GEOMETRIC QUANTIZATION I: SYMPLECTIC GEOMETRY
AND MECHANICS

A useful reference is Simms and Woodhouse, Lectures on Geometric Quantization, available online.

1. SYMPLECTIC GEOMETRY.

1.1. Linear Algebra. A pre-symplectic form ω on a (real) vector space V is a skew bilinear form $\omega: V \otimes V \to \mathbb{R}$. For any $W \subset V$ write $W^\perp = \{ v \in V \mid \omega(v, w) = 0 \forall w \in W \}$. (V, ω) is symplectic if ω is non-degenerate: $\ker \omega := V^\perp = 0$.

Theorem 1.2. If (V, ω) is symplectic, there is a “canonical” basis $P_1, \ldots, P_n, Q_1, \ldots, Q_n$ such that $\omega(P_i, P_j) = 0 = \omega(Q_i, Q_j)$ and $\omega(P_i, Q_j) = \delta_{ij}$.

P_i and Q_i are said to be conjugate. The theorem shows that all symplectic vector spaces of the same (always even) dimension are isomorphic.

1.3. Geometry. A symplectic manifold is one with a non-degenerate 2-form ω; this makes each tangent space $T_m M$ into a symplectic vector space with form ω_m. We should also assume that ω is closed: $d\omega = 0$.

We can also consider pre-symplectic manifolds, i.e. ones with a closed 2-form ω, which may be degenerate. In this case we also assume that $\dim \ker \omega_m$ is constant; this means that the various $\ker \omega_m$ fit together into a sub-bundle $\ker \omega$ of TM.

Example 1.1. If V is a symplectic vector space, then each $T_m V = V$. Thus the symplectic form on V (as a vector space) determines a symplectic form on V (as a manifold). This is locally the only example:

Theorem 1.4. Every symplectic manifold M is locally isomorphic to a symplectic vector space V. (In particular, for any $m \in M$ there are local ‘canonical’ coordinates P_1, \ldots, Q_n corresponding to a canonical basis for V).

Example 1.2. If M is any manifold, then $T^* M$ is a symplectic manifold. In fact, there is a unique one-form θ on $T^* M$ such that for any section $\alpha: M \to T^* M$ one has $\alpha^*(\theta) = \alpha$. Then $\omega := d\theta$.

In general, if $\omega = d\theta$ then θ is called a symplectic potential. One always exists locally (because ω is closed) but not always globally.

Example 1.3. If M is a complex manifold with a Hermitian metric η then define $\omega_m(\xi_1, \xi_2) = \text{Re} \eta_m(i\xi_1, \xi_2)$ for all $\xi_1, \xi_2 \in T_m M$. Then ω is a non-degenerate 2-form; if it is symplectic (i.e. closed) then M is Kähler. For example: $M = \mathbb{P}^n(\mathbb{C})$ with η the unique $U_{n+1}(\mathbb{C})$-invariant metric. Note this is compact (unlike a cotangent bundle) and there is no symplectic potential.

1.5. Hamiltonian Reduction. Other examples are found using Hamiltonian reduction. Suppose first that W is a pre-symplectic vector space; then $W/\ker \omega$ is symplectic. In particular, if V is symplectic, and $W^\perp \subset W \subset V$ (i.e. W is ‘coisotropic’) then W is pre-symplectic and W/W^\perp is symplectic. This construction globalises in the following way:

Suppose (N, ω) is pre-symplectic. Then $\ker \omega$ is (by assumption) a subbundle of TN. The fact that ω is closed means that $\ker \omega$ is integrable. This means there
exists a ‘foliation’, i.e. a family N_α of submanifolds of N, such that $N = \sqcup_{\alpha \in I} N_\alpha$, and if $m \in N_\alpha$ then $T_m N_\alpha = \ker \omega_m$. In good cases, the set of ‘leaves’ $N/\ker \omega := \mathcal{I}$ is a manifold, and then it is symplectic. Indeed, $T_m(N/\ker \omega) = (T_m N)/\ker \omega_m$.

In particular, if (M, ω) is symplectic, we can choose some $N \subset M$ that is coisotropic: this means that $T_m N$ is a coisotropic subspace of $T_m M$, for any $m \in N$. In good cases, $(N, \omega|_N)$ will then be presymplectic, and $N/\ker \omega|_N$ will be symplectic.

Example 1.4. $V = \mathbb{R}^n$, so $M := TV \cong \mathbb{R}^{2n}$ is symplectic. Let $N \subset M$ be the unit sphere. Then the Hamiltonian reduction $N/\ker \omega|_N$ is naturally $\mathbb{P}^{n-1}(\mathbb{C})$. In this case the leaves of the foliation are circles on the sphere.

1.6. **Poisson Brackets.** The fact that M is symplectic endows $C^\infty(M)$ with the structure of a Lie algebra, under the Poisson bracket, defined as follows.

Given $f \in C^\infty(M)$, there exists a unique vector field X_f on M such that $\omega(X_f, -) = df$. Such a vector field is called globally Hamiltonian. For $f, g \in C^\infty(M)$, define $[f, g] = 2\omega(X_f, X_g)$. This makes $C^\infty(M)$ into a Lie algebra (the Jacobi identity is equivalent to the fact that ω is closed). This gives a short exact sequence of Lie algebras:

$$0 \to \mathbb{R} \to C^\infty(M) \to \{(\text{Glob. Ham. VFs})\} \to 0.$$

The Lie bracket on globally Hamiltonian vector fields is the usual bracket of vector fields.

1.7. **A Naive Idea About Quantization.** The idea of quantization is to associate to a symplectic manifold M a Hilbert space H, and to each ‘observable’ $f \in C^\infty(M)$, and operator O_f on H, such that the Poisson bracket on $C^\infty(M)$ becomes the commutator of operators. Naively, we can take $H = L^2(M)$ and $O_f = X_f$, acting by derivations. But life is more complicated.

2. Mechanics

The kind of situation we want to describe is that of a particle moving in space S. How can one describe the trajectories? We sketch three methods.

2.1. **Hamiltonian mechanics.** General setup: M a symplectic manifold; $H \in C^\infty(M)$ ‘the Hamiltonian.’ Points of M label instantaneous states; time evolution is given by flow along the vector field X_H. In other words, $\gamma: \mathbb{R} \to M$ is a trajectory if it satisfies the differential equation $d\gamma/dt = X_H$ (maybe with a minus sign).

Example 2.1. S space. Suppose that S has a Riemannian metric η (e.g. $S = \mathbb{R}^3$ with the usual inner product). We can use η to identify each tangent space $T_m S$ with the cotangent space $T_m^* S$, thus making $M = TS$ into a symplectic manifold. $H(s, \xi) = \frac{1}{2} \eta(\xi, \xi)$ for $s \in S$ and $\xi \in T_s S$. The trajectories $R \to TS$ project to geodesics on S. (Note that any curve $\gamma: \mathbb{R} \to S$ lifts naturally to a curve $(\gamma, \gamma') : \mathbb{R} \to TS$)

2.2. **Presymplectic mechanics.** Now N is pre-symplectic. Thus we have a foliation of N with tangent spaces $\ker \omega$. The trajectories are leaves of this foliation, i.e. unparameterized integral surfaces for $\ker \omega$. (The simplest case is when $\ker \omega_m$ is one-dimensional, so the leaves are curves in N).

Example 2.2. With S as before, and H a function on TM, consider ‘spacetime’ $S \times \mathbb{R}$. Let $M = T^*(S \times \mathbb{R})$ and define $N \subset M$ to be those $(s, t; \alpha_s, \alpha_t) \in M$ such that $H(s, t) + \alpha_t = 0$. Then N is coisotropic and presymplectic, and the trajectories project to graphs of geodesics $\mathbb{R} \to S$.

This setup makes sense when H depends on time, and also in relativistic setting where there is no canonical decomposition of spacetime into space S and time \mathbb{R}.

Usually the situation is described in a slightly different way: one is given a ‘relativistic Hamiltonian’ $H_r \in C^\infty(M)$ (in the example, $H(s, t) + \alpha t$), and the trajectories are again integral curves for X_{H_r}, but subject to the constraint $H_r = 0$.

2.3. **Nice Thing I Forgot to Say.** The Hamiltonian reduction $N/\ker\omega$ of the presymplectic manifold N is (by definition) the space of trajectories, which is therefore a symplectic manifold. In the example, we can, for each time $t \in \mathbb{R}$, identify $N/\ker\omega$ with the space T^*S of instantaneous states. In quantum theory, $N/\ker\omega$ is called the ‘Heisenberg picture’ (the ‘states’ are entire trajectories) whereas T^*S is called the ‘Schrodinger picture’ (the ‘states’ are instantaneous). As remarked before, the Schrodinger picture is not very natural in relativistic settings. In general, $N/\ker\omega$ might not even be isomorphic to a cotangent bundle.

2.4. **Lagrangian Mechanics.** Instead of characterising trajectories by differential equations, we use a ‘variational principle’ – like the one that says that geodesics minimize length. Lagrangian mechanics takes place in the tangent space $T S$. We are given a function $L \in C^\infty(TS)$. A trajectory $\gamma : \mathbb{R} \to S$ is one that extremizes the action

$$A(\gamma) = \int_{[0,1]} L(\gamma(t), \gamma'(t)) \, dt.$$

The relation to Hamiltonian mechanics is roughly as follows: one can use L to define a (non usually linear) map $T_mS \to T^*_mS$, called the Legendre transform. In good cases, the Legendre transform is a local diffeomorphism, making TS into a symplectic manifold. Flows are determined by an appropriate Hamiltonian.

Example 2.3. Take $L(s, \xi) = \frac{1}{2} \eta(\xi, \xi)$. Then the action is the length\(^1\) of γ, and the trajectories are geodesics. More generally, if we had a Hamiltonian $H(s, \xi) = \frac{1}{2} \eta(\xi, \xi) + U(s)$, then the corresponding Lagrangian is $L(s, \xi) = \frac{1}{2} \eta(\xi, \xi) - U(s).

The Lagrangian formalism is ubiquitous in physics, but it’s not yet clear to me how important it will be for our immediate aims.

\(^1\)Actually not quite the length, which would be the integral of the square-root of the Lagrangian; but it turns out not to matter.