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Abstract-- Wind power is an increasingly used form of 

renewable energy. The uncertainty in wind generation is very 
largely due to the inherent variability in wind speed, and this 
needs to be understood by operators of power systems and 
wind farms. To assist with the management of this risk, this 
paper investigates methods for predicting the probability 
density function of generated wind power from one to 10 days 
ahead at five UK wind farm locations. These density forecasts 
provide a description of the expected future value and the 
associated uncertainty. We construct density forecasts from 
weather ensemble predictions, which are a relatively new type 
of weather forecast generated from atmospheric models. We 
also consider density forecasting from statistical time series 
models. The best results for wind power density prediction and 
point forecasting were produced by an approach that involves 
calibration and smoothing of the ensemble-based wind power 
density. 
 

Index Terms— Density forecasting; GARCH models; 
weather ensemble predictions; wind power; wind speed. 

I.  INTRODUCTION 
IND generation is the fastest growing source of 
renewable energy. However, due to the erratic nature 

of the earth’s atmosphere, there is great variability in wind 
generated power, and this poses a number of complexities 
that act as a limiting factor for this source of energy. 
Fluctuations in wind speed cause the amount of wind power 
generation to vary with time and location. This variability 
generates uncertainty that needs to be understood by power 
system operators in order to ensure that supply and demand 
are balanced. Reserve electricity supplies are needed 
whenever wind generators fail to produce anticipated 
amounts of energy [1]. For wind farm operators, an 
understanding of the uncertainty is important for both 
operational and financial reasons. The availability of wind 
power forecasts and their stochastic properties enables the 
optimization of the operational strategy for wind turbines 
[2]. Costs due to wind energy prediction error have been 
shown to be as much as 10% of total generator energy 
income, implying a strong need to manage the risks of 
unexpected levels of generation [3]. This risk clearly relates 
to the supply side of the power system, but weather risk also 
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has an impact on the demand side [4, 5].  
To assist with the management of risk, this paper 

develops methods to predict the probability density function 
of wind power generation for lead times from one to 10 
days ahead. These density forecasts provide a description of 
the expected future value and the associated uncertainty. 
Our empirical analysis uses data for five different UK wind 
farm locations.   

We consider a relatively new type of weather forecast 
supplied by the European Centre for Medium-Range 
Weather Forecasts (ECMWF). These forecasts, known as 
weather ensemble predictions, are generated from 
atmospheric models and consist of multiple scenarios for the 
future value of a weather variable. They, therefore, provide 
an understanding of the uncertainty in the variable. Using an 
appropriate power curve, the wind speed scenarios can be 
converted into scenarios for wind power generation. The 
distribution of these scenarios can be used as a density 
forecast, with the mean of the scenarios providing a point 
forecast for wind power. 

We also implement a number of statistical time series 
techniques for generating density forecasts of wind energy. 
These include the application to daily wind speed data of 
AR-GARCH and long memory time series models designed 
to deal specifically with the stochastic and seasonal patterns 
of the data. The resulting wind speed density forecasts are 
converted, via a power curve, into wind power density 
predictions. An alternative approach is to use neural 
networks, which enable nonlinear modeling [6, 7, 8]. 
Indeed, these models have also been used for calibration of 
atmospheric model predictions [9]. 

Both the atmospheric and time series model approaches 
involve the generation of wind speed density forecasts, 
which are converted to wind power predictions. We could 
have just evaluated the quality of the wind speed density 
forecasts. However, because of the nonlinear relationship 
between wind speed and wind power, the suitability of a 
method for wind speed forecasting is no guarantee of that 
method’s usefulness for wind power prediction [10]. 
Therefore, we convert all wind speed density predictions 
into wind power density forecasts in order to evaluate their 
relative worth.  

In Section II, we introduce our five wind farm locations 
and define the wind power curve that we employ. Section 
III presents statistical time series models for wind speed. 
Weather ensemble predictions are described in Section IV. 
Section V compares point forecasts produced by the 
different approaches, and in Section VI we compare density 
forecasts. The final section provides a summary and 
conclusion. 
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II.  WIND SPEED DATA AND POWER CURVE 
We used data for wind speed at a height of 10 m, 

recorded at the five wind farms summarized in Table I. The 
farms vary in size and capacity, with the newer farms 
having the more powerful turbines. Our dataset contained 
daily midday wind speed observations from 1 January 1995 
to 30 June 2004, and weather ensemble predictions 
corresponding to forecast origins of 1 January 1997 to 30 
June 2004. We estimate method parameters using data up to 
the end of 2002, with the final 18 months used for post-
sample forecast evaluation. 

 
TABLE I 

WIND FARM LOCATIONS USED IN THIS STUDY 
 

Online Wind farm
Turbine 
capacity 
(MW)

No. of 
turbines

Farm 
capacity 
(MW)

Annual 
homes 

equivalent

Dec-
1992 

Blood Hill, 
Norfolk 

0.225 10 2.25 1258 

Oct-
1997 

Llyn Alaw, 
Anglesey 

0.6 34 20.4 11407 

Sep-
2001 

Bears Down, 
Cornwall 

0.6 16 9.6 5368 

Mar-
2002 

 Bu Farm,    
Orkney

0.9 3 2.7 1510 

Mar-
2002 

Cemmaes, 
Powys 

0.85 18 15.3 8555 
 

Fig. 1 shows the Bears Down wind speed series. 
Although the series is dominated by variation, the peaks 
every January suggest that there is seasonality within each 
year. Skewness is also evident in the series, with occasional 
large values not matched by extremes in the lower direction 
because of the lower bound of zero. In order to try to gain 
further insight into the seasonality, in Fig. 2, we plot the 
wind speed observations against the day of the year for the 
eight-year estimation period 1995 to 2002. This plot shows 
that there is seasonality in both the level and variance of the 
series. 
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Fig. 1.  Daily midday wind speed at Bears Down wind farm. 
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Fig. 2.  Daily midday wind speed observations at Bears Down wind farm 
plotted against the day of the year for the estimation period 1995 to 2002. 
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Fig. 3.  Wind power curve used in this study for all five locations. 
 

Although a variety of wind turbines are used at the five 
locations, in this paper, for all five we used a common 
power curve to convert wind speed to wind power. We did 
this so that we could average wind power forecasting 
performance in order to compare methods more easily. The 
power curve used in this study is shown in Fig. 3. The 
nonlinear relationship is similar to that used in other studies 
(e.g. [11]). The curve is essentially cubic up to what is 
known as the ‘nominal speed’ beyond which the power 
generated is limited by the capacity of the turbine. At the 
‘disconnection speed’, the turbine is shut down in order to 
prevent damage from excessively strong wind. We specified 
the capacity of the curve to be approximately the average 
capacity of the five turbine types used at the different wind 
farms. In practice, the power curve can vary depending on 
several factors, including other meteorological variables, the 
power control system of the specific turbine used [12], and 
on the location and topographical conditions of the wind 
farm. However, in this paper, for simplicity, we use a single 
deterministic power curve that is realistic and can be easily 
reproduced. The same approach is employed in [11]. An 
alternative approach is to consider the use of a stochastic 
power curve, and this has been investigated in [12]. In our 
future work, we intend to model empirically the power 
curves for a number of wind farms, and use these as a basis 
for wind power forecasting.  

 

III.  TIME SERIES MODELS FOR WIND SPEED DENSITY 
FORECASTING 

A.  ARMA-GARCH Models  
Recent studies of wind speed time series have used 

generalized autoregressive conditional heteroskedasticity 
(GARCH) for the conditional variance. GARCH 
components allow the variance to evolve in an 
autoregressive manner over time. In [13] an AR-GARCH 
model is fitted to daily Canadian mean wind speed data. In 
order to accommodate the asymmetric nature of the data, 
rather than the common Gaussian assumption, a Gamma 
distribution was used. For data recorded at one-minute time 
intervals, in [14] a bivariate GARCH model is used to 
model the east-west and north-south wind velocities in 
Sydney Harbour. In an analysis of wind speed data collected 
in Texas with a 15-minute interval [15], an ARMA-
GARCH-in-mean model is considered, which allow the 
conditional standard deviation to be included in the ARMA 
equation for the mean.  
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As discussed in Section II, our daily wind speed series 
possess a yearly seasonal pattern. None of the studies 
mentioned so far in this Section has included seasonal 
terms. For a seasonal version of ARMA-GARCH, we turn 
to the model presented in [16] for weekly Dutch temperature 
data. This model is presented in expression (1): 
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where yt is the temperature variable, εt is an error term, ηt is 
an i.i.d. error term, σt is the conditional standard deviation 
(volatility), α and β are parameters, and μ, ω and γ are 
vectors of parameters. The seasonality term, S(μ,t), appears 
in the equation for the mean along with a first order 
autoregressive term. A similar term, S(ω,t), is used to model 
the seasonality in the volatility, as well as the asymmetric 
seasonal impact of temperatures lower and higher than 
expected on conditional volatility, S(γ,t). The seasonality is 
modeled as a quadratic function. Similar models for daily 
mean US temperature are used in [17], with the difference 
that Fourier terms are used to model the seasonality.  

In [18], this type of seasonal AR-GARCH model is used 
for daily wind speed data recorded at five UK cities. In this 
paper, we also use these models, but our application differs 
in that we use data for actual wind farm locations and, 
furthermore, we apply the models to transformed wind 
speed. In order to stabilize the variance and make the 
marginal distribution of the data closer to Gaussian, a square 
root transformation is taken in [19]. The effect that this has 
on our Bears Down series can be seen from Figs. 4 and 5, 
which are analogous to the untransformed wind speed plots 
of Figs. 1 and 2. The transformed series still possesses 
seasonality, but the transformation has substantially reduced 
the skewness in the data. An assumption of Gaussian errors 
would seem to be considerably more appropriate for the 
transformed series. 
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Fig. 4.  Square root of daily midday wind speed at Bears Down wind farm. 
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Fig. 5.  Square root of daily midday wind speed observations at Bears 
Down wind farm plotted against the day of the year for the estimation 
period 1995 to 2002. 

TABLE II 
PARAMETERS AND DIAGNOSTICS FOR THE AR-GARCH MODEL 

IN EXPRESSION (2) FITTED TO THE SQUARE ROOT OF WIND SPEED 

 Blood 
Hill 

Llyn 
Alaw 

Bears 
Down 

Bu 
Farm Cemmaes

Equation for Mean    
μ0 

 

1.44 
(17.66) 

1.10 
(15.61) 

1.58 
(18.75) 

1.42 
(16.85) 

1.03 
(15.78) 

μ1 

 

0.03 
(2.60)  

0.03 
(2.46) 

0.05 
(3.19) 

0.03 
(2.07) 

μ2 

 
0.06 

(4.34) 
0.07 

(4.66) 
0.10 

(7.07) 
0.10 

(6.06) 
0.04 

(3.44) 
μ4 

 
-0.03 

(-2.38)   
-0.04 

(-2.82)  
φ1 

 

0.34 
(17.81) 

0.38 
(19.69) 

0.38 
(20.22) 

0.32 
(17.26) 

0.41 
(20.71) 

φ2 

  
0.05 

(2.46)  
0.07 

(3.59)  
φ3 

     
0.05 

(2.24) 
φ4 

 
0.06 

(3.05) 
0.05 

(2.42)   
0.04 

(2.07) 
φ5 

    
0.05 

(2.32)  
φ7 

  
0.06 

(3.10)   
0.05 

(2.82) 
      

Equation for Variance    
ω 

 

0.0035 
(1.16) 

0.0057 
(1.46) 

0.0050 
(1.40) 

0.0054 
(1.41) 

0.0041 
(1.46) 

α 
 

0.03 
(3.19) 

0.03 
(3.68) 

0.04 
(4.79) 

0.03 
(3.69) 

0.03 
(3.73) 

β 
 

0.96 
(53.01) 

0.95 
(47.02) 

0.94 
(56.15) 

0.96 
(58.94) 

0.95 
(51.09) 

      
Diagnostics     

tη̂ LB Q(7) 4.66 4.88 9.97 1.76 6.14 
2ˆtη LB Q(7) 13.72* 10.51 10.20 11.48 4.94 

JB for 
tη̂  10.86* 30.72* 0.11 21.74* 3.16 

SBC 1.34 1.48 1.55 1.76 1.32 
We estimated models similar to those in expression (1), 

for the square root of our wind speed series using maximum 
likelihood under the assumption that ηt was Gaussian. We 
selected models using the Schwarz Bayesian Criterion 
(SBC) to judge fit. We considered AR terms up to order 
seven in the equation for the mean. Inclusion of MA terms 
did not lead to improvements. Fourier modeling of 
seasonality gave better fit than quadratic modeling. We did 
not find significant parameters in the asymmetric seasonal 
volatility function, S(γ,t). For two series, we found 
significant Fourier terms in the variance equation. However, 
their inclusion resulted in an insignificant GARCH 
parameter, α. Removal of the GARCH terms resulted in 
autocorrelation in the squared standardized residuals, 
indicating an inadequate model of the conditional variance. 
We, therefore, opted to remove the Fourier terms from the 
variance equation. Expression (2) shows the model. 
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where yt is the square root of wind speed and d(t) is a 
repeating step function that numbers the days from 1 to 365 
within each year. We removed 29 February from each leap 
year in our sample in order to maintain 365 days in each 
year. 

In Table II, for each of our five series, we present our 
preferred model. The table presents the following 
diagnostics: each parameter with its t-statistic in 
parentheses; the Ljung-Box Q-statistic to test for 
autocorrelation in standardized residuals (

ttt σεη ˆˆˆ = ) and 
squared standardized residuals; the test statistic for the 
Jarque-Bera test for normality of standardized residuals; and 
the SBC. The asterisks indicate significance at the 5% level, 
indicating that the model assumptions can be rejected. 
Although, three of the models have significant diagnostics, 
we could not find better simple alternative models, so we 
decided to use these models.  

The AR-GARCH models enable predictions to be made 
for the mean and variance. A density forecast can then be 
constructed using either a Gaussian assumption or the 
empirical distribution of standardized residuals.  

B.  ARFIMA-GARCH Models 
We also implemented the long memory models presented 

in [19]. Spatio-temporal models are fitted to the square root 
of daily wind speed recorded at several locations in Ireland, 
but, as our focus is purely on temporal modeling, we 
omitted the spatial element in our implementation of the 
approach. In this study, the square root of wind speed series 
is deseasonalized, and then an autoregressive fractionally 
integrated moving average (ARFIMA) model is fitted. This 
type of model is a generalization of the ARIMA class of 
models in which the order of differencing, d, is allowed to 
take non-integer values. If it is found that 0<d<0.5, the 
series is stationary, but will possess significant 
autocorrelation for many lags, which is why they are termed 
long-memory models. 

We deseasonalized each series by subtracting a fitted 
quadratic function of the day of the year counter, d(t). We 
were unable to use Fourier terms for this purpose because 
their use resulted in zero values in the empirical 
periodogram, which led to problems in identifying the order 
of fractional differencing. We estimated the degree of 
fractional integration, d, using the log-periodogram 
regression estimator [20]. The estimated values of d are 
shown at the top of Table III. For all series, d was 
significantly different from zero and 0.5, indicating 
stationarity and long memory. After applying a long-
memory filter to the square root of wind speed, we fitted 
ARMA-GARCH models to the filtered data. Inclusion of 
MA terms did not lead to improvements, and so the models 
in Table III can be described as ARFI-GARCH models. The 
parameters and diagnostics for these models are presented in 
the table using the same notation as for the model in 
expression (2) and Table II. Our use of GARCH terms is an 
extension of the Haslett and Raftery approach because they 
did not consider such terms, which is understandable 
because at the time GARCH was not well established. Using 
the mean and variance forecasts from these models we 
constructed separate sets of density forecasts using a 
Gaussian assumption and the empirical distribution of 
standardized residuals. 

 
 

TABLE III 
PARAMETERS AND DIAGNOSTICS FOR THE ARFI-GARCH MODEL FITTED 

TO THE LONG-MEMORY FILTERED SQUARE ROOT OF WIND SPEED 
 

 Blood 
Hill  

Llyn 
Alaw 

Bears 
Down 

Bu 
Farm Cemmaes 

Order of Fractional Differencing    
d 

H0: d = 0 
H0: d = 0.5

0.18 
(5.74) 
(10.63) 

0.26 
(8.05) 
(7.71) 

0.24 
(7.39) 
(8.04) 

0.19 
(5.93) 
(9.73) 

0.26 
(8.23) 
(7.85) 

      
Equation for Mean     

μ0 

 

0.05 
(-0.43) 

0.00 
(-0.47) 

0.03 
(-0.34) 

0.03 
(-0.63) 

0.00 
(-0.46) 

φ1 

 

0.16 
(8.42) 

0.13 
(6.60) 

0.13 
(6.93) 

0.14 
(7.37) 

0.14 
(7.36) 

φ3 

 
0.05 

(2.54)  
0.04 

(2.30)   
      

Equation for Variance    
ω 

 

0.0034 
(2.02) 

0.0055 
(2.88) 

0.0049 
(2.59) 

0.0055 
(2.59) 

0.0040 
(2.60) 

α 
 

0.03 
(3.75) 

0.03 
(4.48) 

0.04 
(5.24) 

0.03 
(4.65) 

0.03 
(4.45) 

β 
 

0.96 
(78.24) 

0.95 
(70.66) 

0.95 
(81.58) 

0.96 
(89.77) 

0.95 
(72.62) 

      
Diagnostics     

tη̂ LB Q(7) 4.81 5.87 4.00 7.69 4.91 
2ˆtη LB Q(7) 15.16* 10.75 8.73 12.34 15.37* 

JB for 
tη̂  8.77* 20.71* 9.61* 29.72* 4.82 

SBC 1.34 1.48 1.55 1.74 1.31 
 

IV.  ATMOSPHERIC MODEL WEATHER ENSEMBLE 
PREDICTION FOR WIND SPEED  DENSITY FORECASTING 

A.  Ensemble Prediction 
Traditional point forecasts are generated from 

atmospheric models by running the model once at high 
resolution (horizontal grid spacing) with best estimates for 
the initial conditions. However, it is important to 
acknowledge the existence of two sources of uncertainty. 
First, because the weather is a chaotic system, small errors 
in the initial conditions of a forecast grow rapidly, and 
affect predictability. Second, predictability is limited by 
model errors due to the approximate simulation of 
atmospheric processes in a numerical model.  

Ensemble prediction systems aim to provide an 
assessment of weather uncertainty by deriving a 
sophisticated estimate of the probability density function for 
the weather variables. They involve the generation of 
multiple realizations of numerical predictions by using a 
range of different initial conditions in the numerical model 
of the atmosphere run at a lower resolution than for 
traditional point prediction. An estimate of the density 
function is provided by the frequency distribution of the 
different realizations, which are known as ensemble 
members. The initial conditions are designed to sample 
directions of maximum possible growth [21]. They are not 
sampled as in a statistical simulation because this is not 
practical for the complex, high-dimensional weather model. 

Following the leading examples of the US National 
Center for Environmental Predictions and the European 
Centre for Medium-range Weather Forecasts (ECMWF), 
global ensemble forecasts are now produced daily at the 
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major meteorological centers. In all these ensemble systems, 
the number of ensemble members is limited by the necessity 
to produce forecasts in a reasonable amount of time with the 
available computer power. 

In our work, ensemble forecasts generated at ECMWF 
have been used. At the time of writing (January 2008), the 
ECMWF Ensemble Prediction System include 51 members, 
consisting of one forecast started from the unperturbed, best 
estimate of the atmosphere initial state plus 50 others 
generated by varying the initial conditions. The ensemble 
systems also incorporate stochastic physics, which aims to 
simulate model uncertainties due to random model error. 
Since 25 March 2003, the ECMWF ensemble forecasts have 
been produced twice a-day, with midnight and midday being 
the two forecast origins, for lead times coinciding with 
midday and midnight on each of the next 10 days. In the 
empirical work of this paper, we used only ensemble 
predictions for the period 1997-2002, and we considered 
only the midday forecast origin and predictions made for 
midday on each of the 10 days in the forecast origin. The 
archived weather variables include both upper level 
variables (typically temperature, wind speed, humidity and 
vertical velocity at different heights) and surface variables 
(e.g. temperature, wind speed, precipitation, cloud cover). 
Benefit has been found in the use of weather ensemble 
predictions for electricity demand forecasting and 
temperature derivative pricing [4, 18].  

Following the success of medium-range ensemble 
prediction systems, ECMWF have introduced a new higher-
resolution ensemble prediction system that extends the 
forecast horizon from 10 to 15 days [22]. Another 
development in this area is that national meteorological 
services are developing short-range ensemble prediction 
systems. Three of these systems are the COSMO-LEPS 
system, developed by a consortium of countries that include 
Germany, Greece, Italy and Switzerland, the MOGREPS 
system, developed by the UK Met Office, and PEACE, the 
French system. These institutes are investigating the 
possibility of generating ensemble forecasts with a more 
accurate spatial resolution, more frequently (possibly up to 
eight times a day), and for lead times at three hourly 
intervals up to three days ahead. This change should provide 
their customers, such as wind farm operators, with more 
frequent forecast updates, and with more detailed 
predictions of future weather changes. With regard to our 
focus on midday data and predictions, the development of 
these new ensemble prediction systems implies that our 
analysis can be extended for other periods of the day and for 
more frequent lead times. 

Ensemble predictions have been considered for wind 
energy forecasting in [11]. We extend this work in the 
following respects: we use data for five wind farm locations, 
rather than just Heathrow; we use six years of ensemble 
predictions, while only two years were used in [11]; we 
calibrate and smooth the ensemble-based density forecast in 
a novel way; and we compare ensemble-based prediction 
with density forecasts from sophisticated times series 
models. 

B.  Calibration and Smoothing of Ensemble-Based Wind 
Speed Density Forecasts  

As discussed in the previous section, a density forecast 

can be constructed as the histogram of the 51 ensemble 
members. However, previous work has revealed that the 
resultant density forecast tends to underestimate the 
uncertainty in the weather variable [18, 23]. In view of this, 
we calibrated our wind speed ensemble predictions before 
conversion into wind energy density forecasts. To be 
consistent with the time series analysis of Section III, we 
worked with the square root of the wind speed ensemble 
forecasts. The calibration approach employed in this paper 
differs from the approach used in previous studies in three 
respects. First, both the level and the spread are rescaled, as 
our analysis revealed a bias in both the mean and the 
variance of the 51 ensemble members. Second, the approach 
incorporates kernel density estimation in order to smooth 
the histogram of calibrated ensemble members [24]. Third, 
both the kernel smoothing and the calibration are jointly 
estimated using a maximum likelihood approach.  

The ith member of the calibrated square root of wind 
speed ensemble forecast, i

tkty |ˆ +
, is given by  

( )ENS
tkt

i
tktkk

ENS
tkt

i
tkt yby ||||

~ˆ ++++ μ−λ+−μ= , 

where i
tkty |

~
+

 is the square root of the original wind speed 

ensemble member; ENS
tkt |+μ  is the mean of the 51 ensemble 

members for the square root of wind speed; t is the forecast 
origin; k is the forecast horizon; and bk and λk are calibration 
parameters.  The density forecast for the square root of wind 
speed is estimated using a kernel smoothing technique, 
which averages over the contributions from each of the 51 
ensemble members. The density forecast of the square root 
of wind speed at value y is given by the following 
expression:  

,),ˆ,(
51
1)(ˆ

51

1
|| ∑

=
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where K is the kernel function and hk is its bandwidth. The 
size of the bandwidth reflects the uncertainty associated 
with each ensemble member. Note that each kernel is 
normalized so that  

∫
∞

+ =
0

| ,1),ˆ,( dyhyyK k
i

tkt
 

and, therefore, the forecast density has this same property, 
which is required of a probability density function.  In order 
to account for the fact that wind speed is bounded below by 
zero, we employed truncated normal distributions with 
truncation at zero. Using historical ensemble forecasts and 
verifications, we calculated the sum of the log-likelihood 
function, 

,)(ˆln),,( |∑ ++=λ
t

kttktkkk yphbL  

for each forecast horizon k. By maximizing the likelihood 
using a nonlinear optimization algorithm (Nelder-Mead 
simplex), we obtained estimates for bk, λk and hk. 
Interestingly, we found that the effective spreading of the 
ensemble caused by the kernel smoothing meant that the 
estimated value of the calibration factor, λk, was typically 
below one.  
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V.  COMPARISON OF WIND POWER POINT FORECASTING 
In this section, we compare 10 methods for wind power 

point forecasting. We produced forecasts from one to 10 
days ahead for each of the five wind locations using as 
forecast origin each day in the 18-month post-sample 
period.  

Several of the methods use the wind power curve of Fig. 
3 to convert wind speed point forecasts to wind power point 
forecasts. However, this is rather simplistic because a 
nonlinear function of the mean of a random variable is not 
necessarily equal to the mean of a nonlinear function of the 
random variable. In view of this, we also included methods 
that first generate the wind power density forecast and then 
use its mean as the wind power point forecast. 

A.  Methods 
The first three methods listed below are simple 

benchmark methods; the next four involve simulation based 
on the sophisticated time series models presented in Section 
III; and the final three use predictions from an atmospheric 
model.  

1. A random walk forecast was created by using the 
actual wind power for the forecast origin. Actual wind 
power was calculated from actual wind speed using the 
power curve. 

2. The wind power corresponding to the mean of the 
actual wind speed for the five most recent periods prior to 
the forecast origin.  

3. The wind power corresponding to the mean of the 
actual wind speed for the same day of the year in each of the 
previous five years. 

4. The AR-GARCH models in Table II were used to 
produce mean and variance forecasts for one to 10 days 
ahead. Using these forecasts and a Gaussian distribution, 
10,000 values were simulated for the square root of wind 
speed for each lead time. Using the power curve in Fig. 3, 
these values were converted into 10,000 simulated wind 
power realizations. The mean of these was used as the point 
forecast.  

5. This method was identical to Method 4 except it used 
the empirical distribution of standardized AR-GARCH 
residuals, instead of a Gaussian distribution.  

6. This method was identical to Method 4 except it used 
the ARFI-GARCH models of Table III. 

7. This method was identical to Method 5 except it used 
the ARFI-GARCH models of Table III. 

8. Using the power curve in Fig. 3, we calculated wind 
power predictions based on traditional meteorological wind 
speed point forecasts, which are generated by running the 
atmospheric model once at high resolution with best 
estimates for the initial conditions.  

9. Using the uncalibrated 51 wind speed ensemble 
members, we produced 51 wind power scenarios for each 
lead time. The mean of these was used as the point forecast. 
Because this method derives a point forecast from the wind 
power density forecast, it is more statistically appealing than 
Method 8. Furthermore, the mean of the 51 weather 
ensemble members is often found to be a more accurate 
weather point forecast than the traditional high resolution 
forecast [25].  

10. Using the calibrated and kernel smoothed ensemble-
based densities for the square root of wind speed, 10,000 
values were sampled for each lead time. Using the power 

curve in Fig. 3, these values were converted into simulated 
wind power. The mean of these was used as the point 
forecast. 

B.  Results 
For seven of the 10 methods, Fig. 6 shows the mean 

absolute error (MAE) for the post-sample forecast errors 
averaged over the five series. The relative performances of 
the 10 methods were very similar for each of the five 
locations, and so the average MAE results in Fig. 6 provides 
a useful summary. The MAE results were similar for the 
AR-GARCH and ARFI-GARCH models with Gaussian or 
empirical distribution, so we show only the results for one 
of these methods, Method 6. It is disappointing to see that 
beyond two days ahead this method is matched by the 
simplistic approach that uses the mean of the actual wind 
power for the same day in each of the previous five years.  

For prediction up to four days ahead, the best results were 
produced by the three methods that use predictions from the 
atmospheric model. Comparing these three approaches, Fig. 
6 shows that there is benefit in using the ensemble 
predictions, as in Methods P9 and P10, rather than the naïve 
use of the high resolution atmospheric model wind speed 
point forecasts as in Method 8. The results for Method 10 
are an improvement on those for Method 9, showing that 
there is benefit in using the calibrated and smoothed 
ensemble-based density forecast. Overall, of the 10 
methods, Method 10 has the best results, although it is 
slightly outperformed by the 5-year mean and the 
sophisticated statistical models for the three longest lead 
times.    

The relative performances of the methods were similar 
when evaluated using root mean square error (RMSE). The 
one exception to this was that the sophisticated time series 
methods outperformed the 5-year mean for all lead times. 
For simplicity we do not report in any further detail the 
RMSE results. 
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Fig. 6.  Post-sample MAE results averaged over the five wind farm 
locations. 

VI.  COMPARISON OF WIND POWER DENSITY FORECASTING 
We generated density forecasts using Methods 4, 5, 6, 7, 

9 and 10, described in Section V. We evaluated forecast 
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quality using the log likelihood and the probability integral 
transform [26]. For the latter, the relative ranking of the 
methods was unclear, and so for simplicity, we present here 
only the log-likelihood results. The log-likelihood for 
verification time t+k and forecast horizon k is 

)(ˆln || kttkttkt zpL +++ = , where )(ˆ | kttkt zp ++
 is the probability 

estimate, provided by the density forecast, evaluated at the 
observed wind power, zt+k. This can be empirically 
calculated by estimating the derivative of the cumulative 
distribution function (CDF) of wind power. For Methods 4, 
5, 6, 7 and 10, we constructed the CDF using M=10,000 
sampled values from the density forecast, and for Method 9, 
we used the M=51 wind power scenarios. Let Δz be the 
difference between the values on either side of the observed 
wind power. The empirically calculated log-likelihood is 
given by ln 1/((M+1)Δz).  The sum of these log-likelihoods 
provides a score for each forecast horizon.  

The log-likelihood results were similar for the time series 
models with Gaussian or empirical distribution, so we report 
only the results for the models with a Gaussian assumption, 
Methods 4 and 6. Fig. 7 shows the sum of the log-
likelihoods averaged over the five series. The averaging of 
the results is reasonable because the relative performances 
of the methods were very similar for each of the five 
locations. A higher value of the log-likelihood measure is 
preferable. The method that overall performs the best in Fig. 
7 is Method 10, which is the calibrated and smoothed 
distribution of the 51 ensemble members. The quality of the 
density forecast will depend in part on the quality of the 
estimate of the mean. However, it is interesting to note that 
the accuracy for the early lead times of Method 9 for 
forecasting the mean, as shown in Fig. 6, is not repeated in 
Fig. 7. This indicates that the relative rankings of the 
methods in Fig. 7 is certainly not entirely due to the ability 
of the methods to estimate the mean of the density and must, 
therefore, also be due to the quality of the methods for 
estimating the other features of the density. 
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Fig. 7.  Post-sample log-likelihood results averaged over the 
five locations. 

VII.  SUMMARY AND CONCLUDING COMMENTS 
In this paper, we have shown how wind power density 

forecasts, for lead times from one to 10 days ahead, can be 
generated from wind speed ensemble predictions produced 
by an atmospheric model. The systematic bias in the 
location and scale of the distribution of the 51 ensemble 

members was corrected using a calibration approach that 
also incorporated kernel smoothing, with parameters 
optimized using maximum likelihood. We compared the 
resultant density forecasts with those from sophisticated 
time series models built using wind speed observations. The 
calibrated and smoothed ensemble-based density forecasts 
were found to be more accurate up to a lead time of about a 
week. The resultant point forecasts were comfortably 
superior to those generated by the time series models and 
those based on traditional high resolution wind speed point 
forecasts from an atmospheric model. It is, therefore, our 
conclusion that weather ensemble predictions have strong 
potential for wind power forecasting. 
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