
Part A Quantum Theory

James Sparks (sparks@maths.ox.ac.uk), Hilary Term 2012

About these notes

These are lecture notes for the Part A Quantum Theory course, which is part of the mathe-

matics syllabus at the University of Oxford. Starred paragraphs are not examinable, typically

because they are more difficult and/or slightly off-syllabus. There are two problem sheets for

the course, and a revision problem sheet. Please send any questions/corrections/comments to

sparks@maths.ox.ac.uk.
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Preamble

Classical physics – Newton’s laws of mechanics and the theory of electromagnetism developed

in the 19th century – fails at the atomic scale. From the beginning of the 20th century, mounting

experimental evidence pointed towards the existence of a radically different theory of physics

that governs the properties of atoms and their constituent particles. The deterministic and

continuous nature of classical physics was replaced by a new quantum theory, with probability

and discreteness at its heart. The theory of quantum mechanics developed in the 20th century

not only successfully describes the structure of atoms and molecules, but also nuclear physics,

particle physics (such as in particle accelerators like the LHC), chemistry (such as chemical

bonding), the structure of solids, superconductors, etc. Quantum theory also underpinned many

important technological advances in the 20th century, such as the laser, the microchip (hence

computers and mobile phones), and the electron microscope. Future applications may include

quantum cryptography and the quantum computer.
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In this course we begin with an overview of some key physical ideas and formulae. These

developed from experiments that demonstrate the failure of classical physics at the atomic scale.

An important concept here is wave-particle duality. This, together with some intuition from

classical physics, will lead us to the Schrödinger equation that governs such matter-waves. We

discuss general properties of the Schrödinger equation, and interpret the wave function in terms

of a probability distribution. We also study in detail some of the simplest, and most important,

solutions: a particle confined to a box, the harmonic oscillator (which universally describes small

oscillations of any quantum system), and finally the hydrogen atom. In particular, we will derive

the observed emission/absorption spectrum of the hydrogen atom, a computation that was in

Schrödinger’s original 1926 paper.

0 Classical particles and waves

Before starting the course proper, we begin with a brief review of classical point particles and

waves. This is to remind you of some concepts and formulae learned at school or in Mods,

and to set notation used later in the text. A summary of vectors, and in particular differential

operators such as ∇ = grad and the Laplacian ∇2, is contained in appendix A.

0.1 Point particles

A point particle is an idealized object that, at a given instant of time, is located at a point in

space. Considering a time interval [t0, t1] ⊂ R and modelling space by R3, the particle’s motion

is described by r : [t0, t1] → R3. This is governed by Newton’s second law: if the particle has

constant mass m and is acted on by a force F, then r(t) obeys

F = m
d2r

dt2
. (0.1)

In principle here F = F(r, t), although in this course we shall only consider conservative forces

where F = −∇V , for some function V = V (r) called the potential. In particular, notice that V

is independent of time (static). In this case, the total energy of the particle

E =
1

2
m|ṙ|2 + V (0.2)

is conserved, where we shall sometimes denote ṙ ≡ dr/dt. That is, E is independent of time:

dE

dt
= m

dr

dt
· d

2r

dt2
+∇V · dr

dt
=

dr

dt
·
(
m
d2r

dt2
− F

)
= 0 . (0.3)

Here the particle has kinetic energy 1
2m|ṙ|2, potential energy V = V (r(t)), and momentum

p = mṙ. We may also write the kinetic energy as

Ekinetic =
|p|2

2m
. (0.4)

A particle that is subjected to no forces is called a free particle.
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* The above formulae are true (to a very good approximation) for a non-relativistic point
particle, which means its speed u = |ṙ| is much less than the speed of light, u≪ c = speed
of light. For example, a massless particle, with m = 0, necessarily moves at speed c and
has energy E = c|p|, where p is its momentum (see relativity course next year).

0.2 Waves

Recall the classical wave equation

1

v2
∂2ϕ

∂t2
= ∇2ϕ , (0.5)

where v is the constant speed of the wave. This linear equation governs, for example, the

propagation of sound or light. As basic solution we have the complex plane wave

ϕ(r, t) = A exp [i(k · r− ωt)] , (0.6)

where we have the constant wave vector k, angular frequency ω, and (complex) amplitude A.

Substituting into (0.5) gives −ω2/v2 = −|k|2, or equivalently the relation

v =
ω

|k|
. (0.7)

Both the real and imaginary parts of ϕ separately satisfy the wave equation, giving real solutions

that are linear combinations of sines and cosines in (k · r− ωt). In fact it is a result of Fourier

analysis that every solution to the wave equation (0.5) is a linear combination (in general

involving an integral) of these plane waves.

The wave frequency is ν = ω/2π, while the wavelength is λ = 2π/|k|, so that (0.7) is equivalent
to saying that the wave speed is v = νλ = frequency × wavelength.

1 Physical background and wave-particle duality

1.1 The photoelectric effect and Einstein-Planck relation

In the mid 19th century Maxwell successfully described light as a wave propagating in the

electromagnetic field. We shall not need to know anything about electromagnetic theory in this

course. Nevertheless, we note in passing that, in Maxwell’s theory, light propagating through

a vacuum is described by two vector fields E(r, t), B(r, t), called the electric and magnetic

fields, respectively, each Cartesian component of which satisfies the wave equation (0.5), with

v = c being the speed of light in vacuum. This theory of electromagnetism unified the theories

of electricity, magnetism and radiation, and explained wave-like properties of light such as

reflection, polarization and diffraction. However, by the beginning of the 20th century it was

becoming clear that Maxwell’s theory could not explain experiments at the atomic scale.

A clear and simple experiment that demonstrates this is the photoelectric effect, shown in

Figure 1. Light of angular frequency ω is shone on a metal plate in vacuum. Electrons e−,

which are only weakly bound to the metal, are emitted from the surface. One measures their

kinetic energy and discovers the formula

Ekinetic = −E0 + ~ω . (1.1)
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Figure 1: To observe the photoelectric effect, light is shone on a metal plate in vacuum. Electrons
e− are emitted from the surface of the metal, and their kinetic energy Ekinetic is measured.

• E0 > 0 is a constant energy which depends only on the particular metal used.

• The constant of proportionality ~ (usually read as “h bar”) is a constant of Nature that is

fundamental to Quantum Theory. From (1.1) we see that it has dimensions [~] = energy

× time, or equivalently [~] = M(LT−1)2 × T = MLT−1 × L = dimensions of angular

momentum, where M , L and T denote dimensions of mass, length and time, respectively.

Numerically, ~ ≃ 1.05 × 10−34 J s. The combination 2π~ ≡ h is called Planck’s constant,

while ~ is sometimes referred to as the reduced Planck’s constant.

• If the angular frequency ω < E0/~, no e− are emitted.

• The formula (1.1) is independent of the intensity (brightness) of the light, but as the latter

is increased the number of e− emitted increases.

The classical theory of Maxwell does not explain these observations. Instead Einstein made

the following remarkable hypothesis:

Light of angular frequency ω exists in small packets, or “quanta”, of energy

E = ~ω (Einstein-Planck relation) . (1.2)

These packets of light are known as photons, and are massless particles (m = 0) that travel at

the speed of light c (cf. the starred remark at the end of section 0.1). In Einstein’s interpretation

of the photoelectric effect, each electron e− absorbs one photon of energy ~ω (very occasionally

more than one). Part of this photon energy goes into overcoming the “binding energy” E0 of

the electron to the metal; the remainder is then converted into the observed kinetic energy of e−

when it is emitted. Increasing the intensity of the light simply increases the number of photons.

Equation (1.2) is called the Einstein-Planck relation.1

1* Planck had introduced the constant h = 2π~ in earlier work on radiation emitted from certain idealized
hot objects, called black bodies.
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1.2 Emission/absorption spectra of atoms

Atoms emit and absorb light at very particular frequencies. The simplest atom is the hydro-

gen atom, which we shall study in more detail at the end of this course. For hydrogen these

frequencies were discovered experimentally in the 19th century, and are given by the formula

ωn1,n2 = 2πR0c

(
1

n21
− 1

n22

)
. (1.3)

Here n1 < n2 are positive integers, and R0 ≃ 1.10× 107m−1 is Rydberg’s constant, named after

the discoverer of the empirical formula (1.3).

From Einstein’s description of light in terms of photons, this implies that a hydrogen atom

emits and absorbs photons of particular energies ~ωn1,n2 . By conservation of energy, the en-

ergy of the hydrogen atom itself must then be changing by these amounts when a photon is

emitted/absorbed. This strongly suggests that the energies of the hydrogen atom must be given

by

En = −2πR0~c
n2

, (1.4)

where n is an integer, so that e.g. for n1 < n2 the energy of the atom can change from En2

to En1 by emitting a photon of frequency ωn1,n2 . That the hydrogen atom energies are indeed

quantized in this way – that is, taking particular discrete values, rather than being continuous

– has been confirmed in many other experiments. At the end of this course we will derive (1.4)

theoretically.

1.3 The double slit experiment

The photoelectric effect implies that light, described classically by waves satisfying the wave

equation (0.5) with speed v = c, is sometimes better described as a beam of particles, namely

photons.

Similarly, particles, such as the electron e−, can display wave-like characteristics. Perhaps

the best experiment that demonstrates this is the famous double slit experiment, performed with

electrons. This is shown in Figure 2. A beam of electrons is fired at a double slit configuration,

with a detector screen on the other side. An electron hitting the screen appears as a bright spot,

and over time one can plot this as a distribution. The latter exhibits a familiar diffraction pat-

tern, similar to that seen in the corresponding experiment with the beam of electrons replaced

by a beam of light. Such diffraction patterns are explained by the interference of waves: two

waves that travel through each of the slits and arrive at the same point on the detector screen

have travelled different distances. These waves then either constructively or destructively inter-

fere with each other, depending on whether the difference in these distances is an even or odd

number of wavelengths, respectively. This is perhaps familiar to those who have done A-level

physics.

A remarkable point here is that the diffraction pattern is still observed even when only a

single electron is passing through the slits at a time. In fact this is the case in the Hitachi
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(a) Experimental set-up (b) Actual electron hits in an experiment by a group
at Hitachi ( c⃝ Hitachi, Ltd): (i) 8 e−, (ii) 270 e−,
(iii) 2,000 e−, (iv) 160,000 e−.

Figure 2: The double slit experiment, performed with a beam of electrons.

experimental results shown in Figure 2(b) (the time lapse up to picture (iv) is 20 minutes). This

implies that the electrons are not interfering with each other to cause the diffraction pattern,

but rather a single electron is behaving like a wave. Or, more precisely, the detected distribution

of electron particles is characteristic of a wave passing between the slits. Notice that we may

also interpret this distribution as a probability distribution for where any single electron will hit

the screen. In this viewpoint, it is the probability that displays wave-like characteristics, while

the electrons themselves are always detected on the screen as localized particles. These remarks

are absolutely central to wave-particle duality.

The double slit experiment (and variants of it) is extremely interesting and subtle, and we refer

the interested reader to the references (especially the Feynman lectures) for further discussion

of its role in understanding wave-particle duality.

1.4 De Broglie’s matter-waves

The experiment we have just described suggests that particles, such as electrons, are also asso-

ciated with waves. De Broglie made this more precise:

A free particle of energy E and momentum p is associated with a wave of angular

frequency ω and wave vector k via

E = ~ω ,

p = ~k (de Broglie relations) . (1.5)

Since the wavelength is λ = 2π/|k|, we may also write the latter relation as λ = 2π~/|p| = h/|p|.
De Broglie’s insight was that these relations should apply to all particles, not just massless

photons. In this context, E = ~ω is usually referred to as a de Broglie relation, rather than the

Einstein-Planck relation.
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* We note that for a photon, the second relation in (1.5) is implied by the first relation
E = ~ω. This follows from the starred comment at the end of section 0.1: for a photon
E = c|p|, so that E = ~ω together with c = ω/|k| implies that |p| = ~|k|. In Special
Relativity, which you can study next year, you’ll learn that (E,p) and (ω,k) are both
4-vectors, and indeed this was part of de Broglie’s reasoning.

2 Wave mechanics

2.1 The Schrödinger equation

De Broglie had hypothesized that particles, such as the electron e−, are associated with waves.

Schrödinger set out to discover the equation that governs these matter-waves. He began by

considering the plane wave, reviewed in section 0.2,

Ψ(r, t) = A exp [i(k · r− ωt)] . (2.1)

This of course satisfies the wave equation (0.5), with ϕ replaced by Ψ; the change of notation is

meant to emphasize that we now wish to reinterpret this plane wave as a de Broglie matter-wave.

Making use of the de Broglie relations (1.5), we notice

i~
∂Ψ

∂t
= ~ωΨ = EΨ ,

−i~∇Ψ = ~kΨ = pΨ . (2.2)

In particular, taking the divergence of the second equation implies that −~2∇2Ψ = |p|2Ψ, where

∇2 is the Laplacian.

The de Broglie relations apply to a free particle, for which the particle’s energy is equal to

its kinetic energy (since F = 0 the potential is constant, and we take this constant to be zero).

If the particle has mass m, then (0.4) relates E = Ekinetic = |p|2/2m. Using the de Broglie

relations (1.5) then implies

ω =
E

~
=

~|k|2

2m
. (2.3)

Compare this to the relation (0.7). Putting everything together, we have

i~
∂Ψ

∂t
= EΨ =

|p|2

2m
Ψ = − ~2

2m
∇2Ψ . (2.4)

Thus we may associate to a free particle of mass m a plane wave Ψ(r, t), using the de Broglie

relations, which then satisfies the equation

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ . (2.5)

This is essentially expressing the relation (2.3), which is simply the relation between energy and

momentum for a free particle.

More generally, a particle of mass m moving in a potential V = V (r) has energy

E =
|p|2

2m
+ V . (2.6)

This led Schrödinger to

7



Definition / postulate A single, non-relativistic particle of mass m moving in a potential

V (r) is described by a wave function Ψ(r, t) that is governed by the Schrödinger equation

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ+ VΨ . (2.7)

The wave function Ψ(r, t) is precisely de Broglie’s matter-wave.

Let us make some remarks about what we have done above, which is deceptively straightfor-

ward, and about the Schrödinger equation itself:

1. It is important to realize that we have not derived the Schrödinger equation, in any rigorous

sense. In particular, in the last step we have taken formulae that apply to free particles,

that have been suggested by a combination of experiments and theoretical arguments, and

extrapolated this, using the classical formula (2.6) for energy, to an equation governing

the matter-wave of a particle moving in a general potential. It turns out this equation is

indeed correct, but nothing in the rather naive argument we gave really guarantees this.

The real test of the Schrödinger equation is that it agrees with experiments.

2. The Schrödinger equation is a linear partial differential equation for a complex-valued

function Ψ(r, t). Thus if Ψ1,Ψ2 are solutions, then so is α1Ψ1 + α2Ψ2, for any complex

constants α1, α2 ∈ C. This implies that solutions form a (usually infinite-dimensional)

vector space over C. It is precisely this superposition of wave functions that leads to

interference effects, as in the double slit experiment with electrons. Notice that, in contrast

with the classical wave equation (0.5), the Schrödinger equation (2.7) is complex, due to

the i =
√
−1 on the left hand side.

3. Although we began our exposition by discussing photons, it is important to remark that the

photon is a massless, relativistic particle, and as such is not governed by the Schrödinger

equation. The quantum theory of photons is a much more involved theory, known as

quantum electrodynamics, that requires a thorough understanding of both classical elec-

tromagnetism and Special Relativity, as well as quantum ideas. We shall only refer to the

photon again in the context of emission/absorption in atoms, for which we need only the

Einstein-Planck relation.

Before continuing to discuss some basic mathematical properties of the Schrödinger equation,

and looking at our first example, let us pause to comment on the change of viewpoint that is

already implicit in what we have said so far. Consider the classical problem of a point particle

of mass m moving in a potential V . The dynamics is governed by Newton’s law (0.1), with

F = −∇V , the solutions of which give the particle’s trajectory r(t). For given initial conditions,

say the particle’s position r and momentum p = mṙ at time t = t0, one solves for the trajectory

r(t), which gives the particle’s location and momentum at any subsequent time.

The corresponding quantum mechanical problem is very different. Given a quantum point

particle of mass m moving in a potential V , we should instead solve the Schrödinger equation

(2.7). We shall discuss the boundary conditions involved later, but notice immediately that the
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result will be some complex-valued function Ψ(r, t). You might immediately wonder what this

function has to do with the particle’s position at some time t. Again, we shall address this

shortly.

2.2 Stationary states

It is natural to seek separable solutions to the Schrödinger equation. Thus we write Ψ(r, t) =

ψ(r)T (t), so that the Schrödinger equation (2.7) becomes

i~dT
dt

T
=

− ~2
2m∇2ψ + V ψ

ψ
. (2.8)

Since the left hand side depends only on t, while the right hand side depends only on r, both

sides must be constant. If we call this constant E (anticipating that this will be the energy of

the particle), then in particular we have

i~
dT

dt
= ET , (2.9)

which immediately integrates to

T (t) = e−iEt/~ . (2.10)

Here we have absorbed the overall multiplicative integration constant into ψ. The full wave

function is thus

Ψ(r, t) = ψ(r) e−iEt/~ . (2.11)

That E is then indeed the energy of the particle follows from the de Broglie relation between

energy and angular frequency for matter-waves: for this wave function the angular frequency is

ω = E/~, or equivalently E = ~ω. The function ψ then satisfies

Definition The time-independent, or stationary state, Schrödinger equation for a particle of

mass m and energy E moving in a potential V = V (r) is

− ~2

2m
∇2ψ + V ψ = Eψ . (2.12)

The wave function Ψ(r, t) = ψ(r) e−iEt/~ is then called a stationary state wave function of

energy E, although in a common abuse of language the function ψ is also often referred to as

the stationary state wave function.

2.3 One-dimensional equations

Although ultimately we are interested in studying particles moving in the three spatial dimen-

sions that we observe, it is often technically more straightforward to study the one-dimensional

Schrödinger equation

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ VΨ , (2.13)

9



with corresponding stationary state equation

− ~2

2m

d2ψ

dx2
+ V ψ = Eψ , (2.14)

and

Ψ(x, t) = ψ(x) e−iEt/~ . (2.15)

Here we have replaced the Laplacian ∇2 by the corresponding one-dimensional operator, which

is simply ∂2/∂x2 (see appendix A). Equations (2.13), (2.14) govern a particle propagating on

the x-axis with potential V = V (x). Similar remarks apply in two dimensions. Although the

one-dimensional equation looks somewhat unphysical, in fact sometimes a three-dimensional

problem effectively reduces to a lower-dimensional Schrödinger equation; for example, due to

symmetry reduction (see section 5), or because the particle is constrained to lie in some subspace.

2.4 Particle in a box

Consider a particle inside a “box” on the x-axis. This means that the particle moves freely

inside some interval [0, a] ⊂ R, but cannot leave this region. One can model this by a potential

function V = V (x) that is zero inside the interval/box, and infinite outside:

V (x) =

{
0 , 0 < x < a ,

+∞ , otherwise .
(2.16)

This is also sometimes referred to as the infinite square well potential. See Figure 3.

0 a x

E

V(x)=0 V(x)=∞V(x)=∞

Figure 3: A particle in box [0, a] on the x-axis.

Before discussing the quantum problem, let us briefly comment on the classical problem. Since

V = 0 inside the box, the classical particle moves at some constant velocity, or equivalently

constant momentum p. Since the energy E = p2/2m is conserved when the particle hits the

edge of the box, after the collision p is replaced by −p and the particle heads towards the other

edge of the box. Classically, notice that E may take any non-negative value.

Now let us consider the quantum particle. The stationary state Schrödinger equation (2.14)

inside the box is

d2ψ

dx2
= −2mE

~2
ψ , (2.17)
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for x ∈ (0, a). We shall discuss boundary conditions more systematically in section 3.2, but here

we note that since V = ∞ outside the box, the Schrödinger equation will make sense only if

ψ = 0 there.2 When we come to discuss the physical meaning of the wave function, we shall see

that this assertion is very well justified physically. If we also assume that ψ is continuous, then

we must solve (2.17) subject to the boundary condition ψ(0) = ψ(a) = 0.

The general solution to (2.17) is

ψ(x) =


A cos

√
2mE
~ x+B sin

√
2mE
~ x , E > 0 ,

A+Bx , E = 0 ,

A cosh
√
−2mE
~ x+B sinh

√
−2mE
~ x , E < 0 .

(2.18)

In all cases the boundary condition ψ(0) = 0 implies A = 0. When E ≤ 0, ψ(a) = 0 implies

also B = 0. Thus the only solution is ψ ≡ 0, which is always a physically meaningless solution

to the Schrödinger equation (again, we shall discuss this more later). On the other hand, for

E > 0 the boundary condition ψ(a) = 0 implies that (either B = 0 and ψ ≡ 0 or)

√
2mE

~
=

nπ

a
, (2.19)

for some integer n ∈ Z. Thus the solutions

ψ(x) = ψn(x) =

{
B sin nπx

a , 0 < x < a ,

0 , otherwise ,
(2.20)

are labelled by n. Notice that, without loss of generality, we may take n > 0. The first three

wave functions, for n = 1, 2, 3, are shown in Figure 4.

(x)ψ
1

(x)ψ
2

(x)ψ
3

BBB

0 0 0 aaa

-B -B

Figure 4: Wave functions for the first three states of a particle in a box. ψ1(x) is the ground
state wave function.

The associated energies are, from (2.19),

E = En =
n2π2~2

2ma2
. (2.21)

We see immediately that the energy is quantized, i.e. it takes values in a discrete set, here

labelled by a positive integer. This is in stark contrast with the energy of the classical particle,

2This is not a very rigorous statement. We can make the discussion rigorous by simply declaring that a particle
in a box by definition has ψ = 0 outside the box and that ψ is everywhere continuous. See also section 3.2.
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which may take any real non-negative value. There is also a lowest energy, given by setting

n = 1.

Definition When the possible energies of a quantum system are discrete and bounded below,

the lowest possible energy is called the ground state energy (also sometimes called the zero point

energy). The higher energies are, in increasing order, the first excited state energy, second excited

state energy, etc. The corresponding wave functions are called the ground state wave function,

kth excited state wave function.

For the particle in a box the ground state energy is E1 = π2~2/2ma2, while En = n2E1. Of

course, we precisely wanted a theoretical understanding of such quantized energies in order to

explain the energy levels of the hydrogen atom, determined empirically as (1.4). For the particle

in a box, if we take m = me− ≃ 9.11× 10−31 kg to be the mass of an electron and a = 10−10 m

to be the approximate size of an atom, we obtain

En ≃ 5.97× 10−18 n2 J . (2.22)

In particular, the difference in energies between the ground state and first excited state is

E2 −E1 ≃ 1.79× 10−17 J. A photon that is emitted in a transition between these energy levels

then has a wavelength λ ≃ 1.12× 10−8 m (on the boundary between the ultraviolet and X-ray

parts of the electromagnetic spectrum), which is indeed the correct order of magnitude observed

in atomic transitions! Here we are effectively modelling a hydrogen atom as an electron confined

to an atom-sized box, which is very crude; we shall treat the hydrogen atom more precisely in

section 5. Nevertheless, the above computation is encouraging.

The full time-dependent wave functions (2.15) are

Ψn(x, t) =

{
B sin nπx

a e−in2π2~t/2ma2 , 0 < x < a ,

0 , otherwise .
(2.23)

Any linear combination of such wave functions satisfies the time-dependent Schrödinger equation

(2.13); in particular, the space of solutions, or possible wave functions, is infinite dimensional.

In this example the energy levels En, and associated stationary state wave functions ψn, are

labelled naturally by a (positive) integer n. As we shall see throughout the course, such integers

arise in many important solutions to the Schrödinger equation, and they are generally known

as quantum numbers (although it is difficult to give a precise general definition).

2.5 Degeneracy

Having studied a particle in a one-dimensional box, it is now straightforward to extend this to

a three-dimensional box.

Consider a particle confined to the box region given by {(x, y, z) ∈ R3 | 0 ≤ x ≤ a, 0 ≤ y ≤
b, 0 ≤ z ≤ c} ⊂ R3, where the potential is zero inside the box. In other words,

V (x, y, z) =

{
0 , 0 < x < a , 0 < y < b , 0 < z < c ,

+∞ , otherwise .
(2.24)
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As before, the stationary state wave function ψ(r) = ψ(x, y, z) is taken to be zero on, and outside,

the boundary of the box region. Inside the box the stationary state Schrödinger equation (2.12)

reduces to

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= −2mE

~2
ψ . (2.25)

This may be solved by separation of variables. Equation (2.25) essentially reduces to three copies

of the one-dimensional equation, with the wave functions labelled by three quantum numbers

n1, n2, n3 ∈ Z>0. Explicitly, inside the box these are given by

ψn1,n2,n3(x, y, z) = B sin
n1πx

a
sin

n2πy

b
sin

n3πz

c
, (2.26)

with B again an arbitrary constant, and the corresponding energies are

En1,n2,n3 =
π2~2

2m

(
n21
a2

+
n22
b2

+
n23
c2

)
. (2.27)

Exercise (Problem Sheet 1) Derive the wave functions (2.26) and energies (2.27) by solving

(2.25) by separation of variables.

Definition If the space of solutions to the stationary state Schrödinger equation with energy

E has dimension d > 1, we say this energy level is d-fold degenerate; if it is one-dimensional we

say E is a non-degenerate energy level.

For the one-dimensional particle in a box all the energy levels are non-degenerate. However,

consider now the three-dimensional box with equal length sides a = b = c, so that

En1,n2,n3 =
π2~2

2ma2
(
n21 + n22 + n23

)
. (2.28)

In this case there are linearly independent wave functions with the same energy. For example,

we may take (n1, n2, n3) to be any of (2, 1, 1), (1, 2, 1), (1, 1, 2), all of which have the same energy

E = 6π2~2/2ma2. There is thus a three-fold degeneracy in the number of quantum stationary

states with this energy. The degeneracy in this case is related to the symmetry of the potential.

We shall see other examples of this later.

3 The Born interpretation

We have now met the Schrödinger equation and solved it in the simplest interesting example,

namely a particle confined to a box. We have seen that this leads to quantized energy levels,

and that by crudely modelling a hydrogen atom as an electron confined to an atom-sized box,

we obtain energies of the correct order of magnitude seen in atomic transitions.

An immediate question is: what is the physical meaning of the wave function Ψ(r, t) that we

are solving for? Comparing to the corresponding classical problem, described at the end of

section 2.1, we may also ask: where is the particle at time t? In this section we shall answer

these questions.
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3.1 Probability density

In order to motivate the interpretation that follows, we begin by going back to the double slit

experiment in section 1.3. In fact let us begin by discussing the corresponding experiment with

light (also called Young’s experiment). In this case the intensity of the light hitting the detector

screen forms an interference pattern, and in classical electromagnetic theory this intensity is

proportional to the absolute value squared of the amplitude of the wave. Unfortunately we won’t

have time to explain this in detail here, but this fact would have been well-known to the pioneers

of quantum theory in the early 20th century. In the double slit experiment with electrons, we

instead plot the spatial distribution of electrons hitting the detector screen over some long period

of time, and then reinterpret this as a probability distribution for where any given electron will

hit the screen.

If we now conflate these observations, we are led to the hypothesis that the probability density

function for an electron hitting the detector screen is given by the absolute value squared of the

de Broglie wave associated to the electron. Of course, the detector screen could be anywhere,

and the de Broglie wave is precisely the wave function Ψ(r, t) appearing in the Schrödinger

equation. Hence we arrive at:

Definition / postulate The function

ρ(r, t) ≡ |Ψ(r, t)|2 , (3.1)

is a probability density function for the position of the particle, where Ψ(r, t) is the particle’s

wave function.

This interpretation of Schrödinger’s wave function is due to Born.

The assertion (3.1) is equivalent to the statement that the probability of finding the particle

in a volume D ⊂ R3 is given by

PΨ(D) =

∫
D
|Ψ(r, t)|2 d3x . (3.2)

This probability depends both on the region D, and also on the wave function Ψ(r, t) satisfying

the Schrödinger equation. We have already seen for the particle in a box that the space of

solutions to the Schrödinger equation is an infinite-dimensional vector space, with basis (2.23).

A given solution is said to describe the state of the particle, so that the probabilities (3.2) depend

on the state. Notice PΨ(D) also depends in general on time t, although this is suppressed in the

notation.

Of course, the above assertions immediately raise some issues. In particular, the probability of

finding the particle somewhere in R3 should equal 1, at any time. Thus for (3.1), or equivalently

(3.2), to make sense, the wave function must be normalized in the following sense:

Definition A wave function Ψ is said to be normalizable if∫
R3

|Ψ(r, t)|2 d3x < ∞ , ∀ time t . (3.3)
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Moreover, if ∫
R3

|Ψ(r, t)|2 d3x = 1 , ∀ time t , (3.4)

then Ψ is said to be a normalized wave function.

Similar definitions apply in one dimension. For example, the normalized condition (3.4) becomes∫ ∞

−∞
|Ψ(x, t)|2 dx = 1 . (3.5)

Let us make some remarks:

1. The normalized condition (3.4) fixes the freedom to multiply a given solution to the

Schrödinger equation by a complex constant, up to a constant phase eiφ. The latter

is in fact not physical, so that wave functions differing by a constant phase are physically

equivalent. Notice also that the normalized condition rules out the trivial solution Ψ ≡ 0.

2. For the particle in a box, the wave functions (2.23) are normalizable:∫ ∞

−∞
|Ψn(x, t)|2 dx = |B|2

∫ a

0
sin2

nπx

a
dx =

1

2
a|B|2 . (3.6)

The total wave functions

Ψn(x, t) =

{ √
2
a sin nπx

a e−in2π2~t/2ma2 , 0 < x < a ,

0 , otherwise ,
(3.7)

with B =
√

2/a, are then normalized. Note that a particle being “confined to a box” may

be interpreted as saying that there is zero probability of finding it anywhere outside the

box, or in other words that the wave function is identically zero outside the box.

3. More generally, notice that for a stationary state of energy E, we have

ρ(r, t) = |Ψ(r, t)|2 =
∣∣∣ψ(r) e−iEt/~

∣∣∣2 = |ψ(r)|2 . (3.8)

Thus Ψ(r, t) is normalized for all time provided ψ(r) is normalized, i.e.∫
R3

|ψ(r)|2 d3x = 1 . (3.9)

4. Recall that the plane wave

Ψ(r, t) = A exp

[
i

(
k · r− ~|k|2t

2m

)]
, (3.10)

satifies the free Schrödinger equation (V = 0), and was interpreted as describing a free

particle of mass m and momentum p = ~k – see the discussion around equation (2.3).

However, clearly |Ψ(r, t)|2 = |A|2 is not integrable over R3, and thus the plane wave is not

normalizable! In fact the plane wave is better interpreted as a beam of particles of mass

m and momentum p.
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* Some further, off-the-record, comments are in order about the plane wave. The plane
wave is typically used in quantum mechanics in scattering problems. Here it is interpreted
as an incoming beam of free particles of massm and momentum p = ~k, which then scatter
off some potential V that is non-constant only in a localized region of space. Readers who
would like to learn more about this topic, which is elementary but beyond our syllabus,
might like to read Chapter 5 of the book by Hannabuss.

Alternatively, one can construct a localized (Gaussian) wave packet by taking an ap-
propriate linear combination of plane waves. More precisely, this linear combination is
realized as an integral over k. The resulting wave function satisfies the free Schrödinger
equation and is normalized, although the wave packet spreads out as time increases. Again,
we refer the interested reader to the references, rather than being more precise here.

Finally, the real physical reason why the plane wave is not normalizable is because it
describes a particle of definite momentum. In quantum theory one cannot simultaneously
know the precise position and momentum of any particle, a fact known as Heisenberg’s
Uncertainty Principle; the more precisely one knows one quantity, the less precisely one
knows the other. Since the plane wave particle has definite momentum, its position is
completely uncertain, which explains why its formal probability density is a constant –
it is equally likely be found anywhere in space. This fascinating implication of quantum
mechanics is not something we will have time to explore in this course. This starred section
is in any case getting ahead of ourselves, and the reader should perhaps ignore the above
comments on a first reading, or indeed ignore them altogether if they are confusing.

Example (Particle in a box) Let us apply the above ideas to the particle in a one-dimensional

box. The normalized wave functions are (3.7). The corresponding probability density functions

are then, for x ∈ [0, a], given by

ρn(x) =
2

a
sin2

nπx

a
=

1

a

(
1− cos

2nπx

a

)
, (3.11)

and identically zero outside the box. Plots of the probability density functions for the ground

state and first two excited states are shown in Figure 5.

(x)
1

(x)
2

(x)
3

0 0 0 aaa

ρ ρ ρ

a

2

a

2

a

2

Figure 5: Probability density functions for the first three states of a particle in a box.

As usual in probability theory, we may define the distribution function as

Fn(x) ≡
∫ x

0
ρn(y) dy =

x

a
− 1

2nπ
sin

2nπx

a
. (3.12)

Notice in particular that the first term, xa , is the result for the uniform distribution, where the

particle is equally likely to be found anywhere in [0, a]. This is interpreted as the classical result.
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By this we mean that if we are ignorant of the state of the classical particle before we observe

its position, then because it moves at constant velocity back and forth across the box, it is

equally likely to be found anywhere. The second, oscillatory term in (3.12) is then a quantum

contribution, or quantum correction, to the classical result.

Let us compute some example probabilities using these formulae. The probability that the

particle is within a
4 distance from the centre of the box is given by∫ 3a

4

a
4

|ψn(x)|2 dx = Fn

(
3a

4

)
− Fn

(a
4

)
,

=
1

2
+

1

nπ
sin

nπ

2
,

=

{
1
2 , n even ,
1
2 + (−1)(n−1)/2

nπ , n odd .
(3.13)

In particular, we see that this approaches the classical result of 1
2 , for the uniform distribution,

as n → ∞. The tendancy of quantum results to approach those of the corresponding classical

theory for large quantum numbers is called the correspondence principle.

We may similarly use the probability density ρ to compute expectation values:

Definition In quantum mechanics the expectation value of a function of position f(r) is denoted

⟨f(r)⟩Ψ ≡
∫
R3

f(r) |Ψ(r, t)|2 d3x . (3.14)

The reason for the strange brackets on the left hand side will become apparent if you study

quantum mechanics in the third year. Notice that again this expectation value depends on the

wave function/state Ψ, and in general is a function of time t.

Example For the particle in a box we compute the expected value of its position

⟨x⟩Ψn =

∫ a

0
x ρn(x) dx ,

= [xFn(x)]
a
0 −

∫ a

0
Fn(x) dx ,

= a−
[
x2

2a
+

a

4n2π2
cos

2nπx

a

]a
0

,

=
1

2
a , (3.15)

agreeing with the classical result for the uniform distribution.

3.2 The continuity equation and boundary conditions

In this section we consider more carefully the boundary conditions involved in the Schrödinger

equation.

Proposition 3.1 The Schrödinger equation implies the continuity equation

∂ρ

∂t
+∇ · j = 0 , (3.16)
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where ρ(r, t) = |Ψ(r, t)|2 is the probability density we have already met, and the vector field

j(r, t) ≡ i~
2m

(
Ψ(r, t)(∇Ψ)(r, t)−Ψ(r, t)(∇Ψ)(r, t)

)
, (3.17)

is the probability current j.

Proof This is a direct computation:

∂

∂t
|Ψ(r, t)|2 =

(
∂

∂t
Ψ(r, t)

)
Ψ(r, t) + Ψ(r, t)

∂

∂t
Ψ(r, t) ,

=

[
− i

~

(
− ~2
2m

∇2Ψ+ VΨ

)]
Ψ+Ψ

[
− i

~

(
− ~2

2m
∇2Ψ+ VΨ

)]
, (Schrödinger)

=
i

~

(
− ~2

2m
∇2Ψ+ VΨ

)
Ψ−Ψ

i

~

(
− ~2

2m
∇2Ψ+ VΨ

)
, (V is real)

=
i~
2m

(
Ψ∇2Ψ−Ψ∇2Ψ

)
,

=
i~
2m

∇ ·
(
Ψ∇Ψ−Ψ∇Ψ

)
= −∇ · j . (3.18)

This leads to the following result:

Proposition 3.2 Suppose that ∀ time t, j(r, t) satisfies the boundary condition that it tends to

zero faster than 1/|r|2 as |r| = r → ∞. Then∫
R3

|Ψ(r, t)|2 d3x (3.19)

is independent of t. In particular, if Ψ is normalized at some time t = t∗, it is normalized ∀t.

Proof Let S be a closed surface that encloses a region D ⊂ R3. Then

∂

∂t

∫
D
|Ψ(r, t)|2 d3x =

∫
D

∂ρ

∂t
d3x , (derivative through the integral)

=

∫
D
(−∇ · j ) d3x , (continuity equation)

= −
∫
S
j · dS , (Divergence Theorem) . (3.20)

We refer the reader to appendix A for a reminder of the Divergence Theorem. In particular,

dS = ndS where dS is the area element of S and n is the outward pointing unit normal vector

to S.

Now take S to be a sphere of radius r > 0, centred on the origin, so that D is a ball. Then

n =
r

r
and hence

j · dS = j · n r2 dSunit , (3.21)

where dSunit is the area element on a unit radius sphere. In general, the function j·n will depend

on r and the angular variables θ, ϕ on the sphere (and on time t). Provided j · n = o(1/r2),

uniformly in the angular coordinates, then using (3.21) the surface integral in (3.20) tends to

zero as r → ∞, and hence

∂

∂t

∫
R3

|Ψ(r, t)|2 d3x = 0 , (3.22)

which implies that the expression in (3.19) is independent of t.
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We now state more formally the conditions that solutions to the Schrödinger equation should

satisfy:

1. The wave function Ψ(r, t) should be a continuous, single-valued function. This condition

ensures that the probability density ρ = |Ψ|2 is single-valued and has no discontinuities.

We already imposed the continuity property for the particle in a box.

2. Ψ should be normalizable, i.e. the integral of |Ψ|2 over all space should be finite. Propo-

sition 3.2 ensures that if the probability current j in (3.17) tends to zero fast enough at

infinity, then this integral is independent of time t. Then if Ψ is normalizable, we may

normalize it for all time. Without this condition, the probabilistic interpretation of the

wave function is not possible. As already mentioned, this condition may be relaxed for

free particles and scattering problems, although we shall not consider such wave functions

any further in this course.

3. ∇Ψ should be continuous everywhere, except where there is an infinite discontinuity in the

potential V . This condition follows since a finite discontinuity in ∇Ψ implies an infinite

discontinuity in ∇2Ψ, and thus from the Schrödinger equation an infinite discontinuity in

V . Again, we encountered precisely this behaviour for the particle in a box.

3.3 Measurement of energy

In section 2.2 we found separable solutions to the time-dependent Schrödinger equation (2.7).

The corresponding stationary states (2.11) have definite frequency, and hence definite energy

E. For example, the complete set of stationary state wave functions for a particle in a box is

given by (3.7). Since the time-dependent Schrödinger equation is linear, any linear combination

of such stationary state wave functions also solves the Schrödinger equation. Thus we may in

general write

Ψ(r, t) =
∑
n

αn ψn(r) e
−iEnt/~ , (3.23)

where n labels some set of stationary states ψn(r) of energy En, and αn ∈ C are constants.

For the particle in a box, (3.23) is simply a Fourier sine series. From Mods you know that

any sufficiently well-behaved3 function f : [0, a] → C with f(0) = f(a) = 0 can be expanded as

a Fourier sine series

f(x) =

∞∑
n=1

αn

√
2

a
sin

nπx

a
=

∞∑
n=1

αn ψn(x) , (3.24)

for appropriate αn. Then given any such function f(x), we obtain a corresponding solution to

the time-dependent Schrödinger equation using (3.23):

Ψ(x, t) =

∞∑
n=1

αn ψn(x) e
−iEnt/~ , (3.25)

3* For the application to wave functions below, we require the wave function to be normalizable as in (3.3).
For the particle in a box example, this implies that

∫ a

0
|f(x)|2 dx < ∞. In fact this is then sufficient for the

Fourier series (3.24) to converge almost everywhere to f(x).
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where the coefficients αn are determined via (3.24), and for the particle in a box the energies

En are given by (2.21). We have thus solved the initial value problem for the Schrödinger

equation, with Ψ(x, t = 0) = f(x). Note that the normalized stationary state wave functions

ψn(x) =
√

2
a sin nπx

a are also orthonormal∫ a

0
ψm(x)ψn(x) dx = δmn . (3.26)

Definition / interpretation Suppose that the normalized wave function for a particle in a

box is given by (3.25). Then the probability of measuring the energy of the particle to be En is

|αn|2.

This definition makes sense, since

1 =

∫ a

0
|Ψ(x, t)|2 dx =

∞∑
m,n=1

αm αn e
−i(En−Em)t/~

∫ a

0
ψm(x)ψn(x) dx =

∞∑
n=1

|αn|2 . (3.27)

Notice that if the particle’s wave function is a stationary state of energy En, then the probability

of measuring the particle’s energy to be En is 1. It thus makes sense to say that a stationary

state (2.11) describes a particle of definite energy E.

In fact the expansion (3.23) of any wave function Ψ(r, t) exists under very general conditions,

i.e. for general choices of potential V (r), and generalizes to cases with degenerate energy

levels or even a continuous energy spectrum. We have only discussed the quantum probabilistic

interpretation of position and energy in this course, and our treatment of these two observables

looks rather different. However, there is an elegant unified description of position and energy

measurement that extends to all observables in quantum mechanics (including in particular

momentum). This is described in the course B7.1a.

4 The harmonic oscillator

The quantum harmonic oscillator is ubiquitous in physics, and as such is probably the most

important solution to the Schrödinger equation.

4.1 The one-dimensional harmonic oscillator

Consider a particle of mass m moving in one dimension under the influence of a potential V (x).

Near to a critical point x0 of V , where V ′(x0) = 0, we have the Taylor expansion

V (x) = V (x0) +
1
2V

′′(x0)(x− x0)
2 +O

(
(x− x0)

3
)
. (4.1)

If V ′′(x0) > 0 then x0 is a local minimum of the potential. Without loss of generality let us

choose coordinates where the critical point x0 is at the origin. Then to lowest order the potential

near to x0 = 0 is

V (x) = V (0) +
1

2
mω2x2 , (4.2)
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where we have defined ω2 = V ′′(0)/m. The dynamics is not affected by the value of V (0), since

an additive constant drops out of the force F = −V ′. The harmonic oscillator potential is

V (x) =
1

2
mω2x2 . (4.3)

The above analysis shows that any system near to a point of stable equilibrium is described by

this potential. Classically, we have the force F = −V ′ = −mω2x so that Newton’s equation

(0.1) becomes

ẍ+ ω2x = 0 , (4.4)

which has general solution x(t) = A cosωt+ B sinωt. A classical particle in the potential (4.3)

thus oscillates around the minimum with angular frequency ω. See Figure 6.

V(x)

x
0

small

oscillations

Figure 6: A particle performing small oscillations around a point of stable equilibrium of any
potential V (x) is described to lowest order by a harmonic oscillator.

We now turn to the corresponding quantum mechanical problem. The stationary state

Schrödinger equation (2.14) of energy E is

− ~2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ . (4.5)

The first thing to do is to redefine variables so as to remove the various physical constants:

ϵ ≡ 2E

~ω
, ξ ≡

√
mω

~
x , (4.6)

so that (4.5) becomes

−d2χ

dξ2
+ ξ2χ = ϵχ , (4.7)

where we have defined

ψ(x) ≡ χ(ξ) = χ

(√
mω

~
x

)
. (4.8)

Although at first sight (4.7) looks like a fairly simple ODE, depending on a single constant ϵ,

in fact it is not so simple to solve. However, it is not difficult to spot that χ(ξ) = e∓ ξ2/2 solve

(4.7) with ϵ = ±1. To see this, we compute

d

dξ

(
e∓ ξ2/2

)
= ∓ ξ e∓ ξ2/2 ,

d2

dξ2

(
e∓ ξ2/2

)
= (ξ2 ∓ 1) e∓ ξ2/2 . (4.9)
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As discussed in section 3, we are only interested in normalizable solutions to the Schrödinger

equation. For a stationary state, this means that∫ ∞

−∞
|ψ(x)|2 dx <∞ . (4.10)

Via the change of variable (4.6), (4.8), for χ(ξ) = e∓ ξ2/2 the left hand side of (4.10) is√
~
mω

∫ ∞

−∞
e∓ ξ2 dξ , (4.11)

which is finite only for the minus sign, giving a Gaussian integral. Thus the solution χ(ξ) =

e+ ξ2/2, with ϵ = −1, is not normalizable, and we thus discard it.

We now again change variables by defining

χ(ξ) ≡ f(ξ) e−ξ
2/2 , (4.12)

so that

dχ

dξ
=

(
df

dξ
− ξf

)
e−ξ

2/2 ,

d2χ

dξ2
=

[
d2f

dξ2
− ξ

df

dξ
− f − ξ

(
df

dξ
− ξf

)]
e−ξ

2/2 , (4.13)

and hence (4.7) becomes

d2f

dξ2
− 2ξ

df

dξ
+ (ϵ− 1) f = 0 . (4.14)

If anything, this looks worse than (4.7), so you might wonder why we bothered with (4.12)!

The reasoning here is that for large values of |ξ| the ξ2χ term in (4.7) will dominate over the

ϵχ term; thus for large |ξ| one expects solutions for different ϵ to have the same behaviour to

leading order. This is why we have written χ(ξ) in (4.12) as the above normalizable ϵ = +1

solution times some other function f(ξ).

It is still not clear how to solve (4.14) exactly, so as usual for this type of equation we try a

power series solution.4 Thus we write

f(ξ) =

∞∑
k=0

ak ξ
k , (4.15)

and compute

ξ
df

dξ
=

∞∑
k=0

k ak ξ
k , (4.16)

and

d2f

dξ2
=

∞∑
k=0

(k + 1)(k + 2) ak+2 ξ
k . (4.17)

4 * This is a topic that could have been included in the Part A Differential Equations course, but wasn’t.
The point ξ = 0 is an ordinary point of (4.14), and then Fuchs’ theorem guarantees that any solution may be
expressed as a convergent Taylor series (4.15). The interested reader is referred to appendix B. Having said this,
most quantum mechanics textbooks suppress these details.
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Notice that the last expression involves a relabelling of the original sum. By substituting (4.15),

(4.16) and (4.17) into (4.14) we obtain

∞∑
k=0

[(k + 1)(k + 2) ak+2 − 2k ak + (ϵ− 1) ak] ξ
k = 0 . (4.18)

The coefficient of every power of ξ must be separately zero, so we obtain the recurrence relation

ak+2 =
2k + 1− ϵ

(k + 1)(k + 2)
ak . (4.19)

The even and odd powers are then decoupled, giving rise to the two linearly independent series

solutions

feven(ξ) = a0

[
1 +

(1− ϵ)

2!
ξ2 +

(5− ϵ)(1− ϵ)

4!
ξ4 + · · ·

]
,

fodd(ξ) = a1

[
ξ +

(3− ϵ)

3!
ξ3 +

(7− ϵ)(3− ϵ)

5!
ξ5 + · · ·

]
. (4.20)

Definition In one dimension a stationary state wave function satisfying ψ(−x) = ±ψ(x) is

said to describe an

{
even

odd

}
parity state.

Recalling equations (4.6), (4.8) and (4.12), the total stationary state wave functions are

feven/odd(ξ) e
−ξ2/2, which then describe even and odd parity states, respectively.

We must now determine when these solutions are normalizable. It turns out that this is the

case if and only if the series in (4.20) terminate. We shall not provide a full, rigorous proof

of this here, but instead sketch the proof. This is purely for reasons of time. A more detailed

treatment may be found in the book by Hannabuss.

Notice first that either of the series in (4.20) terminating is equivalent to the statement that

f(ξ) is a polynomial, which in turn is equivalent to the statement that an+2 = 0 for some integer

n ≥ 0, since then the recurrence relation (4.19) implies that ak = 0 for all k ≥ n+ 2. Note that

a0 and a1 are necessarily non-zero, otherwise feven/odd(ξ) ≡ 0, respectively.

Suppose that either series in (4.20) does not terminate. Then all the coefficients are non-zero,

and the ratio

ak+2

ak
−→ 2

k
, as k → ∞ . (4.21)

Compare this asymptotic behaviour of the power series coefficients with that of the function eξ
2
:

eξ
2

=

∞∑
q=0

1

q!
ξ2q =

∞∑
k=0

bk ξ
k , (4.22)

where we have defined the coefficients

bk =

{
1
q! , k = 2q ,

0 , k = 2q + 1 .
(4.23)

For k = 2q even we then have

bk+2

bk
=

(
k
2

)
!(

k+2
2

)
!
=

2

k + 2
−→ 2

k
, as k → ∞ . (4.24)
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Comparing to (4.21), we thus see that feven(ξ) and eξ
2
have the same asymptotic expansion.

Hence the total stationary state wave function is

χ(ξ) = f(ξ) e−ξ
2/2 ∼ eξ

2/2 , (4.25)

and thus ψ(x) = χ(ξ) is not normalizable.5 A similar argument applies to fodd(ξ) and the

function ξ eξ
2
.

Thus for a normalizable solution the series in (4.20) must terminate. If n ≥ 0 is the least

integer for which an+2 = 0 then the recurrence relation (4.19) implies

2n+ 1− ϵ = 0 . (4.26)

Recalling the definition ϵ = 2E/~ω in terms of the energy E in (4.6) then gives

E = En =
(
n+ 1

2

)
~ω . (4.27)

The quantum harmonic oscillator energies are hence labelled by the quantum number n ∈ Z≥0;

compare to (2.21) for the particle in a box (and notice there that we instead defined n so that

n ∈ Z>0). Also note that our initial solution with f ≡ 1 and ϵ = +1 is in fact the ground state,

with n = 0. Reverting back to the original spatial coordinate x via (4.6) and (4.8), the ground

state wave function is hence

ψ0(x) = a0 e
−mωx2/2~ , (4.28)

where a0 is a normalization constant, with corresponding ground state energy E0 = 1
2~ω. The

normalized ground state wave function may be obtained by imposing

1 = |a0|2
∫ ∞

−∞
e−mωx

2/~ dx . (4.29)

The Gaussian integral is that for a normal distribution of variance σ2 = ~/2mω, and thus via

the standard result for this integral we have

|a0|2 =

√
mω

π~
, (4.30)

leading to the full, normalized time-dependent ground state wave function

Ψ0(x, t) =
(mω
π~

)1/4
e−(mωx2+i ~ωt)/2~ . (4.31)

More generally the stationary state wave functions are χn(ξ) = fn(ξ) e
−ξ2/2, where fn(ξ) is

an even/odd polynomial in ξ =
√

mω
~ x of degree n, for n even/odd, respectively. The polyno-

mials fn may be determined explicitly by setting ϵ − 1 = 2n in the recurrence relation (4.19).

Appropriately normalized, fn(ξ) ≡ Hn(ξ) is called the nth Hermite polynomial. The first few

polynomials are given in Table 1, with the corresponding wave functions shown in Figure 7.

Exercise Check that the polynomials in Table 1 are indeed obtained from (4.20).
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n Hn(ξ)

0 1

1 2ξ

2 4ξ2 − 2

3 8ξ3 − 12ξ

Table 1: The first four Hermite polynomials.

(x)ψ
0 (x)ψ

1

(x)ψ
2

(x)ψ
3

Figure 7: The ground state and first three excited state wave functions of the harmonic oscillator.

We now summarize via

Theorem 4.1 The energies of the one-dimensional quantum harmonic oscillator of angular

frequency ω are

E = En =
(
n+ 1

2

)
~ω ,

for n ∈ Z≥0 a non-negative integer. The corresponding normalized stationary state wave func-

tions are

ψn(x) =
1√
2nn!

(mω
π~

)1/4
Hn(ξ) e

−ξ2/2 , (4.32)

where ξ =
√
mω/~x and Hn is the nth Hermite polynomial, defined implicitly via the generating

function:

exp
(
2ξs− s2

)
=

∞∑
n=0

Hn(ξ)
sn

n!
. (4.33)

5It is the last step in (4.25) that needs a little more work to make rigorous.
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Exercise (Problem Sheet 2) You’ll be led through the derivation of the normalized wave func-

tions (4.32), and the expression (4.33) for the Hermite polynomials, on the second problem sheet.

Note that for n = 0 (4.32) agrees with the ground state result (4.31).

Let us now discuss some physics. Notice that the difference in consecutive energy levels in

(4.27) is En+1 − En = ~ω, which is precisely the energy of a photon of angular frequency ω!

* What is the relation between a quantum harmonic oscillator and a photon with the
same angular frequency ω? Recall that we said the photon is massless and therefore not
governed by the Schrödinger equation. While this is certainly true, it turns out that
in “quantizing” the classical electromagnetic field one effectively finds an infinite set of
quantum harmonic oscillators.

As stressed at the beginning of this section, the harmonic oscillator is ubiquitous in physics,

and it is therefore straightforward to test these results experimentally. For example, in a diatomic

molecule the two atoms perform small oscillations of some frequency ω. One can then measure

the frequency of absorbed/emitted photons, finding agreement with (4.27).

As for the particle in a box, it is interesting to compare the classical and quantum harmonic

oscillators. We focus here on the following new feature. In classical physics a particle of conserved

energy E cannot enter a region of space where E < V (r), as follows from the simple observation

that

E =
p2

2m
+ V (r) ≥ V (r) . (4.34)

The set {r ∈ R3 | E < V (r)} is called the classically forbidden region, for fixed particle energy

E. For example, the ground state of the quantum harmonic oscillator has energy E0 =
1
2~ω, so

the corresponding classically forbidden region for this energy is {1
2~ω <

1
2mω

2x2}, which is the

same as the set {|ξ| > 1}. The quantum probability of finding the particle in this region is∫
|x|>

√
~/mω

|Ψ0(x, t)|2 dx =
1√
π

∫
|ξ|>1

e−ξ
2
dξ ≃ 0.157 . (4.35)

Here we have used (4.31) the the harmoinic oscillator ground state wave function. We thus

see that there is a non-zero probability of finding the particle in a region where classically it is

impossible to find the particle! This is what underlies the phenomenon of quantum tunnelling,

although we shall not pursue this further in this course (regrettably). In keeping with the

correspondence principle, for the analogous computation with energyEn one finds the probability

of finding the particle in the classically forbidden region tends to zero as n → ∞. We shall not

prove this though.

4.2 Higher dimensional oscillators

Having discussed the one-dimensional oscillator, it is now straightforward to extend this to

oscillators in higher dimensions.

Let us begin by considering a quantum harmonic oscillator in two dimensions, with potential

V (x, y) =
1

2
m
(
ω2
1x

2 + ω2
2y

2
)
. (4.36)
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The corresponding stationary state Schrödinger equation (2.12) is

− ~2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+ V (x, y)ψ = Eψ . (4.37)

As for the particle in a box, this may be solved by separation of variables. One writes ψ(x, y) =

X(x)Y (y), so that (4.37) separates into

− ~2

2m

d2X

dx2
+

1

2
mω2

1x
2X = E1X ,

− ~2

2m

d2Y

dy2
+

1

2
mω2

2y
2Y = E2 Y , (4.38)

where E1 + E2 = E. We thus have two decoupled one-dimensional oscillators, and it follows

from the previous section that

E = En1,n2 =
(
n1 +

1
2

)
~ω1 +

(
n2 +

1
2

)
~ω2 , (4.39)

where the quantum numbers n1, n2 ∈ Z≥0. The corresponding normalized stationary state wave

functions are

ψn1,n2(x, y) = ψn1(x)ψn2(y) (4.40)

=
1√

2n1+n2n1!n2!

(
m2ω1ω2

π2~2

)1/4

Hn1

(√
mω1

~
x

)
Hn2

(√
mω2

~
y

)
e−m(ω1x2+ω2y2)/2~ ,

where ψn denotes the normalized stationary state wave function for a one-dimensional harmonic

oscillator.

Exercise Check carefully that the above statements follow from Theorem 4.1. In particular,

how is the normalizable/normalized condition related to the condition in one dimension?

Of course the quadratic form appearing in (4.36) is rather special, in that it is diagonal. One

can treat more general quadratic forms by first changing to normal coordinates, i.e. one first

diagonalizes V by an orthogonal transformation. Let us illustrate with an example:

Example Consider the oscillator potential

V (x, y) = mω2(x2 + xy + y2) =
1

2
mω2

(
x y

)( 2 1

1 2

)(
x

y

)
. (4.41)

The matrix here has eigenvalues 3 and 1, so there exists an orthogonal transformation to coor-

dinates u, v with corresponding new potential

Ṽ (u, v) =
1

2
mω2

(
u v

)( 3 0

0 1

)(
u

v

)
,

=
1

2
m
(
3ω2u2 + ω2v2

)
, (4.42)

which is now of the form (4.36).6 The orthogonality of the transformation ensures that the

Laplacian/kinetic term in the Schrödinger equation is invariant, so

∂2

∂x2
+

∂2

∂y2
=

∂2

∂u2
+

∂2

∂v2
. (4.43)

6Explicitly, u = 1√
2
(x+ y), v = 1√

2
(x− y).
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Of course, since any quadratic form for V is described by a symmetric matrix, we may always

diagonalize the potential by an orthogonal transformation, thus reducing the problem to a

diagonal form for V , as in (4.36). These remarks apply in any dimension: first change to normal

coordinates, then separate variables one at a time. The Schrödinger equation for any quadratic

potential then reduces to a decoupled set of one-dimensional oscillators, so that the total energy

= sum of one-dimensional energies, and the total wave functions = product of one-dimensional

wave functions.

We conclude this section with another example of degenerate energy levels:

Example (Degeneracy) Consider the original two-dimensional oscillator potential (4.36) with

ω1 = ω2 = ω. Then

E = En = (n+ 1)~ω , (4.44)

where n = n1 + n2. The ground state is n1 = n2 = 0, which is the unique state of energy ~ω.
However, more generally at level n there are n + 1 linearly independent wave functions with

energy En, given by taking (n1, n2) to be (n, 0), (n − 1, 1), . . . , (1, n − 1), (0, n). Thus En has

degeneracy n+ 1. Again, notice this degeneracy is related to the symmetry of the potential.

5 The hydrogen atom

5.1 Atoms

We begin with a discussion of Coulomb’s law.7 In general, a point charge e2 at the origin induces

an electrostatic force on another point charge e1 at position r given by the inverse square law

F =
1

4πϵ0

e1e2
r2

r

r
, (5.1)

where as usual r = |r|. Notice that the Coulomb force (5.1) is proportional to the product of the

charges, so that opposite (different sign) charges attract, while like (same sign) charges repel.

Electric charge is measured in Coulombs, C, and the proportionality constant ϵ0 ≃ 8.85× 10−12

C2 N−1 m−2 in (5.1) is called the permittivity of free space. The Coulomb force is conservative,

of the form F = −∇V where

V (r) = V (r) =
1

4πϵ0

e1e2
r

, (5.2)

is the Coulomb potential.

An atom consists of negatively charged electrons e− orbiting a positively charged nucleus,

where the force of attraction is (predominantly) electrostatic. An electron carries electric charge

−e, where e ≃ 1.60 × 10−19 C. In general, the nucleus of an atom consists of Z positively

charged protons, each of charge +e, and A neutrons, of charge 0, and these are tightly bound

together (by the strong force). In the following we consider an atom of atomic number Z, with

7 * Coulomb discovered his law in 1783. From a modern point of view, this law is subsumed into Maxwell’s
classical theory of electromagnetism (i.e. Coulomb’s law can be derived from Maxwell’s equations).
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a single orbiting electron. In particular, the hydrogen atom has Z = 1. Since the nucleus

is vastly heavier than the electron (mproton ≃ 1836me−), this implies that the centre of mass

of the atomic system will always be very close to the nucleus. We thus make the simplifying

assumption that the nucleus is fixed, at the origin. The potential for the force acting on the

electron is then given by (5.2) with e1 = −e, e2 = Ze (see Figure 8):

V (r) = − Z e2

4πϵ0 r
. (5.3)

nucleus:
protons
neutrons

Z
A

charge e = Ze2

single electron

charge e = - e1

Coulomb force

Figure 8: An atom consisting of a nucleus of atomic number Z and a single orbiting electron.

Recall that in section 1.2 we discussed the empirical formula (1.4) for the energy levels of the

hydrogen atom. Our task in the remainder of this course is to derive this formula theoretically,

using the Schrödinger equation. However, before moving on to this, as usual we pause to make

some comments on the corresponding classical problem. The 1/r Coulomb potential is formally

the same as Newton’s gravitational potential that you encountered in Mods, the only difference

being that gravity is always attractive. Thus classically the atomic system in Figure 8 is similar

to a planet orbiting the sun under gravity.8 In particular, the energy levels are continuous, not

discrete as in (1.4).

* There is an even more serious problem with the classical picture above. Maxwell’s clas-
sical theory of electromagnetism predicts that an accelerating charge, such as an electron
in orbit around a nucleus, emits electromagnetic radiation, and thus continuously loses
energy. The electron would quickly spiral in towards the nucleus, and all atoms would
hence be unstable! We shall see how quantum theory gets around this problem.

5.2 The spectrum of the hydrogen atom

We consider the three-dimensional stationary state Schrödinger equation (2.12) with potential

(5.3):

− ~2

2m
∇2ψ − Z e2

4πϵ0 r
ψ = Eψ , (5.4)

8Of course there is also a gravitational attraction between the electron and nucleus, but this is many orders
of magnitude smaller.
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where m = me− ∼ 9.12 × 10−31 kg is the mass of an electron. In this course we consider only

spherically symmetric wave functions, so that ψ(r) = ψ(r) depends only on the distance r from

the origin.9 In this case, the Laplacian reduces to

∇2ψ =
1

r

d2

dr2
(rψ) =

d2ψ

dr2
+

2

r

dψ

dr
, (5.5)

and we must hence solve the ODE

1

r

d2

dr2
(rψ) +

2mZ e2

4πϵ0~2 r
ψ = −2mE

~2
ψ . (5.6)

Notice that by multiplying this equation by r we effectively obtain a one-dimensional Schrödinger

equation of the form (2.14), with ψ replaced by rψ and a 1/r potential.

The method for solving (5.6) is very similar to that for the harmonic oscillator – there is

essentially only one technical difference, as we shall see. As for the harmonic oscillator, we first

change variables to remove the physical constants. We define

κ ≡
√
−2mE

~
, β ≡ 2Z

a
=

2mZ e2

4πϵ0~2
, (5.7)

where we have introduced

Definition The Bohr radius is

a =
4πϵ0~2

me2
≃ 5.29× 10−11m , (5.8)

where m = me− is the mass of the electron.

Of course, a priori the constant κ may be imaginary, but we are anticipating that E will be

negative, as in (1.4). Equation (5.6) now becomes

d2ψ

dr2
+

2

r

dψ

dr
+
β

r
ψ = κ2 ψ . (5.9)

As for the harmonic oscillator, it turns out to be convenient to substitute

ψ(r) ≡ f(r) e−κr . (5.10)

The motivation is again similar.10 At large values of r the term on the right hand side of

(5.9) dominates over the second and third terms on the left hand side. One thus expects the

ψ(r) = A±e
±κr solutions to the equation d2ψ/dr2 = κ2ψ to determine the leading asymptotic

behaviour of solutions to (5.9). The normalization condition is

1 =

∫
R3

|ψ(r)|2 d3x = 4π

∫ ∞

0
|ψ(r)|2 r2dr , (5.11)

where we have taken ψ(r) = ψ(r), and integrated over the unit sphere of area 4π. Thus one

must certainly take the minus sign in e±κr to obtain a normalizable solution near to r = ∞.

9The more general case is studied in the third year course.
10The argument in the following paragraph is again really a sketch, rather than a rigorous treament. It is in

any case simply a justification for the substitution (5.10).
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We also see that E must be negative; otherwise |e±κr| = 1, and this asymptotic solution is not

normalizable at infinity.

The substitution (5.10) leads to

dψ

dr
=

(
df

dr
− κf

)
e−κr ,

d2ψ

dr2
=

(
d2f

dr2
− 2κ

df

dr
+ κ2f

)
e−κr , (5.12)

so that (5.9) becomes

d2f

dr2
+

2

r
(1− κr)

df

dr
+

1

r
(β − 2κ)f = 0 . (5.13)

We again try a series solution. The main technical difference with the harmonic oscillator

equation is that the coefficients in (5.13) are singular at r = 0.11 Thus a priori we should write

f(r) =

∞∑
k=0

ak r
k+c , (5.14)

for some real constant c ∈ R. Without loss of generality, we may assume a0 ̸= 0. We then have

df

dr
=

∞∑
k=0

(k + c) ak r
k+c−1 ,

d2f

dr2
=

∞∑
k=0

(k + c)(k + c− 1) ak r
k+c−2 . (5.15)

Thus (5.13) becomes

∞∑
k=0

{
(k + c)(k + c− 1) ak + 2[(k + c) ak − κ(k + c− 1) ak−1]

+(β − 2κ) ak−1

}
rk+c−2 = 0 , (5.16)

where we define a−1 = 0. The lowest power of r in (5.16) is rc−2, with coefficient

a0 [c(c− 1) + 2c ] = 0 . (5.17)

Since a0 ̸= 0, we thus have

c(c− 1) + 2c = 0 ⇒ c(c+ 1) = 0 ⇒ c = 0 or c = −1 . (5.18)

However, if c = −1 then from (5.14) the wave function ψ(r) = f(r) e−κr ∼ a0
r near to r = 0. The

wave function is singular at the origin with this choice of c, and we thus discard this solution.

Hence c = 0, and the recurrence relation derived from the coefficient of rk−2 in (5.16) simplifies

to

k(k − 1) ak + 2 [k ak − κ(k − 1) ak−1] + (β − 2κ) ak−1 = 0 , (5.19)

11 * More precisely, r = 0 is a regular singular point of (5.13). Again, Fuchs’ theorem applies and determines
the form of the series in (5.14). See appendix B.
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or, after some cancellations, equivalently

ak =
2κk − β

k(k + 1)
ak−1 . (5.20)

The solution is hence

f(r) = a0

[
1 +

(2κ− β)

2
r +

(4κ− β)(2κ− β)

12
r2 + · · ·

]
. (5.21)

Notice that, in contrast to the harmonic oscillator, here we have only a single solution – we have

already discarded the c = −1 solution as singular and thus unphysical.

Finally, we must impose that the wave function resulting from (5.21) is normalizable. Suppose

that the series does not terminate. Then

ak
ak−1

−→ 2κ

k
, as k → ∞ . (5.22)

Compare this to the Taylor expansion of the function e2κr =
∑∞

k=0 bk r
k, where bk = (2κ)k/k!.

In this case

bk
bk−1

=
(2κ)k (k − 1)!

(2κ)k−1 k!
=

2κ

k
. (5.23)

Thus if the series (5.21) does not terminate the function f(r) and e2κr have the same asymptotic

expansion, and hence

ψ(r) = f(r) e−κr ∼ eκr (5.24)

is not normalizable in (5.11).

The series must hence terminate; that is, there is a least integer n > 0 such that an = 0. The

recurrence relation (5.20) then gives

2κn− β = 0 . (5.25)

Recalling the definitions (5.7) of κ and β, this becomes

E = − ~2

2m
κ2 = − ~2

2m
· Z2

a2 n2
, (5.26)

so that

E = En = −Z
2 ~2

2ma2
· 1

n2
, (5.27)

which is precisely of the form (1.4)! Moreover, we have a theoretical formula for the Rydberg

constant, namely (putting Z = 1 for hydrogen)

R0 =
~

4πmca2
=

me4

(4π)3 ϵ20 ~3c
, (5.28)

where m is the electron mass, c is the speed of light, and a is the Bohr radius.

In general f(r) = fn(r) is a polynomial of degree n − 1. In particular, the ground state has

n = 1 with f(r) = a0 a constant. The corresponding ground state wave function is

ψ1(r) = a0 e
−κ1r = a0 e

−Zr/a , (5.29)
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where we have used (5.25) to write κ = κn = β/2n = Z/an. It is straightforward to normalize

(5.29) using (5.11):

1 = 4π |a0|2
∫ ∞

0
r2 e−2κ1r dr ,

= π |a0|2
d2

dκ21

∫ ∞

0
e−2κ1r dr ,

= π |a0|2
d2

dκ21

[
1

2κ1

]
,

=
π |a0|2 a3

Z3
, (5.30)

thus giving a0 =
√
Z3/π a3 and hence

ψ1(r) =

√
Z3

π a3
e−Zr/a , (5.31)

is the normalized ground state wave function.

(r)ψ
1 (r)ψ

2

(r)ψ
3

(r)ψ
4

Figure 9: The ground state and first three excited state wave functions of the (spherically
symmetric) hydrogen atom.

More generally, the polynomials fn, appropriately normalized, are called generalized Laguerre

polynomials. More specifically,

fn(r) = L1
n−1

(
2Zr

an

)
= L1

n−1 (2κnr) , (5.32)

where the first few polynomials L1
n−1(s) are shown in Table 2.

Exercise Check that the polynomials in Table 2 are indeed obtained from (5.21).
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n L1
n−1(s)

1 1

2 −s+ 2

3 s2

2 − 3s+ 3

4 − s3

6 + 2s2 − 6s+ 4

Table 2: The generalized Laguerre polynomials that determine the ground state and first three
excited states of the (spherically symmetric) hydrogen atom.

* The generalized Laguerre polynomials may be defined via

LαN ≡ s−α es

N !

dN

dsN
(
sN+α e−s

)
. (5.33)

This is a polynomial of degree N . Our case above is N = n− 1, α = 1, although we shall
not prove that (5.33) follows from (5.21) here. Related to this, you might wonder how
general the spherically symmetric case is. Allowing ψ = ψ(r, θ, ϕ) in (5.4) one finds that
the spectrum of energies (5.27) is the same, but now En has degeneracy n2. The general
wave functions involve spherical harmonics and the more general Laguerre polynomials in
(5.33), with α ≥ 1. The proof of these facts is in the third year quantum course.

We summarize with

Theorem 5.1 The (spherically symmetric) energy levels for an atom consisting of a single

electron orbiting a nucleus of atomic number Z are

E = En = −Z
2 ~2

2ma2
· 1

n2
, (5.34)

where the positive integer n is called the principal quantum number. The corresponding spheri-

cally symmetric wave functions are

ψn(r) = Cn L
1
n−1

(
2Zr

an

)
e−Zr/an , (5.35)

where Cn are appropriate normalization constants and L1
n−1 is a polynomial of degree n− 1.

In particular, the normalized ground state wave function is

ψ1(r) =

√
Z3

π a3
e−Zr/a . (5.36)

Notice that there is a minimum energy ground state, with n = 1, which leads to a stable

atom. We conclude with an example computation using the hydrogen atom ground state wave

function (5.36):

Example Let us compute the expectation value of r, the distance of the electron from the
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nucleus, in the ground state. This is given by

⟨r⟩ψ1 =

∫ ∞

0
r |ψ1(r)|2 4πr2 dr ,

= −4πa20
8

d3

dκ31

[
1

2κ1

]
,

=
3πa20
2κ41

,

=
3a

2Z
, (5.37)

where we have used a0 =
√
Z3/π a3 in (5.29). Thus for the hydrogen atom, with Z = 1, the

average distance of the electron from the nucleus, in the ground state, is 3
2 times the Bohr radius

a, which numerically is ≃ 7.94× 10−11 m.

A Summary: vectors and vector operators

The following summarizes some basic notation and conventions used in the main text.

We work in R3, or a domain therein, in Cartesian coordinates. If e1 = i = (1, 0, 0), e2 = j =

(0, 1, 0), e3 = k = (0, 0, 1) denote the standard orthonormal basis vectors, then a position vector

is

r =
3∑
i=1

xi ei , (A.1)

where x1 = x, x2 = y, x3 = z are the Cartesian coordinates in this basis. The scalar product of

two vectors a, b is denoted by

a · b =

3∑
i=1

aibi . (A.2)

We denote the Euclidean length of r by

|r| = r =
√
x21 + x22 + x23 =

√
r · r . (A.3)

The gradient of a function ϕ = ϕ(r) is the vector field

gradϕ = ∇ϕ =

3∑
i=1

∂ϕ

∂xi
ei . (A.4)

The divergence of a vector field f = f(r) is the function (scalar field)

div f = ∇ · f =

3∑
i=1

ei ·
∂f

∂xi
=

3∑
i=1

∂fi
∂xi

. (A.5)

The second order operator ∇2 defined by

∇2ϕ = ∇ · (∇ϕ) =

3∑
i=1

∂2ϕ

∂x2i
(A.6)

is called the Laplacian.

We also remind the reader of

35



Theorem A.1 (Divergence Theorem) Let D be a bounded region in R3 with boundary surface

S = ∂R. If f is a vector field then∫
D
∇ · f d3x =

∫
S
f · ndS (A.7)

where n is the outward unit normal vector to S = ∂R. One sometimes writes dS ≡ ndS.

B * Fuchs’ theorem and Frobenius series

This appendix is included only for interest and completeness. It is certainly not intended to be

part of the course.

In the main text we solved both the harmonic oscillator (4.14) and spherically symmetric

hydrogen atom (5.13) ODEs using a (generalized) power series expansion. Here we discuss this

problem more generally. Consider the second order ODE

d2f

dx2
+ p(x)

df

dx
+ q(x) f = 0 , (B.1)

for the function f(x). A point x0 is called an ordinary point of (B.1) if p(x), q(x) have Taylor

expansions about x0, valid in some positive radius of convergence; otherwise x0 is called a

singular point. If x0 is a singular point, but (x − x0)p(x), (x − x0)
2q(x) both have Taylor

expansions around x0, then x0 is called a regular singular point.

By a generalized power series, or Frobenius series, about x0 we mean

f(x) =

∞∑
k=0

ak (x− x0)
k+c , (B.2)

for some real number c ∈ R. Without loss of generality, a0 ̸= 0. Notice that for c a non-negative

integer this reduces to a normal power series. Without loss of generality, we now set x0 = 0. The

equation obtained from the ODE (B.1) by setting the lowest power of x to zero in the expansion

(B.2) is called the indicial equation. Since (B.1) is second order, this is a quadratic equation for

c. Fuchs and Frobenius proved the following result:

Theorem B.1

• If x = 0 is an ordinary point, then (B.1) possesses two distinct power series solutions, so

that one can effectively set c = 0 in (B.2). These series converge for |x| < r, where r is

the minimum radius of convergence of p(x) and q(x).

• If x = 0 is a regular singular point, then there is at least one solution of (B.1) of the form

(B.2). Again, this series solution converges for |x| < r, where r is the minimum radius of

convergence of xp(x) and x2q(x).

The precise behaviour for regular singular points is a little involved. If the indicial equation

for c has distinct roots that differ by a non-integer, then there are two series solutions of the

form (B.2), with the corresponding values of c solving the indicial equation. Otherwise there is

not necessarily a second series solution; if there is not one can nevertheless say more about the

second solution, but we refer the interested reader to the literature for details.
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