
QFT I: WIGHTMAN AXIOMS

1. Quantum Mechanics and Generalisations

Classic quantum mechanics has the following features:

(a) The backdrop is Newtonian spacetime M ∼= R3 × R.
(b) The corresponding classical theories describe the motions of a fixed number

of particles. Thus a typical classical phase space is T ∗S.
(c) Typical observables are the positions/momenta/energies of the particles.

Correspondingly, there are three seemingly independent directions in which one
could generalize the ideas of quantum mechanics.

(a) Instead of Newtonian spacetime S × R, let M be Minkowski space.
(b) Instead of particles, consider fields (like the electromagnetic field). Now the

phase space is infinite-dimensional.
(c) Instead of global observables like energy, consider local ones like energy

density or the energy in this room.

It turns out that (up to some fudge) all three directions lead to similar ideas, which
constitute quantum field theory. Thus QFT is supposed to be about (1) relativistic
particle physics; (2) quantization of classical field theories; (3) algebras of local
observables.

This talk will mainly be about aspect (2), as codified by the Wightman axioms
(1950s). A future talk will be about (1), a point of view which is emphasized (for
example) by Weinberg’s textbook. The ‘algebraic’ approach to QFT, (3), is perhaps
the most ambitious in trying to lay foundations; see Haag, Local Quantum Physics.

Most textbooks are at least nominally interested in some amalgam of (1) and (2).
However, there is a disconnect between their pragmatic ‘Lagrangian’ methods and
the kind of axioms we give here, as evidenced by the lack of interesting models on
the axiomatic side. A new approach (I have seen but don’t yet know much about)
is described in a book by Kevin Costello, giving an axiomatic treatment of some
aspects of Lagrangian QFT, especially renormalization.

2. Wightman Axioms, Part I

2.1. Hilbert Space. We are going to describe axioms for a quantum theory. A
general part of the structure is

Axiom 1 We are given a Hilbert space H, a dense subspace D ⊂ H, and a ‘vacuum’
vector Ω ∈ D.

Specifying D is a purely technical crutch. For example, in quantum mechanics, if
H = L2(R), then we want to consider an operator i∂ (the momentum operator).
But you can’t take derivatives of arbitrary L2 functions. Nonetheless, ∂ is defined
on a dense subspace of H (e.g. the Schwartz space), and that’s good enough. We
want to have available a single domain D on which all our operators are defined.

2.2. Fields. A field is just a function φ : M → V , where M is our spacetime
manifold and V a vector space. Of course, we may wish to think about smooth
functions, etc; or allow for distributions instead of functions.

Axiom 2 We are given a ‘spacetime’ manifold M and a vector space V .
1



2 QFT I: WIGHTMAN AXIOMS

2.3. Observables. A typical observable is ‘the value of φ at x ∈ M ’. However,
everything will work out better if we look instead at average values of φ in small
regions. (The usual heuristic is that measuring the value of a field at a single point
would require infinitely much energy.)

Thus let S be the space of Schwartz functions f : M → V ∗. The observables we
consider are ones of the form

Of (φ) =
∫

M

〈f, φ〉 .

Here 〈f, φ〉 is the measure on M one obtains by contracting V ∗ (the values of f)
with V (the values of φ).1

Axiom 3 We are given a ‘quantization’ map Q : S → End(D). The resulting operators
on D should be Hermitian. Q should be continuous in some appropriate
topology (more on this later).

2.4. Locality. The quantized observables Q(f) have one more property, which is
a kind of ‘locality’. To understand this, let us (finally) take M to be Minkowski
space. Then we know what it means for two small regions in M to be causally
separated (i.e. spacelike separated). The naive version of the locality axiom is that
if f1, f2 ∈ S have causally separated supports, then [Q(f1), Q(f2)] = 0. This means
we can simultaneously diagonalize Q(f1) and Q(f2); roughly speaking, it means
that the field can have well-defined values over an entire spacelike surface, and
spatially separated observers can make independent measurements of these values.
Thus interpreting Q(f1) and Q(f2) as observables is compatible with the causal
structure of spacetime. However, the real axiom looks like this.

Axiom 4 We are given a decomposition V = V0 ⊕ V1. If f1, f2 ∈ S have causally
separated supports, and f1 has values in Vm and f2 in Vn, then

Q(f1)Q(f2) = (−1)mnQ(f2)Q(f1).

Mathematically, this is not so awful; it is the natural ‘Z2-graded’ version of our naive
locality axiom. However, physically, it means that if f1, f2 have values in V1 then the
‘observables’ Q(fi) must not be truly observable, at the risk of allowing interference
between causally separated observations. However, certain combinations of these
‘observables’ may still be directly measurable.

The fields with values in V0 are called ‘bosonic’ and those with values in V1 are
‘fermionic’. For example, the electromagnetic field is bosonic (and observable) while
the field associated to electrons is fermionic (and unobservable). However, electrons
obviously have physical effects even if the fields themselves are not observable.

Part of the ambition of Haag’s algebraic approach to QFT is to eliminate fermionic
fields as fundamental objects, so that only the naive locality axiom is really in play.

2.5. Quantum fields and Correlation functions. The condition that Q is con-
tinuous is designed to have the following implications. First, Q should be given by
a distribution Ψ: M → V ⊗ End(D), i.e.

Q(f) =
∫

M

〈f,Ψ〉 .

Ψ is ‘the quantum field’ one finds in textbooks. Second, and more importantly, for
each n ≥ 0 the functional on Sn defined by

(f1, . . . , fn) 7→ 〈Ω, Q(f1) · · ·Q(fn)Ω〉
should be represented by a distribution Wn : Mn → V n.

These distributions are called Wightman or correlation functions. They deter-
mine the QFT (H,D,Ω, Q) (for fixed M and V ). The idea is to consider the vector

1Thus to make make the units work out, we should assume that fields φ are measures rather
than functions; or we could just choose a reference measure on M .
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space spanned by symbols “Q(f1) · · ·Q(fn)Ω”. The correlation functions specify
the inner products between such symbols, and from this we can reconstruct the
Hilbert space.

The calculation of these correlation functions (and other closely-related quan-
tities) is essentially what textbook QFT is all about. Even when working in our
axiomatic framework, one typically proves theorems by dealing with the correlation
functions rather than the quantization map.

3. Symmetry

The remaining Wightman axioms will state that QFTs are invariant under the
Poincaré group. Here I lay down some motivating ideas.

A symmetry is just an automorphism of the data (H,M, V,D,Ω, Q), in other
words, a triple of maps (u : H → H,uM : M → M,uV : V → V ) such that u
preserves Ω and D, and such that

uQ(f)u−1 = Q(uV ◦ f ◦ u−1
M ).

Remark 3.1. It would alternatively be natural to consider automorphisms of the
vector bundle V ×M → M , rather than separate mapst uM and uV . This would
lead to a more general notion of ‘symmetry’.

What kind of map should u be? Naively, it should be unitary. But physical
reasoning demands only that it should preserve the set of rays (‘states’) in H, and
it should preserve the amplitudes

‖v, w‖ =
〈v, w〉2

〈v, v〉 〈w,w〉
∈ [0, 1]

for v, w ∈ H, which are interpreted as transition probabilities. (Note that ‖v, w‖
depends only on the rays through v and w). A theorem of Wigner says that a
map of rays preserving probabilities can be realized as a real-linear map that is
either unitary (and complex-linear) or anti-unitary (and anti-linear); moreover,
this realisation is unique up to a phase. Thus in the definition of a ‘symmetry’ we
allow that u is either unitary or anti-unitary.

4. Wightman Axioms, continued

Now we take M to be Minkowski space. Its isometry group is the Poincaré group
P . It has a normal subgroup M (acting by translations) and the quotient is the
Lorentz group L. In this lecture we take P to be connected (i.e. we only consider
the connected component of the full isometry group).

P is not simply connected; its universal cover P̃ = M o L̃ is a double cover. We
are going to consider QFTs with P̃ acting by symmetries.

Remark 4.1. Suppose we had an action of P on the set of rays in H, preserving
the probability amplitudes. Then Wigner’s theorem gives an operator u(p) for each
p ∈ P , unique up to phase. This phase ambiguity means that we get a representation
of P̃ (not P in general) on H. This is one reason for considering P̃ instead of P .
Note that the representation of P̃ would be unitary, because 1 ∈ P̃ acts unitarily
(by the identity) and P̃ is connected.

Note that a representation of L̃ (hence of P̃ ) on V makes P̃ act on S by (gf)(x) =
g(f(g−1x)) for g ∈ P̃ , f ∈ S, x ∈ M .

Axiom 5 We have a representation of L̃ on V and a unitary representation of P̃ on
H such that Q is P̃ -equivariant. Moreover, P̃ fixes Ω and preserves D ⊂ H.

Sometimes additional things are assumed, e.g. that Ω is the unique P̃ -fixed vector.
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4.1. Positivity. There is one last condition on the type of representation of P̃ on
H, corresponding to the idea that particles have future-pointing trajectories and
positive energies. P̃ contains the additive group M as a normal subgroup. An
irreducible representation of M is the same as a element of the dual M∗ (that is,
λ ∈ M∗ determines a representation x 7→ eiλ(x)). And we can identify M∗ with M
using the inner product on M . Thus, the spectrum of M acting on H is a subset
of M – the set of irreducible representations of M occuring as subquotients of H.

Axiom 6 The spectrum of M acting on H is contained in the future-pointing light
cone.

(Note this axiom requires not only the inner product on M , but also a temporal
orientation.)


