method parameters estimated without 

the period of the Global Financial Crisis. 
 

  1%     5%   

 FTSE NIKKEI S&P 
Geo. 
Mean 

 
FTSE NIKKEI S&P 

Geo. 
Mean 

Historical simulation          

     100 observations 6.4
†
* -3.5

†
* -0.4

†
* 0.7  0.0

†
* -0.8

†
* 0.4

†
* -0.2 

GARCH          

     Student t 16.4 12.0 10.8 13.0  4.8 3.0 4.2 4.0 

     Filtered historical simulation      15.9 12.3 11.0 13.0  5.3 2.9
†
* 4.6 4.2 

     EVT  15.6 11.8
†
 12.5 13.3  5.1 2.9

†
* 4.6 4.2 

GJRGARCH          

     Student t 15.6 17.1 12.5 15.1  5.5
†
* 4.1 5.0

†
 4.9 

     Filtered historical simulation      16.6 17.1 13.0
†
 15.5  5.9 4.0 5.5 5.1 

     EVT 16.8 16.9 14.8 16.2  5.9 4.0 5.5 5.1 

Symmetric absolute value CAViaR          

     QR for VaR: ES = multiple of VaR 18.2 15.4 11.1 14.9  5.8 3.1* 4.7 4.6 

     QR for VaR: ES = mean exceedance 17.9 15.1 11.4 14.8  5.8 2.9* 4.8 4.5 

     QR for 7.5% with EVT 17.4 11.3 12.4 13.7  5.6 3.2* 4.6 4.5 

     AL: ES = AR model 18.3 15.0 10.5 14.5  5.6 3.1* 4.7 4.5 

     AL: ES = multiple of VaR 18.5 16.0 11.2 15.2  5.7 3.2* 4.8 4.6 

Asymmetric slope CAViaR          

     QR for VaR: ES = multiple of VaR 16.9 16.4 11.2 14.8  5.9 4.3 3.9* 4.7 

     QR for VaR: ES = mean exceedance 17.1 16.1 11.6 14.9  6.2 4.1* 4.6 4.9 

     QR for 7.5% with EVT 16.5 17.1 11.3 14.9  6.2 4.4 4.5 5.0 

     AL: ES = AR model 17.1 16.1 11.2 14.7  6.4 4.3* 5.3 5.3 

     AL: ES = multiple of VaR 17.4 16.8 11.4 15.2  6.3 4.6 5.0 5.3 

Notes. Higher values are better. Bold indicates best method in each column.  

† indicates score is significantly worse than ‘GJRGARCH-EVT’ at 5% level using Diebold-Mariano test. 

* indicates score is significantly worse than ‘AL: ES = multiple of VaR’ at 5% level using Diebold-Mariano test. 

 

6.3. Influence of the Global Financial Crisis on VaR and ES Forecast Accuracy 

 A consequence of our dataset of 3500 periods ending on 16 April 2013 was that all 

estimation samples contained the period covering the height of the global financial crisis. To try 

to assess the influence of the crisis period on our results, we repeated our empirical study with 

observations 2251 to 2500 omitted from the objective functions used for parameter estimation 

for the various methods. These omitted observations covered the approximately 1-year periods 
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starting on 6 May 2008, 11 March 2008 and 29 April 2008, for the FTSE 100, NIKKEI 225 and 

S&P 500, respectively. Table 8 reports the resulting AL log skill scores. Comparing this table 

with our original results for this measure in Table 5, we see that, in general, the accuracy of the 

methods worsened when the crisis period was omitted from the estimation sample. This was 

most noticeable for the CAViaR-based methods when estimating the 1% quantile of the S&P 

500. It is interesting to note that the GJRGARCH model with EVT was least affected by the 

removal of the crisis period from the parameter estimation.  

 

7. SUMMARY 

Using quantile regression to estimate VaR models has the appeal that it allows the 

quantile dynamics to differ for different probability levels. However, it leaves open the question 

of how to estimate ES. To address this, we have proposed that estimation is performed by 

maximum likelihood based on an AL density. The location of the density is the quantile, and the 

scale is a simple function of ES. This estimation framework avoids a distributional assumption, 

and enables joint modeling of the time-varying conditional VaR and ES. Estimating VaR and ES 

in one step has theoretical appeal in terms of efficiency, as well as being convenient from a 

practical perspective. In addition to its use for estimation, we have proposed that the AL 

likelihood be used to evaluate post-sample VaR and ES forecasts. The work of Fissler and Ziegel 

(2016) has enabled us to provide theoretical support for this, and hence for the use of an AL 

likelihood to estimate joint models for VaR and ES. Using stock index data, we evaluated the 

forecasts from joint models of VaR and ES estimated in this way. The results were promising, 

with benchmark methods not able to outperform the model consisting of an asymmetric slope 

CAViaR formulation for VaR, and ES expressed simply as a constant multiple of VaR. This 

model, estimated using the AL likelihood, provides a simple extension of the CAViaR approach 
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to enable simultaneous VaR and ES estimation in a semiparametric framework. Although we 

have focused on CAViaR models, our approach can be used for other types of VaR models 

estimated using quantile regression, such as models with independent variables, or models for 

multiple dependent variables and probability levels (see White, Kim and Manganelli 2015). 
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