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Generating Volatility Forecasts from Value at Risk Estimates 
 

Abstract 

Statistical volatility models rely on the assumption that the shape of the conditional distribution is 

fixed over time and that it is only the volatility that varies. The recently proposed conditional 

autoregressive value at risk (CAViaR) models require no such assumption, and allow quantiles to be 

modelled directly in an autoregressive framework. Although useful for risk management, CAViaR 

models do not provide volatility forecasts, which are needed for several other important applications, 

such as option pricing and portfolio management. It has been found that, for a variety of probability 

distributions, there is a surprising constancy of the ratio of the standard deviation to the interval 

between symmetric quantiles in the tails of the distribution, such as the 0.025 and 0.975 quantiles. 

This result has been used in decision and risk analysis to provide an approximation of the standard 

deviation in terms of quantile estimates provided by experts. Drawing on the same result, we 

construct financial volatility forecasts as simple functions of the interval between CAViaR forecasts 

of symmetric quantiles. Forecast comparison, using five stock indices and 20 individual stocks, shows 

that the method is able to outperform GARCH models and moving average methods.  
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1.  Introduction 

Volatility forecasting is important for many financial market applications, including option 

pricing and investment decisions. The empirical finding that series of returns often exhibit volatility 

clustering has led to the development of a variety of univariate time series methods for volatility 

forecasting. The popular GARCH class of models, as well as stochastic volatility models, rely on the 

assumption that the shape of the conditional distribution is fixed over time and that it is only the 

conditional volatility, and sometimes the conditional mean, that are assumed to vary. For example, 

the Gaussian or Student-t distribution is usually used within the GARCH maximum likelihood 

estimation procedure. If there is variation over time in the shape of the distribution, this is a likely 

source of error for the volatility forecasts produced by these models. By contrast, the recently 

proposed conditional autoregressive value at risk (CAViaR) models of Engle and Manganelli (2004) 

require no distributional assumptions. These models allow quantiles to be modelled directly in an 

autoregressive framework. The θ quantile of a financial return, rt, is known as the value at risk (VaR), 

and is defined as the value, Qt(θ), for which P(rt≤Qt(θ))=θ.  As VaR is a risk management tool, the 

quantiles of interest are in the tails of the distribution. Although useful for risk management, CAViaR 

models do not provide volatility estimates. However, the appeal of CAViaR models in describing the 

behaviour of prices motivates consideration of how volatility forecasts might be derived from 

CAViaR quantile forecasts. 

 The problem of estimating the variance of a distribution from a small number of quantile 

estimates exists in several decision and risk analysis applications (Keefer and Bodily 1983). For 

example, in PERT analysis, estimates of the mean and variance of a distribution must often be 

derived from judgementally assessed quantile estimates. The results of Pearson and Tukey (1965) are 

frequently used to address this problem. They show that, for a variety of probability distributions, 

there is a surprising constancy of the ratio of the standard deviation to the interval between symmetric 

tail quantiles, Q(θ) and Q(1-θ). For example, they conclude that a simple approximation to the 

standard deviation is provided by the interval between Q(0.025) and Q(0.975) divided by 3.92. 

Clearly, this value would be appropriate if the distribution was Gaussian, but the interesting point is 

that it is also approximately correct for a variety of distributions. This suggests that, even though the 
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conditional volatility and distribution of financial returns may vary over time, the conditional 

volatility can be approximated by a constant simple function of the interval between symmetric 

conditional quantiles. This provides us with a basis for constructing volatility forecasts from quantile 

forecasts produced by CAViaR models or, indeed, other VaR methods. If CAViaR models are used, 

our proposed method constructs volatility forecasts from separate autoregressive models for the left-tail 

and right-tail quantiles, Q(θ) and Q(1-θ), respectively. By contrast, GARCH models use only an 

autoregressive model for the variance. If the left and right tails of the conditional distribution are driven 

by different forces over time, our approach should capture the evolution of the variance better than 

GARCH models. 

In Sections 2 and 3, we briefly review the literatures on volatility forecasting and VaR 

estimation, respectively. Section 4 describes the new volatility forecasting method. In Section 5, we 

consider the method’s news impact curve and evaluate the method’s forecasting performance. Section 6 

provides a summary and concluding comments. 

 

2.  Volatility Forecasting 

Volatility forecasts are produced by either market-based methods or time series methods. 

Market-based forecasting involves the calculation of implied volatility from current option prices by 

solving the Black and Scholes option pricing model for the volatility that results in a price equal to 

the market price. In this paper, our focus is on the development of a new time series method. These 

methods provide estimates of the conditional variance, )var( 1
2

−= ttt Irσ , of the log return, rt, at time t 

conditional upon It-1, the information set of all observed returns up to time t-1. This can be viewed as the 

variance of an error (or residual) term, εt, defined by )( 1−−= tttt IrErε , where )( 1−tt IrE  is a 

conditional mean term, which is often assumed to be zero or a constant. εt is often referred to as the 

price “shock” or “news”. In the next two sections, we review the two most popular times series 

approaches: moving averages and GARCH models.  
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2.1.  Moving Averages 

The simplest approach to volatility forecasting is to estimate the variance as a simple moving 

average of past squared shocks. A problem with this method is that the choice of how many past periods 

to include in the moving average is arbitrary. Including too few observations will lead to large 

sampling error, while using too many will result in predictions that are slow to react to changes in the 

true volatility. This issue and the strong appeal in giving more weight to more recent observations 

motivate the use of an exponentially weighted moving average of past squared shocks. If a long history 

of observations is used, the one step-ahead variance estimator, 2
1ˆ +tσ , can be written in the simple 

exponential smoothing recursive form with smoothing parameter, α: 

222
1 1 ttt σααεσ ˆ)(ˆ −+=+  

Although for daily returns a value of 0.06 has been recommended for α (RiskMetrics 1996), a 

more appealing approach is to optimise the parameter value by minimising the in-sample sum of squared 

deviations between the variance forecasts, 2
1ˆ +tσ , and the squared error, 2

1+tε , which serves as a proxy for 

actual variance, which is unobservable. For moving average and exponential smoothing methods, the 

multiperiod variance forecast, 2
,ˆ ktσ , made from origin t, for the return over a holding period consisting 

of the next k-periods is calculated by simply multiplying the one step-ahead forecast, 2
1ˆ +tσ , by k.  

 

2.2.  GARCH Models 

Generalized autoregressive conditional heteroskedasticity (GARCH) models (see Engle 1982 

and Bollerslev 1986) are the most widely used statistical models for volatility. GARCH models express 

the conditional variance as a linear function of lagged squared error terms and lagged conditional 

variance terms. For example, the GARCH(1,1) model is shown in the following expression 

2
1

2
1

2
−− ++= ttt σβεαωσ  

where ω, α and β are parameters. The multiperiod variance forecast, 2
,ˆ ktσ , is calculated as the sum of 

the variance forecasts for each of the k periods making up the holding period. 
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where 2
1ˆ +tσ  is the one step-ahead variance forecast. Empirical results for the GARCH(1,1) model have 

shown that often β ≈ (1-α). The model in which β = (1-α) is termed integrated GARCH (IGARCH) 

(see Nelson 1990). Exponential smoothing has the same formulation as the IGARCH(1,1) model with 

the additional restriction that ω = 0. The IGARCH(1,1) multiperiod forecast is written as 

( ) 2
12

12
, ˆ1ˆ ++−= tkt kkk σωσ      (2) 

Stock return volatility is often found to be greater following a negative return than a positive 

return of equal size. This “leverage effect” has prompted the development of a number of GARCH 

models that allow for asymmetry. The first asymmetric formulation was the exponential GARCH 

model of Nelson (1991). In this log formulation for volatility, the impact of lagged squared residuals 

is exponential, which may exaggerate the impact of large shocks. A simpler asymmetric model is the 

GJRGARCH model of Glosten et al. (1993). The GJRGARCH(1,1) model is given by  

2
1

2
11

2
11

2 ])0[(])0[1( −−−−− +>+>−+= tttttt II σβεγεεαεωσ  

where ω, α, γ and β are parameters; and I[·] is the indicator function. Typically, it is found that α >γ, 

which indicates the presence of the leverage effect. The assumption that the median of the distribution 

of εt is zero implies that the expectation of the indicator function is 0.5, which enables the derivation 

of the following multiperiod forecast expression: 
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 GARCH parameters are estimated by maximum likelihood, which requires the assumption 

that the standardised errors, εt /σt, are independent and identically distributed (i.i.d.). Although a 

Gaussian assumption is common, the distribution is often fat tailed, which has prompted the use of 

the Student-t distribution (Bollerslev 1987) and the generalised error distribution (Nelson 1991).  

Stochastic volatility models provide an alternative statistical volatility modelling approach 

(see Ghysels et al. 1996). However, estimation of these models has proved difficult and consequently, 

they are not as widely used as GARCH models. Andersen et al. (2003) show how daily exchange rate 

volatility can be forecasted by fitting long-memory, or fractionally-integrated, autoregressive and 

vector autoregressive models to the log of realised daily volatility constructed from half-hourly 
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returns. Although results for this approach are impressive, such high frequency data is not available to 

many forecasters and so there is still great interest in methods applied to daily data. A useful review 

of the volatility forecasting literature is provided by Poon and Granger (2003). 

 

3.  Value at Risk Methods 

Manganelli and Engle (2004) describe how the VaR literature contains three different 

categories of methods: parametric, nonparametric and semiparametric. Parametric approaches 

involve a parameterisation of the behaviour of prices. Quantiles are estimated using a volatility 

forecast with an assumption for the type of the distribution, such as Gaussian. Typically, exponential 

smoothing or a GARCH model is used to forecast the volatility.  

The most widely used nonparametric method is historical simulation, which requires no 

distributional assumptions and estimates the VaR as the quantile of the empirical distribution of 

historical returns from a moving window of the most recent periods. The same issues that motivated 

the use of exponentially weighted moving averages for volatility forecasting (see Section 2.1) 

prompted Boudoukh et al. (1998) to propose the analogy of this method for quantiles. We term this 

the BRW method. It involves allocating to the most recent n returns, exponentially decreasing 

weights, which sum to one, 12
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K . The returns are then 

ordered in ascending order and, starting at the lowest return, the weights are summed until a value of 

θ is reached. The θ quantile estimate is set as the return that corresponds to the final weight used in 

this summation. Linear interpolation is used if the estimate falls between two returns. Boudoukh et al. 

experimented with arbitrary choices of 0.97 and 0.99 for the parameter λ.  

Included in the semiparametric VaR category are methods that use extreme value theory  and 

methods that use quantile regression, such as the CAViaR models introduced by Engle and 

Manganelli (2004). CAViaR models involve direct autoregressive modelling of the conditional 

quantiles and thus do not involve any distributional assumptions. Engle and Manganelli present the 

following four CAViaR models:  
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  Indirect GARCH(1,1) CAViaR:      ( )( )2
1

2
1

2
1 )(]5.0[21)( −− ++<−= ttt QIQ εβθαωθθ   (4) 

 
  Adaptive CAViaR:        [ ]( ))()()( 111 θεθαθθ −−− ≤−+= tttt QIQQ    (5) 
 
  Symmetric Absolute Value CAViaR:     11 )()( −− ++= ttt QQ εβθαωθ      (6) 
 
  Asymmetric Slope CAViaR:      −

−
+

−− +++= )()()()( 12111 tttt QQ εβεβθαωθ   (7) 
 

where Qt(θ) is the conditional θ quantile; ω, α, β and βi are parameters; and (x)+ = max(x,0) and (x)- = 

min(x,0). 

If the error term standardised by the GARCH(1,1) volatility estimate, εt /σt, is i.i.d., the Indirect 

GARCH(1,1) CAViaR model is the same as the GARCH(1,1) model. The indicator function in the 

Adaptive CAViaR model has the effect of reducing the next quantile estimate if, in the current period, the 

quantile estimate is greater than the error. If the error exceeds the Adaptive model quantile estimate, 

the next estimate is increased. The Symmetric Absolute Value and the Asymmetric Slope CAViaR 

models rely on the magnitude of the error, rather than the squared error as in GARCH models. The 

Asymmetric Slope model was designed specifically to model the asymmetric leverage effect.  

CAViaR model parameters are estimated using the quantile regression minimisation in 

expression (8), which was introduced by Koenker and Bassett (1978).  

( )
( )

( ) ( )
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+− ∑∑

<≥ θθ

θθθθ
tttt Qyt

tt
Qyt

tt QyQy
||

1min     (8) 

where ( )θtQ is the model for the θ quantile of the dependent variable yt. White (1994) presents 

theoretical support for the use of quantile regression to estimate non-linear quantile models. Engle and 

Manganelli (2004) provide results for the asymptotic distribution of the CAViaR parameter estimates so 

that tests of significance can be performed. In this paper, we consider how CAViaR quantile forecasts 

can be used to construct volatility forecasts. 
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4.  Using Value at Risk Estimates to Generate Volatility Forecasts  

4.1.  Approximating Standard Deviations Using the Interval Between Symmetric Quantiles 

In decision and risk analysis, it is often useful to approximate a probability distribution by a 

small number of quantile estimates. For example, a distribution may be needed for a Monte Carlo 

simulation, but the only information available may be judgementally assessed quantiles (see Keefer 

1994, Clemen 1996). In other applications, such as PERT analysis, expert assessments of quantiles 

are sometimes used to estimate the mean and variance (see Keefer and Verdini 1993). The work of 

Pearson and Tukey (1965) has been influential in addressing these issues. 

Pearson and Tukey found that the ratio of the standard deviation to the interval between 

symmetric quantiles, Q(θ) and Q(1-θ), in the tails of the distribution is remarkably constant for a 

variety of distributions. Their analysis considered 98%, 95% and 90% intervals. They propose the 

following simple approximations for the standard deviation in terms of estimated tail quantiles: 

         
65.4

)01.0(ˆ)99.0(ˆ
ˆ QQ −

=σ             
92.3

)025.0(ˆ)975.0(ˆ
ˆ QQ −

=σ             
25.3

)05.0(ˆ)95.0(ˆ
ˆ QQ −

=σ             (9) 

Note that, for a Gaussian distribution, the correct denominators in this expression would be: 

2×2.326=4.653, 2×1.960=3.920 and 2×1.645=3.290, respectively. Pearson and Tukey show that the 

accuracy of these approximations depends on the values of the skewness and kurtosis of the 

distribution. They found that the approximation based on the 90% interval was the most robust to 

different skewness and kurtosis values.  

 

4.2.  Forecasting Volatility Using the Interval Between Symmetric VaR Quantile Forecasts 

 The Pearson and Tukey (1965) approximations in expression (9) provide a convenient basis 

from which to generate volatility forecasts for financial returns from quantile estimates produced by 

VaR methods, most notably CAViaR models. By contrast with the use of the approximations in 

decision and risk analysis, in the context of financial returns, we have historical times series of 

quantile estimates and of realisations from the returns distribution. This enables estimation of 

parameters for the approximations in expression (9), rather than reliance on the Pearson and Tukey 

values in each denominator. We propose a least squares (LS) regression of the squared errors, εi
2, 
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which act as a proxy for actual variance, on the square of the interval between symmetric quantile 

estimates. One step-ahead quantile forecasts, )1(ˆ
1 θ−+tQ  and )(ˆ

1 θ+tQ , can then be substituted into the 

resultant model to deliver one step-ahead variance predictions as in the following expression: 

( )2

1111
2

1 )(ˆ)1(ˆˆ θθβασ +++ −−+= ttt QQ                (10) 

where α1 and β1 are the parameters estimated by the LS regression. 

The simplest approach to generating multiperiod variance forecasts is to multiply the one 

step-ahead forecasts by the duration, k, of the holding period, which is the approach used for moving 

average methods discussed in Section 2.1. However, this approach requires the assumption that the 

variance is constant for each day in the holding period. This assumption is reasonable if the quantile 

forecasts are produced by the historical simulation method, the BRW method, or the Adaptive 

CAViaR model. However, it is inappropriate if the quantile forecasts come from one of the other 

CAViaR models. Unfortunately, analytical formulae for multiperiod quantile forecasts from these 

models do not exist. A rather complex simulation could be used to produce these multiperiod 

forecasts. But as a simpler alternative, we propose that, for each holding period, a separate LS 

regression is run of the realised multiperiod variance, 2
,kRtσ , on the square of the interval between 

symmetric quantile estimates, ( )2

11 )(ˆ)1(ˆ θθ ++ −− tt QQ . For daily returns, if we make the reasonable 

assumptions that the conditional mean is constant over the k days and that there is no autocorrelation 

between successive daily shocks, then, for the holding period of duration k days starting in period t+1, 

the realised multiperiod variance can be calculated as  

∑
=

+=
k

i
itkRt

1

22
, εσ                  (11) 

The multiperiod variance forecasts are then produced by substituting one step-ahead quantile 

forecasts into the resultant model as in the following expression: 

( )2

11
2
, )(ˆ)1(ˆˆ θθβασ ++ −−+= ttkkkt QQ                (12) 

where αk and βk are the parameters estimated by the LS regression.  

 The volatility forecasting approach that we have described is a two-stage method. First, the 

parameters of the θ and (1-θ) quantile models are estimated, and then, in a second stage, the 
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parameters in expression (10) or (12) are estimated. This procedure could possibly be made more 

efficient if all the parameters are estimated simultaneously. This would require the extension of the 

CAViaR models to the bivariate case where θ and (1-θ) quantile processes are modelled together in 

order to capture their potential interactions. We reserve consideration of this for future work, and in 

all empirical work in this paper we use the simpler two-stage estimation approach.  

It is worth noting that the regressions in expressions (10) and (12) can be viewed as restricted 

versions of more general regressions. For example, expression (10) can be written as the following: 

)(ˆ)1(ˆ)(ˆ)1(ˆˆ 113
2

12
2

111
2

1 θθβθβθβασ +++++ −++−+= ttttt QQQQ              (13) 

where the restrictions are β2=β1 and β3=-2β1. Firstly, these restrictions could be tested, and, secondly, 

there may be benefit in using the unrestricted regressions to produce forecasts.  

Instead of basing the approach on the Pearson and Tukey approximations, one might also 

consider one of the proposed modifications (e.g., Moder and Rogers 1968, Keefer and Bodily 1983, 

Johnson 2002). However, several of these modifications use the median, and this is unlikely to be 

beneficial as the median is very often close to zero for daily financial returns. 

Our proposal to estimate volatility by using the interval between quantiles in the tails of the 

distribution has similarities with range-based volatility estimation (e.g., Parkinson 1980, Garman and 

Klass 1980, Alizadeh et al. 2002, Brandt and Diebold 2005). This class of methods bases estimation 

on the difference between the highest and lowest log price, which are essentially the quantiles 

corresponding to θ=1 and θ=0, respectively. High and low price quotes are widely available in the 

financial pages of newspapers. Interestingly, Brandt and Diebold (2005) show how covariance 

forecasts can be constructed from range-based volatility forecasts. This same approach could be used 

to construct covariance predictions from our VaR-based volatility forecasts.  

 

5.  Empirical Comparison of Volatility Forecasting Methods 

We compared the accuracy of the volatility forecasts from our new VaR-based method with 

those from moving average methods and GARCH models. We used the following stock indices: the 

French CAC40, the German DAX30, British FTSE100, Japanese Nikkei225 and the US S&P500. 

The sample period used in our study consisted of 10 years of daily data, from 29 April 1993 to 28 
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April 2003. This period delivered 2,608 log returns. We used the first 2,089 returns to estimate 

method parameters and the remaining data to evaluate 500 post-sample forecasts for the volatility 

over the following holding periods: 1 day, 10 days and 20 days. Following common practice, we did 

not estimate models for the conditional mean of each series (see Poon and Granger 2003). For all five 

series, we subtracted from each return, rt, the mean, µ, of the 2,089 in-sample returns. The volatility 

forecasting methods were applied to the resultant errors, εt = rt - µ. In the next two sections, we present 

the forecasting methods considered in our study. 

 

5.1.  Moving Average Methods and GARCH Volatility Models 

We produced volatility forecasts from a 30-day simple moving average. We also 

implemented exponential smoothing. We found that optimising the exponential smoothing α 

parameter gave slightly better results than the fixed value of 0.06, suggested by RiskMetrics (1996). 

For simplicity, in Section 5.3, we report in detail only the results for the optimised method.  

 We included in the study the following three GARCH models, which were described in 

Section 2.1: GARCH(1,1), IGARCH(1,1) and GJRGARCH(1,1). Our choice of the (1,1) specification 

for all three models was based on our analysis of the in-sample period of 2,608 returns and on the 

general popularity of this order for GARCH models. We derived the model parameters using maximum 

likelihood based on a Student-t distribution with optimised degrees of freedom. We produced multi-

period variance forecasts from these three models using the formulae in expressions (1)-(3).  

 The initial work of Koenker and Bassett (1978) on quantile regression emphasised its robustness 

to non-Gaussian, especially long-tailed, situations. As CAViaR models are essentially quantile regression 

models, if they are used within our new VaR-based approach, then the approach would seem to have an 

appeal of robustness. In view of this, we also included in our comparative study two robust benchmark 

approaches. Both of these estimated the GARCH models described above using winsorized datasets (see 

Hoaglin et al. 1983). The first approach was simplistic and set the largest 1% of the 2,089 in-sample 

observations to the value of the unconditional 0.99 quantile of these returns, and set the lowest 1% of 

these 2,089 observations to the value of the unconditional 0.01 quantile. The second approach based the 

winsorization on CAViaR quantile models for the 0.99 and 0.01 quantiles. All in-sample observations 
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larger than their corresponding in-sample fitted conditional 0.99 quantile were set equal to this value, and 

all in-sample observations lower than their corresponding in-sample fitted conditional 0.01 quantile were 

set equal to this value. For brevity, in Section 5.3, we discuss only the results of these approaches using 

the GJRGARCH(1,1) model and the Asymmetic Slope CAViaR model, as this led to the best results. We 

describe CAViaR model parameter estimation in the next section. 

 

5.2.  VaR-Based Volatility Forecasting 

 Using our proposed new method, variance forecasts were produced as in expressions (10) and 

(12) based on 98%, 95% and 90% intervals constructed from symmetric quantile forecasts produced 

from the following VaR methods, which were discussed in Section 3: historical simulation, BRW and 

the four CAViaR models in expressions (4) to (7). Note that, although the new method was motivated 

by the appeal of using CAViaR models, it can be used with quantile forecasts from any method.  

We used one year of data in the moving windows for both the historical simulation and the 

BRW methods. We experimented with the fixed values of λ proposed by Boudoukh et al. (1998) for 

the BRW method, but found that greater quantile forecast accuracy resulted when we optimised λ, on 

the in-sample data, using the quantile regression summation (QR Sum) presented in expression (8). In 

the next section, we report only the results for the BRW method with optimised parameter.  

We estimated the parameters for the CAViaR models using a procedure similar to that 

described by Engle and Manganelli (2004). For each model, we first generated 105 vectors of 

parameters from a uniform random number generator between 0 and 1. We then evaluated the QR 

Sum for each of the vectors. The 10 vectors that produced the lowest values for the function were 

used as initial values in a quasi-Newton algorithm. The QR Sum was then calculated for each of the 

10 resulting vectors, and the one producing the lowest value of the function was chosen as the final 

parameter vector. The software Gauss was used for all computational work in this study.  

 In Table 1, for each of the five stock indices, we present the LS regression parameters, α1 and β1, 

in expression (10), estimated for one step-ahead variance prediction from the VaR-based method using 

symmetric quantile forecasts produced by the Asymmetric Slope CAViaR model. Interestingly, many of 

the estimated parameters are close to the Pearson and Tukey (1965) values, which were given in 
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expression (9) and are shown in the final column of the table. In 13 of the 15 LS regressions, the constant 

is not significantly different from zero (at the 5% level). For all five indices, the parameter estimates 

corresponding to the 95% interval are not significantly different from the Pearson and Tukey values. This 

is also true for all three LS regressions involving the DAX30 index. In spite of this, we found that our LS 

regression parameters led to noticeably better volatility forecast accuracy than the Pearson and Tukey 

values, and so, in the remainder of the paper, we refer only to the results for our parameterisation. 

----------  Table 1  ---------- 

 For each of the five stock indices, we performed the Wald test of the restrictions β2=β1 and 

β3=-2β1 in the regression of expression (13), which we discussed in Section 4.2. We considered, in 

turn, θ=0.01, 0.025 and 0.05. The results are reported in detail in an appendix on the Online 

Supplement website. Interestingly, in the majority of cases, the restrictions were rejected (at the 5% 

level), suggesting that the unrestricted regression should be used to produce forecasts. However, in 

this introductory paper, we limit our focus to the simpler regressions in expressions (10) and (12), 

which link more intuitively to the approximations of Pearson and Tukey in expression (9).  

The “news impact curve” (NIC) of Engle and Ng (1993) has been widely used to compare 

different GARCH models. The curve shows the impact of shocks, or news, εt-1, on the next period’s 

volatility prediction, tσ̂ . Figure 1 compares the NICs for the new VaR-based method applied to the 

S&P500 index. The method uses 90% intervals based on symmetric quantiles estimated by the four 

CAViaR models in expressions (4) to (7). The NICs in Figure 1 are conditional on the quantile 

estimates in the previous period. We set these to be equal to the average of the estimation sample 

quantile estimates from the corresponding model. The x-axis in Figure 1 extends in both directions by 

three times the unconditional standard deviation of the estimation sample of returns.  

----------  Figure 1  ---------- 

The symmetric convex shape of the NIC for the method based on the Indirect GARCH(1,1) 

model is similar to that of a GARCH(1,1) model. This is perhaps not surprising, given the similarities 

of these two models. The NIC for the method based on the Adaptive CAViaR model shows discrete 

jumps between three volatility levels. This is the result of the indicator function in the Adaptive 

model formulation in expression (5). An interesting feature of the NIC for the Adaptive model is that, 
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for relatively large shocks, it displays the asymmetric leverage effect, with greater volatility following 

a negative shock than a positive shock of equal size. As we might have anticipated, this effect is very 

apparent in the NIC for the new method based on the Asymmetric Slope CAViaR model.  

The NICs corresponding to the method based on the Asymmetric Slope and Symmetric 

Absolute Value models each consist of two lines meeting at εt-1 = 0. These lines are almost straight, 

which is due to the relatively small estimated values for α1 in expression (10). For the Asymmetric 

Slope model, the values of α1 are given in Table 1. If α1 is zero in expression (10), the volatility 

estimate is proportional to the magnitude of the interval, which will be piecewise linear if the quantile 

estimates are from either the Asymmetric Slope or Symmetric Absolute Value CAViaR models.  

 In Figure 2, we plot the S&P500 returns and day-ahead forecasts from two implementations 

of the VaR-based method using 90% intervals between symmetric quantiles. The first implementation 

used the Adaptive CAViaR model to estimate the quantiles of the 90% intervals, and the second used 

the Asymmetric Slope CAViaR model. The figure shows both series of volatility predictions reacting 

to changes in the magnitude of the returns, with the forecasts based on the Asymmetric Slope 

CAViaR model being substantially more responsive. Of the two sets of forecasts, those produced 

using the Asymmetric Slope CAViaR model are far more similar to those from the GARCH models.  

----------  Figure 2  ---------- 

 

5.3.  Post-Sample Volatility Forecast Evaluation for Stock Indices 

In Tables 2 to 4, we summarize the post-sample forecasting performance from the various 

methods for the three different holding periods. The summary measure reported in the tables is the 

coefficient of determination, R2, from the LS regression of realised multiperiod variance on the post-

sample variance forecasts. The realised multiperiod variance is calculated as in expression (11). The R2 is 

a measure of informational content, with larger values being better. The values in bold in each column of 

the tables indicate the best performing method for each index. The average of the five R2 values for each 

method is presented in the final column of each table. Note that for the R2 measure, the values of the 

VaR-based method parameters, αi and βi, in expressions (10) and (12), are irrelevant because a new 

constant and coefficient are produced by the R2 LS regression. For the VaR-based methods, the R2 
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values, therefore, reflect the informational content in the squared interval between symmetric quantile 

forecasts. This is of interest because better approaches may exist than ours for incorporating, in a 

variance forecast, the information provided by the squared interval. 

----------  Tables 2 to 4  ---------- 

The results show that GJRGARCH outperformed GARCH and IGARCH, as well as the moving 

average methods. The CAViaR-based winsorized GJRGARCH approach performed only slightly better 

than the standard GJRGARCH model. The superiority of GJRGARCH over GARCH confirms the 

existence of the leverage effect in the stock indices. This point is supported by the results for the VaR-

based methods, which show the method based on the Asymmetric Slope CAViaR model outperforming 

the others. The superiority of the method increases, as the holding period gets longer. Indeed, the 

differences between the performances of all the methods is more pronounced in Tables 3 and 4 for the 

10-day and 20-day holding periods, respectively. Interestingly, the results for the new method based on 

95% or 90% intervals from the Asymmetric Slope CAViaR model were better than for GJRGARCH for 

all five indices. Although the methods based on the Indirect GARCH and the Symmetric Absolute Value 

CAViaR models did not match the performance of GJRGARCH, it is encouraging to see that these 

symmetric VaR-based methods did, overall, outperform the symmetric GARCH models and the moving 

average methods. There seems little potential for the VaR-based method when quantiles are estimated by 

historical simulation, the BRW method or the Adaptive CAViaR model. The poor performance of the 

method based on the Adaptive CAViaR model is, perhaps, not surprising, given the NIC for the method 

in Figure 1, which in our view is an unappealing representation of the behaviour of stock return volatility.  

Because the R2 measure is unaffected by the approach used to estimate the parameters, αi and βi, 

in expressions (10) and (12), the results in Tables 2 to 4 imply that there is more informational content for 

volatility forecasting in the magnitude of the 90% and 95% intervals, constructed from the Asymmetric 

Slope CAViaR model, than in any other method considered in our study. Evaluating the methods using 

root mean squared error, we found that the relative performances of the methods were similar to those for 

the R2 measure. These additional results are available in an appendix on the Online Supplement website.   

To gain insight into the differences between the methods, we used the volatility forecasts with 

the Black-Scholes model to price an at-the-money call option, 20 days from expiration. The resulting 
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option prices differed noticeably depending upon the volatility forecasting method used. For example, for 

the final 500 periods of the S&P500 series, the option prices calculated using the 20-day volatility 

forecasts from the new method, based on 90% intervals from the Asymmetric Slope CAViaR model, 

differed from the option prices calculated using the corresponding volatility forecasts from the 

GJRGARCH model by, on average, 8.5% of the average of the two prices. 

Poon and Granger (2003) argue for the use of statistical tests when evaluating relative volatility 

forecasting performance. We performed encompassing tests to investigate whether the post-sample 

performance of the method based on the Asymmetric Slope CAViaR 90% intervals (in the bottom row of 

Tables 2 to 4) was significantly better than that of (non-winsorized) GJRGARCH. With these tests, a 

combined forecast is formed as a weighted average of the two forecasts (see Granger and Newbold 1973 

and 1986, Chong and Hendry 1986). If the weight on one method is zero, that method is said to be 

encompassed by the other. The model used for the test is of the following form 

tktGktCktR eww +−+= 2
,

2
,

2
, ˆ)1(ˆ σσσ  

where 2
,ktRσ  is realised multiperiod variance; 2

,ˆ ktCσ  is the variance forecast from the CAViaR-based 

method; 2
,ˆ ktGσ  is the GJRGARCH variance forecast; et is a residual term; and w is the combining 

weight estimated by the LS regression of ( )2
,

2
, ˆ ktGktR σσ −  on ( )2

,
2

, ˆ ktGktC σσ − . We used non-overlapping 

realised and forecasted volatility data in the regression. If overlapping data is used, the models will 

suffer from considerable autocorrelation, rendering the test invalid (Christensen and Prabhala 1998).  

Table 5 presents the results of the encompassing tests. For each series and each holding 

period, the table shows the estimated weight as well as p-values corresponding to tests of w=1 and 

w=0. Inability to reject w=1, implies that we cannot reject that the CAViaR-based method 

encompasses GJRGARCH. In only one out of the 15 cases is the hypothesis w=1 rejected (at the 5% 

significance level). This one case is the 20-day holding period for the DAX30 index. Inability to 

reject w=0, implies that we cannot reject that GJRGARCH encompasses the CAViaR-based method. 

The hypothesis is rejected in 10 out of the 15 cases (at the 5% level). It cannot be rejected for the 

DAX30 index at any of the three holding periods.  

----------  Table 5  ---------- 
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5.4.  Post-Sample Quantile Forecast Evaluation for Stock Indices 

In the previous section, we found that the new CAViaR-based volatility forecasting method is 

more successful when based on the 90% or 95% intervals than when based on the 98% interval. We 

also found that, when based on the 90% or 95% intervals, the method is able to outperform GARCH 

models. In this section, we report the results of a study that investigated whether these results are due 

to quantile forecasting performance. More specifically, we compared the day-ahead post-sample 

quantile forecasts produced by the Asymmetric Slope CAViaR model with those based on the 

GJRGARCH(1,1) model with Student-t distribution. We used the same 10 years of stock index data 

that we used in our volatility forecasting study of Sections 5.1 to 5.3, with the first 2,089 returns used 

for parameter estimation and the next 500 returns used for evaluation.  

To evaluate the quantile forecasts, we use the three measures employed by Engle and 

Manganelli (2004): hit percentage, dynamic quantile test statistic and QR Sum. The hit percentage 

assesses the unconditional coverage of a θ quantile estimator. It is the percentage of observations 

falling below the estimator. Ideally, the percentage should be θ. With a sufficiently large sample, 

significance tests can be performed on the percentage using a Gaussian distribution and the standard 

error formula for a proportion. The Engle and Manganelli (2004) dynamic quantile test for 

conditional coverage evaluates the dynamic properties of a quantile estimator. It involves the joint test 

of whether the hit variable, defined as θθε −≤≡ )](ˆ[ ttt QIHit , is distributed i.i.d. Bernoulli with 

probability θ, and is independent of the quantile estimator, )(ˆ θtQ . Ideally, Hitt will have zero 

unconditional and conditional expectations. We included five lags of Hitt in the test’s regression 

framework to deliver a dynamic quantile test statistic (DQ), which, under the null hypothesis of 

perfect conditional coverage, is distributed χ2(7). The third measure, the QR Sum, was defined in 

Section 5.2. It can be viewed as the equivalent of the root mean squared error for evaluating quantile 

forecast accuracy. Lower values of DQ and QR Sum are better. 

 In Table 6, we report the results for prediction of the 0.01 and 0.99 quantiles. We consider these 

two quantiles in the same table because they are used together within our new volatility forecasting 

approach. The values in bold indicate the best performing method for each quantile according to the 
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evaluation measure under consideration. The GJRGARCH and Asymmetric Slope CAViaR models 

perform similarly in terms of hit percentage, and, while GJRGARCH has better DQ, the CAViaR method 

seems to perform better in terms of QR Sum. These results are consistent with those in Table 2, where 

the volatility forecast evaluation measures were very similar for the standard GJRGARCH model and the 

new approach based on the Asymmetric Slope CAViaR 98% intervals. 

----------  Tables 6 and 7  ---------- 

Table 7 reports results for the 0.05 and 0.95 quantiles. Overall, in this table, the CAViaR model 

outperforms the GJRGARCH approach. This is consistent with the volatility forecasting results in Table 

2, where the CAViaR-based volatility forecasting method, using the 90% interval, tended to outperform 

GJRGARCH. Interestingly, the results in Table 7 show that for estimation of the DAX30 quantiles, the 

GJRGARCH method is not outperformed. This has strong similarities with the results of the 

encompassing tests, reported in Table 5, which were generally favourable for the CAViaR-based method 

using the 90% interval, except for the DAX30 series. The relative performances of the two methods for 

estimation of the 0.025 and 0.975 quantiles were similar to those reported in Table 7 for the 0.05 and 

0.95 quantiles. These results are available in an appendix on the Online Supplement website. 

 The results in this section indicate that the success of the new CAViaR-based volatility 

forecasting method is related to the quality of the CAViaR quantile forecasts. The results also suggest 

that the new approach, based on 90% and 95% intervals, outperforms GJRGARCH because the 

corresponding CAViaR models are better able to model the tail dynamics of the conditional distribution. 

 

5.5.  Post-Sample Volatility Forecast Evaluation for Individual Stocks 

 To explore the robustness of our findings for the five stock indices, we repeated our comparison 

of volatility forecasting methods for the 20 individual S&P500 stocks that had highest market 

capitalization at the end of the year 2003. We used the same in-sample and post-sample daily periods 

employed in our study of the stock indices. The 20 individual stocks are listed in Table 8, in descending 

order of market capitalization, along with values of skewness and excess kurtosis calculated for each 

series using all 2,608 returns. The Procter and Gamble returns series contains a very large outlier, and this 
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is reflected in the very large values for the skewness and excess kurtosis. For completeness, we include at 

the bottom of Table 8 the skewness and excess kurtosis values for the five stock indices.   

----------  Tables 8 and 9  ---------- 

In Table 9, for brevity, we report only the mean R2 measure for each of the three holding periods. 

For the stock indices, these summary measures were presented in the final columns of Tables 2 to 4. 

Table 9 shows that the relative performance of the methods was similar for the individual stocks to that 

described earlier for the stock indices. The best performing approach is again the new volatility 

forecasting approach based on the Asymmetric Slope CAViaR intervals. A summary of the RMSE 

results for the 20 individual stocks is available in an appendix on the Online Supplement website. 

As the accuracy of the Pearson and Tukey (1965) approximations depends on the degree of 

skewness and kurtosis, one might have surmised that the relative performance of our new approach 

would be related to the extent of skewness and kurtosis in each series of returns. However, we were 

unable to find any such relationship in our results for the 20 individual stocks.  

 

6.  Summary and Concluding Comments 

Volatility forecasts are often used as a basis for estimating VaR. In this paper, we have shown 

how VaR estimates can be used as a basis for producing volatility forecasts. The motivation for this is 

the recently proposed CAViaR models, which provide an appealing way to model financial returns. 

The autoregressive nature of CAViaR quantile models has similarities with the widely used GARCH 

models, but unlike these models, CAViaR models require no distributional assumptions.  

Drawing on the work of Pearson and Tukey (1965), our proposed new method involves 

generating variance forecasts as linear functions of the square of the interval between symmetric 

quantiles, which have been estimated by a VaR method. As in the decision and risk analysis literature, 

we found that basing the method on 95% and 90% intervals tended to be more successful than the use 

of 98% intervals. Our best results were achieved using the Asymmetric Slope CAViaR model, which 

accommodates the leverage effect in stock returns. Using error summary measures and encompassing 

tests to evaluate post-sample forecasting accuracy for five stock indices and 20 individual stocks, we 

found that, overall, this method outperformed GARCH models and moving average methods.  
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Although our proposed method involves an approximation, the same is also true of other 

univariate time series methods. Poon and Granger (2003) comment that GARCH models can be 

thought of as approximating a deeper time-varying construction, possibly involving several economic 

variables. The same authors also note that GARCH models fail to account for all the tail thickness in 

returns, even when a Student-t distribution is used within the maximum likelihood procedure. By 

directly modelling the tail quantiles, our CAViaR-based volatility forecasting method should be better 

able to account for the characteristics of the tails of the distribution. In particular, if the left and right 

tails of the conditional distribution are driven by different forces over time, our approach should capture 

the evolution better than GARCH models, which rely on a single autoregressive model for the variance. 

Pearson and Tukey (1965) comment that there is potential for estimating the skewness and 

kurtosis from a knowledge of the quantiles. This suggests that quantile forecasts from CAViaR 

models could be used to construct forecasts for time-varying higher moments in financial returns, 

which are needed in a variety of finance applications (see Jondeau and Rockinger 2003). 

 

Acknowledgements 

 We would like to acknowledge the insightful comments of two anonymous referees. We are 

also grateful to Mike Staunton for his help with the data.   

 

References 

Alizadeh, S., M.W. Brandt, F.X. Diebold. 2002. Range-based estimation of stochastic volatility 

models. Journal of Finance 57 1047-1091. 

Andersen, T.G., T. Bollerslev, F.X. Diebold, P. Labys. 2003. Modeling and forecasting realized 

volatility. Econometrica 71 529-626. 

Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 

31 307-327. 

Bollerslev, T. 1987. A conditionally heteroskedastic time series model for speculative prices and rates of 

return. Review of Economics and Statistics 69 542-547. 

Boudoukh, J., M. Richardson, R.F. Whitelaw. 1998. The best of both worlds. Risk 11 May 64-67. 



 20

Brandt, M.W., Diebold, F.X. 2005. A no-arbitrage approach to range-based estimation of return 

covariances and correlations. Journal of Business forthcoming. 

Chong, Y.Y., D.F. Hendry. 1986. Econometric evaluation of linear macroeconomic models. Review 

of Economic Studies 53 671-690. 

Christensen, B.J., N.R. Prabhala. 1998. The relation between implied and realized volatility. Journal 

of Financial Economics 50 125-150. 

Clemen, R.T. 1996. Making Hard Decisions: An Introduction to Decision Analysis (2nd ed.). Duxbury 

Press, Belmont, CA. 

Engle, R.F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United 

Kingdom inflation. Econometrica 50 987-1008. 

Engle, R.F., S. Manganelli. 2004. CAViaR: Conditional autoregressive value at risk by regression 

quantiles. Journal of Business and Economic Statistics 22 367-381. 

Engle R.F., V.K. Ng. 1993. Measuring and testing the impact of news on volatility. Journal of 

Finance 48 1749-1778. 

Garman, M.B., M.J. Klass. 1980. On the estimation of security price volatilities from historical data. 

Journal of Business 53 67-78. 

Ghysels, E., A.C. Harvey, E. Renault. 1996. Stochastic volatility. G.S. Maddala, C.R. Rao, H.D. 

Vinod, eds. Handbook of Statistics: Statistical Methods in Finance, Vol. 14. Elsevier Science:, 

Amsterdam.  

Glosten, L.R., R. Jagannathan, D.E. Runkle. 1993. On the relation between the expected value and the 

volatility of the nominal excess return on stocks. Journal of Finance 48 1779-1801. 

Granger, C.W.J., P. Newbold. 1973. Some comments on the evaluation of economic forecasts. 

Applied Economics 5 35-47. 

Granger, C.W.J., P. Newbold. 1986. Forecasting Economic Time Series, 2nd ed. Academic Press, 

Orlando. 

Hoaglin, D.C., F. Mosteller, J.W. Tukey. 1983. Understanding Robust and Exploratory Data Analysis, 

John Wiley, New York. 



 21

Johnson, D. 2002. Triangular approximations for continuous random variables in risk analysis. 

Journal of the Operational Research Society 53 457-467. 

Jondeau, E., M. Rockinger. 2003. Conditional volatility, skewness, and kurtosis: Existence, 

persistence, and comovements. Journal of Economic Dynamics and Control 27 1699-1737. 

Keefer, D.L. 1994. Certainty equivalents for three-point discrete-distribution approximations. 

Management Science 40 760-773. 

Keefer, D.L., S.E. Bodily. 1983. Three-point approximations for continuous random variables. 

Management Science 29 595-609. 

Keefer, D.L., W.A. Verdini. 1993. Better estimation of PERT activity time parameters. Management 

Science 39 1086-1091. 

Koenker, R.W., G.W. Bassett. 1978. Regression quantiles. Econometrica 46 33-50. 

Manganelli S., R.F. Engle. 2004. A comparison of value-at-risk models in finance. Szegö G., ed., Risk 

Measures for the 21st Century, Wiley: Chichester. 

Moder, J.J, E.G. Rogers. 1968. Judgement estimates of the moments of PERT type distributions. 

Management Science 15 B76-B83. 

Nelson, D.B. 1990. Stationarity and persistence in the GARCH(1,1) model. Econometric Theory 6 

318-334. 

Nelson, D.B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59 

347-370. 

Parkinson, M. 1980. The extreme value method for estimating the variance of the rate of return. 

Journal of Business 53 61-65. 

Pearson, E.S., J.W. Tukey. 1965. Approximate means and standard deviations based on distances 

between percentage points of frequency curves. Biometrika 52 533-546. 

Poon, S., C.J.W. Granger. 2003. Forecasting volatility in financial markets: A review. Journal of 

Economic Literature 41 478-639. 

RiskMetrics. 1996. Technical Document. Morgan Guaranty Trust Company of New York. 

White, H. 1994. Estimation, Inference and Specification Analysis, Cambridge University Press, 

Cambridge. 



 22

 

 
 
 
 
 
 
 
 
 
Table 1 Parameters, α1 and β1, in Expression (10), from LS Regression of εi

2 on the Interval 
Between Symmetric Quantiles Estimated by Asymmetric Slope CAViaR Model for 
In-Sample Stock Index Data. Standard Errors in Parentheses. 

 
 

Interval Parameter CAC40 DAX30 FTSE100 NIKKEI225 S&P500 Pearson and 
Tukey Values 

0.98 α1 × 106 -53.1 
(15.0) 

-1.77 
(11.7) 

-13.1 
(6.58) 

24.0 
(16.5) 

3.28 
(8.03) 

0 
 

 β1 
0.0575 

(0.0038) 
0.0429 

(0.0023) 
0.0551 

(0.0029) 
0.0327 

(0.0027) 
0.0364 

(0.0021) 
4.65-2 = 0.0462 

 

        

0.95 α1 × 106 -11.5 
(12.1) 

5.78 
(11.4) 

-5.99 
(6.06) 

19.6 
(16.7) 

-4.78 
(8.56) 

0 
 

 β1 
0.0681 

(0.0043) 
0.0642 

(0.0034) 
0.0693 

(0.0035) 
0.0562 

(0.0046) 
0.0653 

(0.0040) 
3.92-2 = 0.0651 

 

        

0.90 α1 × 106 -4.89 
(11.7) 

5.36 
(11.3) 

7.78 
(5.55) 

14.1 
(17.0) 

6.67 
(7.96) 

0 
 

 β1 
0.0924 

(0.0059) 
0.0944 

(0.0050) 
0.0800 

(0.0041) 
0.0884 

(0.0071) 
0.0824 

(0.0049) 
3.25-2 = 0.0947 

 

 
 
 
 
 



 23

 
 
 
 
 
Table 2 R2 Measure of Informational Content for 500 Post-Sample 1 Day-Ahead Variance 

Forecasts for Stock Indices. R2 Values are Percentages. 
 
 
 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 Mean 

Moving Average and GARCH Methods       

      Simple Moving Average 10.9 8.9 9.0 1.2 5.2 7.0 

      Exponential Smoothing 12.7 12.9 13.3 1.6 8.9 9.9 

      GARCH 11.9 12.9 12.6 1.9 9.2 9.7 

      IGARCH 11.2 12.8 12.3 1.8 9.2 9.5 

      GJRGARCH 15.0 14.9 16.0 2.8 16.6 13.0 

      Simplistic Winsorized GJRGARCH 14.0 13.9 15.7 2.7 16.0 12.5 

      CAViaR Winsorized GJRGARCH 15.0 14.9 16.7 2.8 16.7 13.2 

VaR-Based Methods       

      Historical Simulation 98% Interval 4.5 5.8 3.1 1.0 0.3 2.9 

      Historical Simulation 95% Interval 5.6 5.8 2.6 1.0 0.3 3.1 

      Historical Simulation 90% Interval 3.1 4.3 2.4 0.2 0.5 2.1 

      BRW 98% Interval 5.0 5.7 4.7 0.6 2.6 3.7 

      BRW 95% Interval 9.0 7.7 6.8 1.0 4.2 5.8 

      BRW 90% Interval 8.0 8.8 6.3 0.5 3.7 5.5 

      Indirect GARCH CAViaR 98% Interval 13.0 12.8 14.4 1.9 10.4 10.5 

      Indirect GARCH CAViaR 95% Interval 12.3 13.0 14.2 2.2 10.0 10.3 

      Indirect GARCH CAViaR 90% Interval 13.0 13.0 13.9 2.2 10.1 10.5 

      Adaptive CAViaR 98% Interval 5.3 6.4 5.5 0.2 3.7 4.2 

      Adaptive CAViaR 95% Interval 6.8 8.2 4.7 0.1 3.2 4.6 

      Adaptive CAViaR 90% Interval 8.9 7.8 3.2 0.9 6.3 5.4 

      Sym Abs Value CAViaR 98% Interval 11.8 12.5 12.3 1.8 9.5 9.6 

      Sym Abs Value CAViaR 95% Interval 11.7 12.3 13.0 2.0 9.0 9.6 

      Sym Abs Value CAViaR 90% Interval 12.0 12.3 10.3 1.9 8.5 9.0 

      Asym Slope CAViaR 98% Interval 14.5 14.0 15.1 2.9 17.4 12.8 

      Asym Slope CAViaR 95% Interval 15.4 15.5 16.4 3.0 18.7 13.8 

      Asym Slope CAViaR 90% Interval 15.4 15.4 16.3 3.1 19.5 13.9 
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Table 3 R2 Measure of Informational Content for 500 Post-Sample Variance Forecasts for 

10-Day Holding Period for Stock Indices. R2 Values are Percentages. 
 
 
 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 Mean 

Moving Average and GARCH Methods       

      Simple Moving Average 34.7 25.9 19.1 3.2 12.8 19.1 

      Exponential Smoothing 43.8 39.5 29.0 4.9 23.1 28.1 

      GARCH 39.3 39.3 27.3 5.9 23.8 27.1 

      IGARCH 36.5 38.9 26.4 5.5 23.8 26.2 

      GJRGARCH 52.2 46.1 34.6 9.1 44.8 37.4 

      Simplistic Winsorized GJRGARCH 47.3 41.3 33.9 9.1 43.3 35.0 

      CAViaR Winsorized GJRGARCH 52.4 46.6 36.5 9.3 45.4 38.0 

VaR-Based Methods       

      Historical Simulation 98% Interval 14.7 19.2 6.9 5.1 0.2 9.2 

      Historical Simulation 95% Interval 18.6 18.8 5.7 4.9 0.3 9.6 

      Historical Simulation 90% Interval 11.3 14.8 4.8 1.3 0.7 6.6 

      BRW 98% Interval 13.4 17.4 9.4 0.7 6.6 9.5 

      BRW 95% Interval 29.1 22.2 12.7 0.6 11.2 15.2 

      BRW 90% Interval 24.5 24.3 12.4 2.3 8.5 14.4 

      Indirect GARCH CAViaR 98% Interval 48.2 41.8 32.2 6.0 27.2 31.1 

      Indirect GARCH CAViaR 95% Interval 41.4 40.0 31.1 7.5 26.4 29.3 

      Indirect GARCH CAViaR 90% Interval 46.3 40.2 30.5 7.2 26.5 30.2 

      Adaptive CAViaR 98% Interval 17.2 18.8 11.7 0.3 10.3 11.7 

      Adaptive CAViaR 95% Interval 21.3 24.7 9.6 0.5 8.6 13.0 

      Adaptive CAViaR 90% Interval 28.2 23.6 6.2 3.3 16.4 15.5 

      Sym Abs Value CAViaR 98% Interval 40.9 42.4 28.5 7.4 25.2 28.9 

      Sym Abs Value CAViaR 95% Interval 40.6 39.5 30.1 9.0 24.0 28.6 

      Sym Abs Value CAViaR 90% Interval 42.3 39.5 22.9 8.6 22.4 27.2 

      Asym Slope CAViaR 98% Interval 52.5 48.6 35.0 13.4 48.9 39.7 

      Asym Slope CAViaR 95% Interval 57.1 50.9 37.6 14.1 50.8 42.1 

      Asym Slope CAViaR 90% Interval 56.1 51.4 37.8 14.8 52.9 42.6 
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Table 4 R2 Measure of Informational Content for 500 Post-Sample Variance Forecasts for 

20-Day Holding Period for Stock Indices. R2 Values are Percentages. 
 
 
 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 Mean 

Moving Average and GARCH Methods       

      Simple Moving Average 28.7 23.2 14.2 2.2 11.3 15.9 

      Exponential Smoothing 36.0 32.6 21.4 4.5 18.9 22.7 

      GARCH 32.1 32.5 20.1 5.7 19.3 21.9 

      IGARCH 29.6 32.3 19.5 5.2 19.3 21.2 

      GJRGARCH 44.9 37.9 26.1 10.7 37.5 31.4 

      Simplistic Winsorized GJRGARCH 40.1 35.7 25.6 10.7 36.2 29.7 

      CAViaR Winsorized GJRGARCH 45.0 38.2 27.6 11.0 37.9 31.9 

VaR-Based Methods       

      Historical Simulation 98% Interval 12.6 19.9 5.6 7.7 0.3 9.2 

      Historical Simulation 95% Interval 16.0 17.8 4.6 7.0 0.0 9.1 

      Historical Simulation 90% Interval 10.0 14.1 3.1 1.5 0.1 5.8 

      BRW 98% Interval 9.0 15.6 6.7 0.6 4.1 7.2 

      BRW 95% Interval 21.3 20.4 8.6 0.9 8.6 11.9 

      BRW 90% Interval 18.8 22.9 8.5 2.6 7.0 12.0 

      Indirect GARCH CAViaR 98% Interval 40.0 33.4 23.6 5.9 20.9 24.8 

      Indirect GARCH CAViaR 95% Interval 33.9 32.7 23.0 7.6 20.6 23.6 

      Indirect GARCH CAViaR 90% Interval 38.2 32.9 22.5 7.5 20.7 24.4 

      Adaptive CAViaR 98% Interval 14.1 16.8 8.8 0.5 7.8 9.6 

      Adaptive CAViaR 95% Interval 17.9 23.7 6.8 1.6 6.1 11.2 

      Adaptive CAViaR 90% Interval 24.2 21.5 3.8 4.0 13.6 13.4 

      Sym Abs Value CAViaR 98% Interval 34.6 35.7 21.4 7.7 19.3 23.7 

      Sym Abs Value CAViaR 95% Interval 34.4 34.0 22.7 10.1 18.5 23.9 

      Sym Abs Value CAViaR 90% Interval 36.0 34.2 17.1 9.4 17.7 22.9 

      Asym Slope CAViaR 98% Interval 45.9 41.3 27.0 16.0 38.2 33.7 

      Asym Slope CAViaR 95% Interval 50.4 44.0 29.4 17.0 40.9 36.3 

      Asym Slope CAViaR 90% Interval 49.4 44.1 29.2 18.1 41.7 36.5 
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Table 5 Results of the Encompassing Test, tktGktCktR eww +−+= 2

,
2

,
2

, ˆ)1(ˆ σσσ , for Stock Index 

Data. 2
,ktRσ  is Realised Multiperiod Variance; 2

,ˆ ktCσ  is the VaR-Based Variance 
Forecast Using 90% Interval Estimated by the Asymmetric Slope CAViaR Model; 

2
,ˆ ktGσ  is the GJRGARCH Variance Forecast; and et is a Residual Term. 

  
 

 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 

1 step-ahead      

ŵ  1.36 0.51 0.70 1.13 1.20 

P-value for   H0: w = 1   H1: w < 1 0.80 0.10 0.34 0.60 0.77 

P-value for   H0: w = 0   H1: w > 0 0.00 0.09 0.17 0.01 0.00 

10-day holding period      

ŵ  1.45 0.55 2.61 2.42 1.04 

P-value for   H0: w = 1   H1: w < 1 0.80 0.16 0.87 0.99 0.55 

P-value for   H0: w = 0   H1: w > 0 0.00 0.11 0.03 0.00 0.00 

20-day holding period      

ŵ  2.55 0.22 1.23 3.06 0.61 

P-value for   H0: w = 1   H1: w < 1 0.93 0.04 0.59 1.00 0.12 

P-value for   H0: w = 0   H1: w > 0 0.01 0.31 0.12 0.00 0.03 

 
Note. Test uses multi-period forecasts for non-overlapping holding periods in the post-sample period. 
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Table 6 Hit Percentage, Dynamic Quantile Test Statistic and QR Sum for 1 Day-Ahead 

Forecasting of the 0.01 and 0.99 Quantiles for the Stock Index Data Using 
GJRGARCH and Asymmetric Slope CAViaR. QR Sum Values Have Been 
Multiplied by 105. 

 
 
 CAC40  DAX30  FTSE100  NIKKEI225  S&P500 

 0.01 0.99  0.01 0.99  0.01 0.99  0.01 0.99  0.01 0.99

Hit %                

      GJRGARCH 0.6 99.4  0.2 99.8  0.8 99.8  0.2 99.8  0.4 100.0

      Asym Slope CAViaR 0.6 97.8  0.8 98.2  1.8 98.6  0.2 99.6  1.8 99.4

DQ               

      GJRGARCH 0.9 38.5**  3.2 3.3  0.7 3.2  3.7 3.3  2.2 N/A 

      Asym Slope CAViaR 33.8** 29.2**  0.8 5.2  46.6** 13.9  4.1 2.1  19.9** 1.3 

QR Sum               

      GJRGARCH 54 53  61 62  46 44  50 55  45 45 

      Asym Slope CAViaR 54 57  57 61  46 39  42 51  47 37 

 
Note. Significance at 5% and 1% levels is indicated by * and **, respectively. Tests were performed on 
DQ but not Hit % because sample size is not sufficiently large. N/A indicates results not available 
because DQ test regression could not be performed due to dependent variable, Hitt, being identical for 
all 500 post-sample periods. 
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Table 7 Hit Percentage, Dynamic Quantile Test Statistic and QR Sum for 1 Day-Ahead 

Forecasting of the 0.05 and 0.95 Quantiles for the Stock Index Data Using 
GJRGARCH and Asymmetric Slope CAViaR. QR Sum Values Have Been 
Multiplied by 105. 

 
 
 CAC40  DAX30  FTSE100  NIKKEI225  S&P500 

 0.05 0.95  0.05 0.95  0.05 0.95  0.05 0.95  0.05 0.95 

Hit %               

      GJRGARCH 5.6 96.6  5.4 96.8  6.0 97.6**  2.4** 97.8**  3.0* 97.6**

      Asym Slope CAViaR 6.2 96.0  8.2** 93.2  6.2 97.2*  5.2 94.4  4.6 95.6 

DQ               

      GJRGARCH 3.5 6.9  7.3 5.6  11.9 8.5  9.1 10.8  7.1 11.2 

      Asym Slope CAViaR 4.8 5.7  15.9* 13.0  11.2 7.5  4.7 4.4  6.9 6.2 

QR Sum               

      GJRGARCH 148 153  165 152  210 230  188 202  166 178 

      Asym Slope CAViaR 142 144  162 147  213 226  184 202  161 170 

 
Note. Significance at 5% and 1% levels is indicated by * and **, respectively. Tests performed on DQ 
and Hit %. 
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Table 8 Skewness and Excess Kurtosis for the 20 Individual S&P500 Stocks and the Five 

Stock Indices. 
 
 

 
 Skewness Excess Kurtosis 

Individual Stocks   

      General Electric 0.03 3.55** 

      Microsoft -0.09 4.13** 

      Exxon Mobil 0.11* 3.05** 

      Pfizer -0.13** 1.85** 

      Citigroup 0.04 4.00** 

      Wal Mart Stores 0.12* 1.96** 

      Intel -0.40** 5.22** 

      American International Group 0.17** 2.83** 

      Cisco Systems -0.05 3.89** 

      IBM 0.13** 5.56** 

      Johnson and Johnson -0.45** 6.71** 

      Procter and Gamble -3.47** 69.80** 

      Coca Cola -0.10* 3.45** 

      Bank of America  -0.11* 2.26** 

      Altria Group -0.34** 6.75** 

      Merck and Co. -0.02 2.48** 

      Wells Fargo and Co. 0.11* 1.99** 

      Verizon Comms. 0.14** 3.64** 

      Chevron Texaco Co. 0.07 1.61** 

      Dell -0.26** 2.90** 

Stock Indices   

      CAC40 -0.06 2.36** 

      DAX30 -0.23** 3.14** 

      FTSE100 -0.17** 2.76** 

      NIKKEI225 0.10* 2.45** 

      S&P500 -0.11* 3.69** 

 
Note. Significance at 5% and 1% levels is indicated by * and **, respectively. 
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Table 9 Mean of the R2 Measure of Informational Content for 500 Post-Sample Variance 

Forecasts for 1-, 10- and 20-Day Holding Periods for the 20 Individual Stocks. 
 
 

 R2 Mean 
 
 1-Day 10-Day 20-Day 

Moving Average and GARCH Methods    

      Simple Moving Average 2.3 6.1 5.5 

      Exponential Smoothing 2.3 5.4 4.7 

      GARCH 3.4 7.4 6.4 

      IGARCH 2.9 7.3 6.5 

      GJRGARCH 5.0 12.8 11.9 

      Simplistic Winsorized GJRGARCH 4.9 12.6 11.6 

      CAViaR Winsorized GJRGARCH 5.6 14.2 13.1 

VaR-Based Methods    

      Historical Simulation 98% Interval 0.6 3.3 5.9 

      Historical Simulation 95% Interval 0.5 2.8 5.0 

      Historical Simulation 90% Interval 0.5 3.1 5.7 

      BRW 98% Interval 0.7 2.6 3.7 

      BRW 95% Interval 1.1 3.5 4.4 

      BRW 90% Interval 0.8 2.6 3.3 

      Indirect GARCH CAViaR 98% Interval 4.2 9.5 7.7 

      Indirect GARCH CAViaR 95% Interval 4.1 9.7 8.0 

      Indirect GARCH CAViaR 90% Interval 4.1 9.8 8.2 

      Adaptive CAViaR 98% Interval 0.6 2.7 4.3 

      Adaptive CAViaR 95% Interval 0.7 3.1 4.6 

      Adaptive CAViaR 90% Interval 0.9 3.7 4.8 

      Sym Abs Value CAViaR 98% Interval 4.2 10.6 9.2 

      Sym Abs Value CAViaR 95% Interval 3.9 10.2 9.0 

      Sym Abs Value CAViaR 90% Interval 3.8 9.9 8.8 

      Asym Slope CAViaR 98% Interval 6.5 17.8 16.3 

      Asym Slope CAViaR 95% Interval 6.2 18.3 17.7 

      Asym Slope CAViaR 90% Interval 6.3 18.1 17.3 
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Figure 1 News Impact Curves for the VaR-Based Volatility Forecasting Method Using 90% 

Intervals Estimated by CAViaR Models. Parameters Estimated Using In-Sample 
Period of the S&P500 Stock Index Returns. 
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Figure 2 S&P500 Daily Stock Index Returns Plotted on Primary Y-Axis for 29 April 1993 to 

28 April 2003. Plotted on Secondary Y-Axis are One Day-Ahead Volatility 
Forecasts from Two Implementations of the New VaR-Based Volatility Forecasting 
Method. The First Used the 90% Interval Between Symmetric Quantiles Estimated 
by the Adaptive CAViaR Model and the Second Used the Asymmetric Slope 
CAViaR Model. Forecasts for Final 500 Periods are Post-Sample Predictions. 
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