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Density Forecasting for Weather Derivative Pricing 
 

Abstract 

Weather derivatives enable energy companies to protect themselves against weather risk. 

Weather ensemble predictions are generated from atmospheric models and consist of multiple 

future scenarios for a weather variable. They can be used to forecast the density of the payoff 

from a weather derivative. The mean of the density is the fair price of the derivative, and the 

distribution about the mean is important for risk management tools, such as value-at-risk 

models. In this empirical paper, we use one to 10 day-ahead temperature ensemble predictions to 

forecast the mean and quantiles of the density of the payoff from a 10-day heating degree day 

put option. The ensemble-based forecasts compare favourably with those based on a univariate 

time series GARCH model. Promising quantile forecasts are also produced using quantile 

autoregression to model the forecast error of an ensemble-based forecast for the expected payoff. 

 

Keywords: Density forecasting; Weather risk management; Weather ensemble predictions; 

GARCH; Quantile regression; Quantile autoregression. 

 

 

 

 

 

 



1.  Introduction 

Weather derivatives are a convenient way for businesses, such as energy companies, to 

protect themselves against weather risk. Since weather is not a tradable asset and there is no 

liquid market, the standard Black-Scholes style pricing is not applicable. Furthermore, 

liquidity will never be as good as in traditional price-hedging markets, as weather derivatives 

are location-specific (Campbell and Diebold, 2005). Consequently, in general, weather 

derivatives are priced using the expected discounted value approach, which relies heavily 

upon the quality of weather forecasts (Zeng, 2000; Davis, 2001).  

Weather variable density forecasts are important for pricing weather derivatives because 

they can be used to forecast the density of the payoff (see Cao and Wei, 2000). The mean of the 

payoff density is the fair price of the derivative, and the distribution about the mean provides 

information regarding the uncertainty, which is needed for risk management purposes, such as 

value-at-risk (see Duffie and Pan, 1997). In this paper, we consider weather ensemble 

predictions, which are a relatively new type of weather forecast produced by large 

meteorological models of the earth’s atmosphere. An ensemble prediction for a weather variable 

consists of different future scenarios, which are known as ensemble members. The distribution 

of the scenarios can be used as a forecast of the conditional probability density function of the 

weather variable. 

The weather derivatives market is dominated by energy utilities (Dischel and Barrieu, 

2002). Due to the importance of temperature in modelling electricity and gas demand, about 

90% of the weather derivatives currently traded are based on temperature (Weather Risk 

Management Association, 2002). In this study, we investigate the use of one to 10 day-ahead 

temperature ensemble predictions in forecasting the density of the payoff from a temperature put 

option. More specifically, we focus on forecasts of the mean and quantiles of the conditional 

density. The θ quantile of the conditional density of a variable yt is the value, Qt(θ), for which 

P(yt≤Qt(θ))=θ. We compare the ensemble-based density forecasts of the derivative payoff with 
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those based on a univariate time series model for temperature with variance modelled as a 

generalized autoregressive conditional heteroskedastic (GARCH) process. This paper is a follow 

up to a study that considered density forecasting for temperature variables (Taylor and Buizza, 

2004). Although useful in establishing that there is strong potential for the use of ensemble 

predictions in temperature density forecasting, that study did not address the pricing of weather 

derivatives, which is the focus of the current paper.  

In order to be consistent with the lead times for the weather ensemble predictions, the 

put option that we consider has a 10-day contract duration commencing in the period 

immediately following the forecast origin. Our analysis certainly has relevance for longer 

contracts because improved forecasting over the first 10 days implies an improvement over the 

full duration of a longer contract. Furthermore, 10 day-ahead prediction is precisely what is 

required for pricing longer contracts when one is just 10 days from the expiration date. We 

analyse daily air temperature recorded at the five locations used in the electricity demand 

forecasting models at National Grid Transco, which is the company responsible for electricity 

transmission in England and Wales. Since hedging electricity load is one of the main uses for 

weather derivatives, temperature recorded at these locations is an obvious candidate for 

underlying reference in derivative contracts (see Torró et al., 2003). 

 Section 2 introduces the temperature put option, which we use in this paper as a basis 

for investigating the different forecasting approaches. In Section 3, we review the literature on 

univariate models for temperature density forecasting and then present univariate models for our 

UK temperature data. Weather ensemble predictions are described in Section 4. Section 5 

compares forecasts of the expected payoff from the different methods, and Section 6 compares 

quantile forecasting performance. The final section provides a summary and conclusions. 
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2.  Temperature derivatives 

2.1.  A put option for UK temperature 

Temperature derivatives are usually written with cumulative heating degree days 

(HDDs) or cooling degree days (CDDs) as the underlying weather index (Dischel, 2002). An 

HDD is a measure of demand due to heating and is defined for each day as the amount by 

which temperature for that day falls below a specified benchmark, usually taken to be 18oC. 

If the temperature is above the benchmark, the HDD for that day is zero. The value of 18oC is 

considered to be the approximate temperature at which users switch their heating on or off. A 

CDD is a measure of energy demand due to air conditioning and it is defined as the amount 

by which temperature exceeds a benchmark value. In the UK, since energy demand due to air 

conditioning is considerably lower than due to heating, contracts written for cumulative 

HDDs are far more common than for cumulative CDDs.  

The payoff from a weather derivative swap contract is proportional to the weather 

index. In view of this, some authors have investigated derivative payoffs by analysing 

cumulative HDDs (e.g. Brody et al., 2002). Dischel and Barrieu (2002) comment that 

although swaps are popular with speculators in the weather market, they have little appeal for 

end-users, such as energy providers. They explain that the simplest and most common 

hedging transaction for energy providers and many other end-users is a put or a call option. A 

cumulative HDD put enables the energy provider to protect against periods with lower than 

expected HDD accumulations. In this paper, we consider point forecasting and density 

forecasting of the payoff from the HDD put option with the following payoff, Pt: 

           where                          (1) )0,max( ttt WSP −= ∑
=

−−=
9

0
)0,18(max

i
itt TW

where Tt is temperature, Wt is the 10-day cumulative HDD weather index, and St is the strike 

price. For simplicity, we set the tick rate (payment per unit of weather index) to be one and 

we did not cap the payoff. As in the work of Cao and Wei (2000), we set the strike price, St, 
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to be equal to the Wt seasonal average. We generated a different strike price for each day of 

the year by averaging the 10-day centred moving average values of Wt from the same day in 

each year of our estimation sample. Since the duration of the contract is just 10 days, we did 

not incorporate discounting. For the UK data in this study, there is on average only about 

three weeks in the year when the Wt is zero, and so for simplicity we considered forecasting 

for each day of the year.  

 

2.2.  Pricing temperature derivatives 

Since the expected value of a non-linear function of random variables is not necessarily 

the same as the non-linear function of the expected values of the random variables, it would be a 

mistake to forecast the expected payoff simply by substituting temperature point forecasts into 

expression (1). Instead, the standard approach is to simulate different scenarios from a model for 

temperature, and, using expression (1), create multiple realisations for the payoff (e.g. Cao and 

Wei (2000) and Davis (2001)). The mean of the payoff realisations is then the forecast of the 

expected value of the payoff, and the distribution of the realisations is the payoff density 

forecast. This paper compares the payoff mean and density forecasts from two different 

approaches to generating the temperature scenarios: a univariate time series model for 

temperature and an atmospheric model. 

An alternative to a univariate temperature model is to model directly cumulative 

HDDs or the payoff. Brix et al. (2002) advise against modelling the payoff directly because 

its distribution has discontinuities, for example at zero. Cao and Wei (2000) note that 

modelling cumulative HDDs directly has the disadvantage that it would be specific to the 

contract duration. A useful discussion of weather derivative pricing is provided by Alaton et 

al. (2002). 

 

 

 4



3.  Univariate time series modelling of UK temperature  

Our temperature series were recorded daily at midday from 1 January 1994 to 1 July 

2000 and measured at a height of 2 meters at the following five locations in the UK: 

Birmingham, Bristol, Heathrow, Leeds and Manchester. We used the first five years of each of 

our daily UK temperature time series to identify and estimate AR-GARCH models. In later 

sections, we use the remaining 18 months for post-sample forecast comparison. Figure 1 shows 

a plot of the Heathrow series. As one would expect, there is strong within-year seasonality in the 

mean of the series, and a reasonable degree of variation about that seasonal pattern.  

*****  Figure 1  ***** 

We used the same AR-GARCH models considered in our previous study (see Taylor and 

Buizza, 2004). These models were proposed by Franses et al. (2001) and Campbell and Diebold 

(2005), and are presented in expression (2). 
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where Tt is temperature, εt is an error term, σt is the conditional standard deviation (volatility), ηt 

is an i.i.d. error term, φ, α and β are scalar parameters, and µ, ω and γ are vectors of parameters. 

The three seasonality terms were defined as 
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where d(t) is a repeating step function that numbers the days from 1 to 365 within each year. We 

removed 29 February from each leap year in our sample in order to maintain 365 days in each 

year. We used the standard approach of maximum likelihood to estimate parameters with a 

Gaussian assumption for ηt. Table 1 presents our estimated model for each of our five 

temperature series. For more details regarding these models, see Taylor and Buizza (2004). 

*****  Table 1  ***** 
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The AR-GARCH models enable predictions to be made for the mean and variance at 

a given forecast horizon. A density forecast can then be constructed using a Gaussian 

assumption or the empirical distribution of standardised residuals (see Granger et al., 1989). 

 

4.  Atmospheric Modelling and weather ensemble predictions 

The atmosphere is a complex dynamical system with many degrees of freedom 

(Buizza, 2003). In numerical weather prediction, the state of the atmosphere is described by 

the spatial distribution of wind, temperature, specific humidity, liquid water content and 

surface pressure. The mathematical differential equations used to predict the system’s time 

evolution include Newton’s law of motion and the laws of thermodynamics. These equations 

include parameterisation schemes that simulate the effects of physical processes such as 

radiative transfer, turbulent mixing, orographic forcing, and moist processes. Numerical 

weather prediction models predict the time evolution of the atmospheric state by solving the 

system equations numerically, using finite difference and/or spectral methods. These 

equations are integrated starting from the best estimate of the current state of the system, 

which is determined, typically, using observations from earth, ocean and satellite platforms 

taken during the preceding 12 hours. 

The dynamical equations that describe the time evolution of the atmospheric flow are 

capable of identifying the relationship between present and future variables in a more 

accurate way than statistical methods. This explains why numerical weather prediction 

models are currently used as a preferred way to predict the weather on time scales of up to 

one month. The area where statistical methods are still competitive with dynamical models is 

seasonal prediction, i.e. predictions for time ranges of one to several months. The key reason 

is that limited computer resources do not yet allow meteorologists to integrate coupled ocean-

atmospheric models that describe all the important phenomena. The interested reader is 

referred to Pearce (2002, pp 333) for a more thorough discussion of these and related issues. 
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Ensemble prediction aims to derive a more sophisticated estimate of the density 

function of a weather variable than that provided by the distribution of past values. Ensemble 

prediction systems generate multiple realisations of weather variables by using a range of 

different initial conditions in the numerical model of the atmosphere. The frequency 

distribution of the different realisations, which are known as ensemble members, provides an 

estimate of the density function. The initial conditions are not sampled as in a statistical 

simulation because this is not practical for the complex, high-dimensional weather model. 

Instead, they are designed to sample directions of maximum possible growth (measured in 

terms of energy) during the forecast horizon. This choice is based on the hypothesis that the 

components of the initial uncertainties with the fastest growth have the dominant effect on the 

forecast error. Thus, knowledge of these directions will help to estimate the ‘bounds’ of the 

probability density function of forecast states (Molteni et al., 1996; Palmer et al., 1993; 

Buizza et al., 1998; Buizza 2003) 

The number of ensemble members is limited by the necessity to produce forecasts in a 

reasonable amount of time with the available computer power. Ensemble predictions are 

generated using a lower resolution (horizontal grid spacing) than traditional single point 

forecasts. The predictions used in this study were supplied by the European Centre for 

Medium-range Weather Forecasts (ECMWF), who operate a 51-member system (Buizza et 

al., 1998). The 51 consist of one forecast started from the unperturbed, best estimate of the 

atmosphere initial state plus 50 others generated by varying the initial conditions. Ensemble 

forecasts are produced every day for lead times from 12 hours ahead to 10 days ahead. In our 

work, we used ECMWF ensemble predictions for midday air temperature, recorded from 1 

January 1997 to 1 July 2000 at the five UK locations specified in Section 3.2. 

Taylor and Buizza (2002, 2003) consider the use of weather ensemble predictions in 

electricity demand forecasting. The ensemble members are used to produce scenarios for 

demand, which are then used as a basis for estimating the uncertainty in a demand forecast.  
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5.  Empirical comparison of forecasts of the expected payoff 

In this section, we use the period 1 January 1999 to 1 July 2000 to compare 10 methods 

for forecasting the expected payoff from the derivative in expression (1) for each of the five UK 

temperature series. We produced forecasts for each 10-day rolling window in the 18-month post-

sample period. The forecast origin was the day immediately prior to the 10-day period. 

 

5.1.   Forecasting methods for the expected payoff 

Methods E1 to E6 are univariate time series approaches. The first two of these involve 

simulation based on well-specified AR-GARCH models, while Methods E3 to E6 are naïve 

benchmark approaches. Methods E7 to E10 use predictions from an atmospheric model.  

Method E1 - The AR-GARCH models in Table 1 were used to produce mean and variance 

forecasts for one to 10 days ahead. Using these forecasts and a Gaussian distribution, 10,000 

values were simulated for temperature for each lead time. Substituting these into expression 

(1) delivered 10,000 payoff realisations. The mean of these was used as the forecast.  

Method E2 - This method was identical to Method E1 except it used the empirical distribution of 

standardised AR-GARCH residuals from each lead time, instead of a Gaussian distribution.  

Method E3 - The AR-GARCH temperature point forecasts were substituted into expression (1).  

Method E4 - A random walk forecast was created by using the actual payoff recorded for the 10-

day period that ended immediately prior to the start of the contract period to be predicted. 

Method E5 - The mean of the observed payoffs for the five most recent 10-day periods prior to 

the start of the contract period to be predicted.  

Method E6 - The mean of the observed payoff for the same 10-day period from each of the 

previous five years. 

Method E7 - Using expression (1) and the 51 temperature ensemble members for lead times 

from one to 10 days, 51 realisations were generated for the derivative payoff. The mean of 

these was used as the forecast. 
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Method E8 - Preliminary analysis suggested that the distribution of the 51 ensemble members 

tends to underestimate the true uncertainty. To address this, we rescaled each ensemble 

member. We applied the following simple transformation to , the ith ensemble member 

for k-step-ahead prediction from forecast origin t: 

i
tktT |

ˆ
+

                    ( )ENS
tkt

i
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tkt T |||
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ENS
tkt |+µ  and  are the mean and standard deviation, respectively, of the 51 ensemble 

members. The rescaling inflates the deviation of each ensemble member from its mean by a 

factor λ

ENS
tkt |+σ

k, which is the square root of the ratio of historic k-step-ahead forecast error variance 

to the average historic k-step-ahead ensemble variance. For the Heathrow data, λk ranged 

from λ1=3.35 to λ10=1.15. We elected to use  a simple rescaling transformation in order not 

to lose the information in the ensemble predictions. The rescaled ensemble members were 

used to generate 51 payoff realisations as in Method E7. The mean of these was used as the 

forecast. 

Method E9 - The temperature ensemble means, , were substituted into expression (1). The 

ensemble mean is used here as temperature point forecast because it has been found to be a 

more accurate point forecast that the traditional prediction produced by running the model 

just once at high resolution using the best estimate of the initial state of the atmosphere 

(Leith, 1974; Molteni, et al. 1996). 

ENS
tkt |+µ

Method E10 - The transformation in Method E8 rescales the spread of the ensemble members 

but it does not address the possibility of bias in the ensemble mean, which may transfer to 

the forecast for the expected payoff.  Using only the estimation sample, actual payoffs were 

regressed on the forecasts for the expected payoff from Method E8 to deliver a set of 

debiased forecasts.  
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5.2.  Results 

Table 2 shows the mean absolute error (MAE) for the post-sample forecast errors from 

the 10 methods for each of the five series. The relative performance of the methods was similar 

when evaluated using MedAE and RMSE. To get some perspective on the MAE values in Table 

2, it is worth noting that, in the post-sample period, the actual Heathrow payoffs ranged between 

zero and 36.1, with a mean of 7.7 and a median of 4.6. For each of the five series, we also 

calculated the MAE ranking for each method. The mean of the five rankings for each method 

are shown in the final column of Table 2 (low values are better).  

*****  Table 2  ***** 

It is reassuring to see that, for all five series, the naïve univariate methods, Methods E3 

to E6, were outperformed by Methods E1 and E2, which are based on simulation from the AR-

GARCH models. The results for Method E3 confirm that it would be a mistake simply to 

substitute temperature point forecasts into expression (1) to estimate the expected payoff.  

Interestingly, the four methods that use predictions from the atmospheric model 

outperformed all six of the univariate methods. Indeed, the univariate methods were even 

outperformed by Method E9, which involves the naïve use of atmospheric model temperature 

point forecasts in the payoff formulae in expression (1). The improvement seen in moving from 

this method to Methods E7 and E8 shows that there is considerable benefit in using an approach 

based on the substitution of the 51 temperature ensemble members into the payoff formulae. 

Comparing the results for Methods E7, E8 and E10, we see that the simple rescaling of the 

ensemble members improved accuracy, and that this method was in turn improved by regression 

debiasing. Figure 2 shows observed payoffs for Heathrow with post-sample forecasts from this 

method, Method E10, and for Method E2, which was based on AR-GARCH modelling. The 

plot shows the ensemble-based forecasts varying more successfully with the observed data.  

*****  Figure 2  ***** 
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6.  Empirical comparison of quantile forecasts 

In this section, we use the same 18-month post-sample period employed in Section 5 to 

evaluate seven methods for forecasting the quantiles of the payoff density. We focus on the 

following nine quantiles: 1%, 2.5%, 5%, 25%, 50%, 75%, 95%, 97.5% and 99%. Six of these 

are in the tails of the density, which are of great importance for risk management.  

 

6.1.  Quantile forecasting methods 

The quantiles of the payoff distributions generated in Methods E1, E2, E7 and E8 of 

Section 5 are used in this section as quantile forecasts. We label the resultant quantile 

forecasting methods, Methods Q1 to Q4, respectively. The parameters in two of the 

remaining three methods are estimated using the quantile regression minimisation in 

expression (4), which was introduced by Koenker and Bassett (1978).  

( )
( )

( ) ( )
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+− ∑∑

<≥ θθ

θθθθ
tttt Qyt

tt
Qyt

tt QyQy
||

1min     (4) 

where ( )θtQ is the model for the θ quantile of the dependent variable yt.  

 

Method Q5 - Ensemble-based payoff point forecast with quantile autoregression 

 An alternative to a pure univariate approach is to construct the payoff quantile forecast 

using an ensemble-based point forecast plus a univariate forecast of the quantile of the error in 

this point forecast. We used the payoff point forecast from Method E10 in Section 5, the 

debiased rescaled ensemble method. Given that the payoff density is very unlike Gaussian, we 

opted to forecast the error quantile using the nonparametric quantile autoregression approach 

devised by Engle and Manganelli (2004) for modelling the quantiles of financial returns: 

([ )(ˆ)()(ˆ)(ˆ
10|10|10||10 θθθγθθ e

tttt
e
tt

e
tt QeIQQ −−−+ <−+= )]     (5) 
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)(ˆ
|10 θe
ttQ +  is the quantile estimator for the error, et+10|t, resulting from the payoff point forecast 

for the contract period t+1 to t+10, conditional on information up to period t. γ(θ) is a parameter 

estimated separately for each quantile, θ, using the quantile regression minimisation in 

expression (4). I() is an indicator function taking a value of one when the expression in the 

parentheses is true and zero otherwise. If the probability of the error falling below the θ error 

quantile estimator is θ, the expected value of the square parentheses in expression (5) is zero. 

The indicator function has the effect of reducing the next quantile estimate if, in the current 

period, the error is less than the estimated error quantile. If the error exceeds the error quantile 

estimate, the next estimate is increased. We used an extensive grid search to initialise the 

parameter, prior to numerical nonlinear optimisation. 

 

Methods Q6 and Q7 - Combining quantile forecasts 

 When there is more than one appealing quantile forecast available, it can be beneficial to 

combine the individual forecasts. Using two different methods, we combined the forecasts from 

the substituted rescaled ensembles approach, Method Q4, and the quantile autoregression 

approach, Method Q5. Method Q6 was the simple average of the forecasts from these two 

methods. Method Q7 was the quantile regression combining approach proposed by Granger et 

al. (1989), with intercept omitted and weights restricted to sum to one.  

 

6.2.   Results 

Unconditional coverage 

The unconditional coverage is the percentage of observations falling below the quantile 

estimator. For the θ quantile estimator, the ideal percentage is θ. Expression (1) shows that the 

payoff is bounded below by zero and above by the strike price, which is the seasonal average of 

the weather index. Indeed, the probability of the payoff being zero is equal to the probability that 
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the index will be above its seasonal average. For many periods, this probability will be sizeable, 

with the consequence that, for many periods, the estimates of the lower quantiles (1%, 2.5%, 5% 

and 25%) and the actual payoff will both be zero. This creates a problem when calculating 

unconditional coverage. In view of this, we evaluated unconditional coverage only for those 

observations for which the actual payoff was not equal to the quantile estimate.  

Table 3 shows the unconditional coverage results for the Heathrow data. An asterisk 

indicates that the percentage is significantly different from the ideal value at the 5% level. The 

test uses a Gaussian distribution and the standard error formula for a proportion. To summarise 

the unconditional coverage across the nine quantiles, we calculated chi-squared goodness-of-fit 

statistics for the total number of post-sample payoff values falling within the following 10 

categories: below the 1% quantile estimator, between each successive pair of quantile 

estimators, and above the 99% quantile estimator. The chi-squared statistics are reported in the 

final column of Table 3. The worst value is for Method Q3, which uses the quantiles of the 

distribution of the ensemble-based payoff realisations. As anticipated, this method 

underestimated the uncertainty in the payoff. The results for Method Q4 show that the rescaling 

leads to considerable improvement. This method comfortably outperformed the two AR-

GARCH methods. The only methods for which the chi-squared statistic is not significant at the 

5% level (critical value is 16.9) are quantile autoregression and the simple average combination. 

*****  Tables 3 and 4  ***** 

To summarise across the five locations, we ranked the unconditional coverage 

percentages, according to how close they were to the ideal percentage, for each of the nine 

quantiles and five series, and then averaged the rankings across the five series to deliver the 

results in Table 4. The penultimate column in the table is the average of these ranks for each 

method. We also calculated the ranking of each method’s chi-squared statistic for each of the 

five series, and then calculated the average of these five rankings. These average rankings are 

presented in the final column of Table 4. The rankings are reasonably consistent with those in 
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Table 3 for Heathrow. Simulation from the AR-GARCH model using the Gaussian assumption 

was more successful than the empirical distribution. The rescaling improved the ensemble-based 

approach, and both combinations with the quantile autoregression method led to further 

improvement. The method with the best rankings was the quantile autoregression approach.  

 

Conditional coverage 

The Engle and Manganelli (2004) test for conditional coverage evaluates the dynamic 

properties of the quantile estimator. It involves the joint test of whether the hit variable for the 

payoff, Pt, defined as , is distributed i.i.d. Bernoulli with probability 

θ, and is independent of the payoff quantile forecast, . The ideal is that Hit

θθ −<≡ − ))(ˆ( 10|tttt QPIHit

)(ˆ
10| θ−ttQ t will have 

zero unconditional and conditional expectations. In our 10-step-ahead context, Hitt should have 

no autocorrelation at lags of 10 or more. The test uses the following OLS regression: 

ttttt uQHitHit +++= −− )(ˆ
10|21010 θδδδ  

Rewriting this as uHit += δX , the appropriate null hypothesis is that δ = 0. Engle and 

Manganelli provide the following dynamic quantile (DQ) test statistic for this null hypothesis: 

( ) ( )3~
1

ˆˆ
2χ

θθ −
′′ δδ XX  

 In view of the existence of periods for which some of the quantile forecasts were 

identical to the actual payoff, when constructing the hit variable, we included only the periods 

for which the quantile forecasts were not identical to the actual payoff in that period and in the 

period 10 days previously. Table 5 shows the resulting DQ statistics for the Heathrow data 

(lower values are better). The empty entries in the table are due to the hit variable consisting 

entirely of zeros or entirely of ones, rendering the test’s regression impossible.  

*****  Tables 5 and 6  ***** 
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Table 5 shows that the two methods based on the AR-GARCH model performed poorly. 

The substituted ensemble approach, Method Q3, performed well for the quantiles in the upper 

half of the density, with none significant at the 5% level (critical value is 7.8). However, the 

results for this method are relatively poor for the lower half of the density. The other methods 

based on the atmospheric model also performed well for the upper half of the density. 

To summarise conditional coverage across the five locations, we calculated the DQ 

statistic ranking of each method for each of the nine quantiles and five series, and then averaged 

the rankings across the five series to deliver the results in Table 6. The final column of the table 

shows the mean of the average rankings for each method. The best performing methods in Table 

6 are the quantile autoregression approach and the two combining methods. The relative success 

of these methods is due, in part, to the quality of their unconditional coverage results, since the 

conditional coverage dynamic quantile statistic is influenced by the unconditional coverage. 

 

Informational content 

The DQ statistic is a measure of both the conditional and unconditional coverage of the 

estimator. The third measure that we use for post-sample evaluation is not affected by the level 

of unconditional coverage and, therefore, is a useful alternative measure of the dynamic 

properties of the quantile estimator. This measure, called R1(θ), is the quantile regression 

analogue of the OLS regression R2 (see Koenker and Machedo, 1999, and Taylor, 1999). R1(θ) 

is recorded for the quantile regression performed using post-sample data with the quantile 

estimator as sole explanatory variable.  

The Heathrow R1(θ) results are presented in Table 7 (higher values are better). The most 

noticeable feature of the table is the sizeable difference between the values for the ensemble-

based methods and the AR-GARCH methods. This difference is partly due to the superiority of 

the ensemble-based methods in forecasting the expected payoff. However, the fact that the 

quantile autoregression approach was comfortably outperformed by the other four methods 
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based on the atmospheric model shows that there is informational content in the distribution of 

the 51 ensemble-based payoff realisations that is not captured by the quantile autoregression.  

*****  Tables 7 and 8  ***** 

As a summary of R1(θ) performance across the five locations, we calculated the ranking 

of each method for each of the nine quantiles and for each of the five series, and then averaged 

the rankings across the five series to give the results in Table 8. The results confirm our 

conclusions from Table 7 that Methods Q3, Q4, Q6 and Q7, which use the distribution of 

ensemble-based payoff realisations, outperform the methods that do not. 

 

7.  Summary and concluding comments 

In this paper, we have investigated the use of ensemble predictions in forecasting the 

conditional expectation and conditional density of the payoff from a heating degree day put 

option. With regard to forecasting the expected value, post-sample results showed that the mean 

of ensemble-based payoff realisations comfortably outperformed the mean of payoff realisations 

produced by simulation from an AR-GARCH model.  

We evaluated post-sample forecasts of the quantiles of the payoff density using three 

measures: unconditional coverage, the conditional coverage DQ statistic, and the informational 

content R1(θ) measure. Using an ensemble-based forecast for the expected payoff with quantile 

autoregression produced excellent results in terms of the first two measures. However, this 

method was outperformed in terms of the third measure by the methods that use the distribution 

of ensemble-based payoff realisations. An attractive compromise is provided by the combining 

methods, which pool the information from the quantile autoregression method and the rescaled 

ensemble-based method to deliver forecasts that perform well across all three measures. Overall, 

we found that quantiles produced from the simulation of the AR-GARCH model did not match 

the quality of those from the ensemble-based methods. Therefore, our conclusion is that there is 

strong potential for the use of ensemble predictions in forecasting the payoff density.  
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Table 1.  Parameter estimates for the temperature AR-GARCH model in expression (2)  
with seasonality modelled using Fourier terms as in expression (3). Parentheses contain 
parameter t-statistics. Models estimated using daily data from 1994 to 1998, inclusive. 

 
 

   Model 
   

Parameters Birmingham Bristol Heathrow Leeds Manchester 
 

Equation 
for Mean 

     

µ0 

 

3.37 
(16.80) 

3.40 
(15.81) 

3.61 
(15.98) 

3.31 
(16.93) 

3.49 
(16.53) 

µ1 

 

-0.75 
(-8.99) 

-0.72 
(-9.12) 

-0.75 
(-9.10) 

-0.78 
(-9.16) 

-0.81 
(-9.37) 

µ2 
 

-1.89 
(-14.92) 

-1.73 
(-15.69) 

-1.87 
(-14.72) 

-1.90 
(-14.65) 

-1.93 
(-15.00) 

µ3 
 

0.33 
(4.49) 

0.24 
(3.76) 

0.26 
(3.69) 

0.32 
(4.16) 

0.35 
(4.65) 

µ4 
 

 
     

φ1 

 

0.71 
(42.47) 

0.72 
(43.29) 

0.72 
(42.37) 

0.71 
(41.19) 

0.70 
(38.43) 

      
 

Equation 
for Variance 

     

ω0 

 

0.85 
(3.06) 

0.49 
(1.83) 

1.40 
(2.94) 

0.70 
(1.62) 

1.32 
(3.43) 

ω1 
 

 
     

ω2 
 

0.68 
(2.96)   0.93 

(2.16) 
0.74 

(3.10) 
ω3 

 
 
     

ω4 
 

 
 

-0.42 
(-2.28)    

α 
 

0.08 
(4.30) 

0.07 
(4.21) 

0.08 
(3.29) 

0.05 
(2.33) 

0.09 
(4.49) 

β 
 

0.62 
(9.88) 

0.60 
(8.80) 

0.50 
(4.27) 

0.66 
(8.09) 

0.52 
(5.83) 

γ0 

 

-1.60 
(-3.48) 

-0.04 
(-0.11) 

-0.40 
(-0.93) 

-3.09 
(-2.32) 

-1.65 
(-3.80) 

γ1 
 

 
     

γ2 
 

3.04 
(4.29) 

4.66 
(5.00) 

3.37 
(3.36) 

3.22 
(2.17) 

3.02 
(4.45) 

γ3 
 

 
     

γ4 
 
     

      
Diagnostics      

LB Q(7) for tη̂  8.17 15.98 10.23 5.85 7.69 

LB Q(7) for  2ˆtη 9.14 7.91 3.83 5.32 7.62 

Adj R2 (%) 86.5 88.0 87.7 86.1 85.6 

SBC 4.41 4.16 4.32 4.23 4.43 

 
Please note that this table has previously appeared in Taylor and Buizza (2004). 
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Table 2.  Post-sample MAE (oC) for forecasting the expected payoff.  
 
 

 Birmingham
MAE 

Bristol
MAE 

Heathrow
MAE 

Leeds 
MAE 

Manchester
MAE 

Mean 
rank 

Univariate        
E1. Simulated AR-GARCH - Gaussian 6.8 5.8 6.2 7.7 7.7 6.4 
E2. Simulated AR-GARCH - empirical 6.7 5.7 6.2 7.7 7.8 6.2 
E3. Naïve use of AR-GARCH point forecasts 7.4 6.1 6.7 8.4 8.5 8.0 
E4. Random walk 10.8 9.4 10.3 12.2 12.3 10.0 
E5. Mean of 5 most recent periods 11.4 9.9 10.6 12.8 12.9 11.0 
E6. Mean of same period from past 5 years 7.7 6.4 6.9 9.2 9.1 9.0 
       
Atmospheric       
E7. Substituted ensembles 6.2 5.6 4.3 5.6 5.4 3.8 
E8. Substituted rescaled ensembles 5.9 5.4 4.3 5.5 5.3 2.8 
E9. Naïve use of temperature point forecasts 6.7 6.1 4.7 6.0 6.0 5.4 
E10. Debiasing of Method E8 4.7 4.1 4.2 5.1 5.3 1.4 

 
bold indicates best performing method for each quantile  
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Table 3.  Post-sample unconditional coverage percentages for the Heathrow payoff 

quantiles. The chi-square statistic summarizes performance across the quantiles.   
 
 

 1% 2.5% 5% 25% 50% 75% 95% 97.5% 99% ChiSq 
Univariate           
Q1. Simulated AR-GARCH - Gaussian 0.3 0.8* 1.7* 11.9* 37.6* 74.5 94.4 97.0 98.0* 76.5* 
Q2. Simulated AR-GARCH - empirical 0.3 0.8* 1.7* 11.9* 36.5* 72.4 94.1 96.9 98.0* 71.9* 
           
Atmospheric           
Q3. Substituted ensembles 5.3* 7.2* 10.5* 33.2* 55.6* 78.0 94.9 96.9 97.9* 116.8* 
Q4. Substituted rescaled ensembles 2.2* 3.7 5.7 25.5 51.3 78.6 95.9 98.4 98.7 17.5* 
Q5. Quantile autoregression 1.1 1.8 3.7 23.6 47.2 72.2 96.2 97.8 99.3 9.9 
Q6. Average of Q4 and Q5 0.9 2.0 4.4 23.9 52.5 76.2 96.5 98.4 99.5 6.5 
Q7. Q.Reg. combination of Q4 and Q5 1.6 3.5 5.1 25.4 54.8* 80.1* 96.7 98.5 98.7 19.4* 

 
*  significant at 5% level 
bold indicates best performing method for each quantile  
 
 
 
 
 
 
 
 
 
 

Table 4.  Mean rankings of the post-sample unconditional coverage 
percentages and chi-square statistic across the five locations.  

 
 

 1% 2.5% 5% 25% 50% 75% 95% 97.5% 99% Row 
Mean ChiSq

Univariate            
Q1. Simulated AR-GARCH - Gaussian 4.5 4.9 4.9 5.8 5.6 3.4 3.0 2.6 3.1 4.2 4.6 
Q2. Simulated AR-GARCH - empirical 4.5 4.9 4.9 6.0 6.6 4.8 3.4 2.4 3.1 4.5 5.2 
            
Atmospheric            
Q3. Substituted ensembles 7.0 7.0 7.0 5.8 4.6 4.8 5.0 5.0 5.8 5.8 7.0 
Q4. Substituted rescaled ensembles 4.4 4.6 4.0 3.6 3.6 5.8 4.2 5.6 5.2 4.6 4.6 
Q5. Quantile autoregression 2.1 1.9 2.1 1.6 2.0 2.8 3.4 1.8 3.0 2.3 1.2 
Q6. Average of Q4 and Q5 2.3 1.3 2.0 2.8 3.1 3.2 4.1 5.0 3.5 3.0 2.0 
Q7. Q.Reg. combination of Q4 and Q5 3.2 3.4 3.1 2.4 2.5 3.2 4.9 5.6 4.3 3.6 3.4 

 
bold indicates best performing method for each quantile 
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Table 5.  Post-sample dynamic quantile chi-square 
statistic for the Heathrow payoff quantiles.  

 
 

 1% 2.5% 5% 25% 50% 75% 95% 97.5% 99% 
Univariate          
Q1. Simulated AR-GARCH - Gaussian - - - 80.1* 48.4* 18.7* 18.4* 33.1* 82.2*

Q2. Simulated AR-GARCH - empirical - - - 80.2* 58.2* 30.2* 22.0* 36.3* 81.4*

          
Atmospheric          
Q3. Substituted ensembles 487.0* 256.9* 208.4* 107.2* 50.9* 5.3 0.3 1.0 7.1 
Q4. Substituted rescaled ensembles 133.8* 68.2* 86.6* 66.3* 29.6* 13.3* 1.4 2.0 0.6 
Q5. Quantile autoregression 43.8* 26.2* 34.3* 40.7* 2.7 16.2* 4.4 1.3 1.0 
Q6. Average of Q4 and Q5 43.5* 26.7* 54.1* 39.9* 5.5 2.8 2.9 1.6 1.1 
Q7. Q.Reg. combination of Q4 and Q5 99.2* 49.1* 68.0* 53.7* 9.6* 8.6* 3.4 2.2 0.7 

 
*  significant at 5% level 
bold indicates best performing method for each quantile  
 
 
 
 
 
 
 
 
 
 

Table 6.  Mean rankings of the post-sample dynamic 
quantile chi-square statistic across the five locations.  

 
 

 1% 2.5% 5% 25% 50% 75% 95% 97.5% 99% Row 
Mean 

Univariate           
Q1. Simulated AR-GARCH - Gaussian 6.4 6.5 6.5 3.4 5.0 5.2 4.8 5.2 5.6 5.4 
Q2. Simulated AR-GARCH - empirical 6.4 6.5 6.5 4.4 6.4 6.2 5.6 4.4 5.0 5.7 
           
Atmospheric           
Q3. Substituted ensembles 4.8 5.0 5.0 7.0 6.0 4.4 4.6 3.8 4.6 5.0 
Q4. Substituted rescaled ensembles 3.8 3.0 3.6 5.2 4.4 4.8 4.2 4.4 4.0 4.2 
Q5. Quantile autoregression 2.0 2.2 2.2 1.6 1.0 2.8 3.4 2.0 2.6 2.2 
Q6. Average of Q4 and Q5 2.4 2.4 1.8 3.0 2.8 2.6 2.0 3.4 2.8 2.6 
Q7. Q.Reg. combination of Q4 and Q5 2.2 2.4 2.4 3.4 2.4 2.0 3.4 4.8 3.4 2.9 

 
bold indicates best performing method for each quantile  
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Table 7.  Post-sample R1(θ) percentages for the Heathrow payoff quantiles.  
 
 

 1% 2.5% 5% 25% 50% 75% 95% 97.5% 99% 
Univariate          
Q1. Simulated AR-GARCH - Gaussian 0.0 69.6 0.0 -2.2 8.2 17.7 16.5 18.5 20.3 
Q2. Simulated AR-GARCH - empirical 0.0 69.6 0.0 -2.2 7.7 17.3 16.3 18.4 19.6 
          
Atmospheric          
Q3. Substituted ensembles 1.0 70.0 4.0 27.0 43.0 50.0 48.0 45.0 39.0 
Q4. Substituted rescaled ensembles 4.0 71.0 5.0 27.0 43.0 50.0 48.0 46.0 39.0 
Q5. Quantile autoregression -0.2 69.6 0.0 18.7 40.4 43.1 24.2 22.1 22.2 
Q6. Average of Q4 and Q5 0.0 69.6 0.2 23.9 42.2 47.9 38.8 38.3 33.9 
Q7. Q.Reg. combination of Q4 and Q5 3.1 70.9 5.2 26.7 42.6 49.4 47.3 45.1 38.5 

 
bold indicates best performing method for each quantile  
 
 
 
 
 
 
 
 
 
 
 
 

Table 8.  Mean rankings of post-sample R1(θ) percentages across the five locations.  
 
 

 1% 2.5% 5% 25% 50% 75% 95% 97.5% 99% Row 
Mean 

Univariate           
Q1. Simulated AR-GARCH - Gaussian 3.6 4.2 5.3 6.2 6.0 6.0 6.6 6.6 6.2 5.6 
Q2. Simulated AR-GARCH - empirical 3.6 4.2 5.3 6.8 7.0 7.0 6.4 6.4 6.8 5.9 
           
Atmospheric           
Q3. Substituted ensembles 2.9 2.9 2.9 2.5 2.1 2.1 2.1 1.6 1.5 2.3 
Q4. Substituted rescaled ensembles 1.6 1.4 1.2 1.1 1.1 1.1 1.5 3.2 2.9 1.7 
Q5. Quantile autoregression 5.5 7.0 5.9 5.0 5.0 5.0 5.0 5.0 5.0 5.4 
Q6. Average of Q4 and Q5 6.2 5.6 4.5 3.4 3.0 3.0 3.8 3.0 3.4 4.0 
Q7. Q.Reg. combination of Q4 and Q5 4.6 2.7 2.9 3.0 3.8 3.8 2.6 2.2 2.2 3.1 

 
bold indicates best performing method for each quantile  
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Fig. 1.  Daily midday temperature observations at Heathrow. 
 
 
 
 
 
 
 
Please note that this figure has previously appeared in Taylor and Buizza (2004). 
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Fig. 2.  Observed payoff values for Heathrow plotted with the forecasts for the expected 
payoff from two methods for the final 6 months of the post-sample evaluation period. 
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