
CHARACTERISTIC CYCLES OF THETA SHEAVES

TERUJI THOMAS

Abstract. We extend from characteristic p to characteristic zero S. Lysenko’s
theory of theta sheaves on the moduli stack of metaplectic bundles. The main
tool is a ‘Fourier transform’ for semi-homogeneous sheaves on vector bundles.
We then calculate the characteristic cycles of the theta sheaves, showing that
they lie in a small part of the global nilpotent cone.

1. Introduction

1.1. Let K be a global field, A its ring of adèles, and O ⊂ A the ring of inte-
gral adèles. The adelic symplectic group Sp2n(A) has a double cover, the adelic
metaplectic group Mp2n(A). Following Sergey Lysenko [Ly], we study a geometric
analogue of the classical theta series, which can be understood as a function on
Mp2n(A). This function descends to a double coset space

Sp2n(K)\Mp2n(A)/Sp2n(O).

When K is the function field of an algebraic curve X over a finite field Fq, Lysenko
interpreted such a double coset space as the Fq points of an algebraic stack BunMp

of “metaplectic bundles over X,” and explained that the theta function arises “ge-
ometrically,” i.e. as the function corresponding to a certain perverse sheaf Θ on
BunMp under Grothendieck’s sheaf-function dictionary (see, for example, [La2]).
More precisely, Θ = Θ+⊕Θ− is the direct sum of two irreducible perverse sheaves.

1.2. The first purpose of this paper is to extend Lysenko’s study of Θ± to the case
of curves X in characteristic zero. The main work here is to replace the Fourier-
Deligne transform, which he uses, by another construction, the “semi-homogeneous
Fourier-transform,” which coincides (up to a twist) with Fourier-Deligne in positive
characteristic. The theory of this semi-homogeneous Fourier transform is developed
in §§3–4; Theorem 4.3 states its connection to Fourier-Deligne. It is also closely
related to the homogeneous Fourier transform of Laumon [La3].

The definition of Θ± is finally given in §5, and in §6 we give an alternative
description of Θ± as a Goresky-MacPherson extension.

1.3. The second goal is to compute the characteristic cycle of Θ±, a problem that
makes sense only in characteristic zero. Such a characteristic cycle is a conic La-
grangian cycle in the cotangent stack T ∗BunMp. In §7, we very briefly recall the
theory of characteristic cycles, and then describe how they transform under semi-
homogeneous Fourier (following [Br] and and the appendix to [La1]).

1.3.1. In order to state the main result, let us recall the definition of the stack
BunMp, and describe its cotangent stack. For any test scheme S, let pXS

be the
projection pXS

: XS := X × S → S, and set Ω := Ω1
XS/S

, O := OXS
. If L is a

vector bundle on XS set L ∨ = L ∗ ⊗ Ω.
Define BunSp, the moduli stack of rank-2n symplectic bundles on X, in such

a way that BunSp(S) is the groupoid of pairs (V , bV ), with V a rank-2n vector
bundle on XS , and bV : V → V ∨ a skew-symmetric isomorphism. We often omit
bV from the notation.

1



2 TERUJI THOMAS

The cotangent stack T ∗BunSp is the stack whose S-points are pairs (V , η) with
V ∈ BunSp(S), and η a symmetric homomorphism η : V ∗ → V (see e.g. [Gi2]).

The stack BunMp of metaplectic bundles is defined so that BunMp(S) is the
groupoid of data (V ,D , δ) with V ∈ BunSp(S), D a line bundle on S, and δ : D ⊗
D → detRpXS ,∗V an isomorphism. In other words, writing Ṽ for the universal
bundle over XBunSp , BunMp is the gerbe over BunSp parameterising square-roots of
the line bundle detRpXBunSp ,∗Ṽ .

The cotangent stack T ∗BunMp therefore parameterises data (V ,D , δ, η) with η
a symmetric homomorphism η : V ∗ → V .

1.3.2. Let M be the stack such that M(S) is the groupoid of data (V ,D , δ, φ), con-
sisting of an object of (V ,D , δ) ∈ BunMp(S) and a homomorphism φ ∈ Hom(V ,Ω),
with φ 6= 0. Define a morphism s : M → T ∗BunMp by

s(V ,D , δ, φ) = (V ,D , δ, η := (bV )−1 ◦ φ∗ ◦ φ ◦ (bV )−1).

Theorem 1.1. The characteristic cycles of Θ− and Θ+ are given by

CC(Θ−) = [Im s] CC(Θ+) = [Im s] + [BunMp].

Here [BunMp] is the cycle corresponding to the zero section of T ∗BunMp, counted
with multiplicity one. Similarly, Im s is the closure of the image of s in T ∗BunMp,
and [Im s] is the corresponding cycle.

Remark 1.1. It follows that CC(Θε) is supported inside the global nilpotent cone,
which, according to a theorem of Faltings and Laumon, is a Lagrangian substack of
T ∗BunMp (see [Gi2]); moreover, the component [Im s] corresponds to the minimal
coadjoint orbit of Sp2n.

1.3.3. In §8 we describe certain cotangent stacks used in the proof of Theorem 1.1,
and then complete the proof in §9.

1.3.4. Remark. It would be possible to define theta sheaves in characteristic zero
using Laumon’s homogeneous Fourier transform instead of our semi-homogeneous
one. To do this, one has first to use the homogenous sheaf f0 in (6) instead of f .
Second, we note that in the definition of Θε we consider Lagrangian subbundles
whose Euler characteristic has parity −ε (see §5.1.1); in the homogeneous case, one
should use parity ε instead. With these changes, the resulting ‘theta sheaves’ would
differ from ours only by a ‘constant factor,’ that is, by a local system on Spec(k).

The reasons that we have chosen the current emphasis on semi-homogeneous
sheaves are, first, that the semi-homogeneous Fourier transform is technically sim-
pler; and second, that we are interested in the following example. Suppose that
A ,B,C are rank-2 vector bundles on X, such that det A ⊗ det B ⊗ det C = Ω1

X .
Then V := A ⊗B⊗C is naturally a rank-8 symplectic, in fact, metaplectic bundle.
For any line subbundle ` ⊂ A , the Lagrangian subbundle `⊗B⊗C ⊂ V has even
Euler characteristic. Thus, to study the restriction of Θ− to metaplectic bundles
of this form, it is most convenient to use the semi-homogeneous construction.

1.4. Acknowledgements. Theorem 1.1 was conjectured by Drinfeld, and I am
very grateful to him and to Sergey Lysenko for their guidance on various points. I
also thank Dima Arinkin, Sasha Beilinson, Masoud Kamgarpour and Brian Smith-
ling for their helpful discussions.

2. General Notation

We collect here some general notation to be used throughout.
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2.1. All stacks are Artin stacks, locally of finite type, over a fixed ground field k
of characteristic not 2. For any such stack X let D(X) be the bounded derived
category of complexes of `-adic sheaves on X with constructible cohomology; here
` is a prime different from the characteristic of k. Let D be the Verdier duality
operator, D : D(X) → D(X)op. Choose a square-root Q̄`( 1

2 ) of Q̄`(1), and for any
f ∈ D(X) and integer r, define f 〈r〉 := f( r2 )[r].

2.2. If L is (the coherent sheaf of sections of) a vector bundle and similarly A a
line bundle, write

Hom(L ,L ∗ ⊗A ) = Homsym(L ,L ∗ ⊗A )⊕Homsk(L ,L ∗ ⊗A )

for the decomposition into sheaves of symmetric and skew-symmetric homomor-
phisms, and similarly for the global sections Homsym(L ,L ∗ ⊗A ), etc.

2.3. For V (the total space of) a vector bundle over a stack B, set V◦ := V − B,
where B is identified with the zero section; V̄ := V/Gm, the quotient stack (Gm acts
by homotheties); and denote the canonical maps as in the following commutative
diagram.

PV
π̄◦V

``AAAAAAAA

̄V
ooV̄

π̄V

??�������
B̄ ı̄V

//

B

V◦

π◦V~~}}
}}

}}
}}

jV

oo

ρ◦V

��

V

πV
��

??
??

??
?

ρV

��

B

ρB

��

iV
//

Let V∗ be the vector bundle dual to V, pV, pV∗ the projections of V×B V∗ to V and
V∗. Let evV : V×B V∗ → A1 be the evaluation map.

3. The Semi-Homogeneous Fourier Transform

The semi-homogeneous Fourier transform is a functor between certain categories
of semi-homogeneous complexes, defined in §3.1 (the terminology is explained in
Remark 3.1.

I define the Fourier functor in §3.3.1 and will explain its basic properties in §4.

3.1. Semi-Homogeneous Complexes. Let µN be the etale sheaf on Spec(k) of
N -th roots of unity (we will chiefly be interested in the case N = 2). Suppose
given a character χ : µN → Q̄×

` = Aut(Q̄`), that is, a homomorphism of sheaves of
groups. Let χ∗ denote the dual character: χ∗(g) = χ(g−1).

Let aX : Gm × X → X be an action of the multiplicative group on a stack X.
(Recall that stacks form a 2-category, and so the action of Gm on X actually involves,
besides aX, specified 2-morphisms giving the associativity and unit structure; see
[Ly, Appendix A].) Let a(N)

X be the action

a
(N)
X (g, x) := aX(gN , x)

of Gm on X and let X(N) be the corresponding stack quotient. Since, under a(N)
X ,

µN ⊂ Gm acts trivially, µN acts on each object of D(X(N)).

Definition 3.1. Denote by D(X)χ the full subcategory of D(X(N)) made up of
those objects on which µN acts through χ. I call any object of D(X)χ a “semi-
homogeneous complex on X,” or “χ-homogeneous” when it is important to remem-
ber χ.
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Remark 3.1. For a function f on a vector space V to be “homogeneous” would
be for it to transform by some character χ0 of the multiplicative group: f(ax) =
χ0(a)f(x). Letting f stand for an `-adic complex on V instead of a function, the
obvious analogy would have χ0 as a character sheaf (an `-adic local system on
Gm with some additional structure). The character χ associates to the Kummer
sequence

1 // µN // Gm
x7→xN

// Gm
// 1

such a local system χ0 (see [De, §1.3, 4.7]). Conversely, any character sheaf χ0

of finite order arises from some χ. We call our complexes “semi-homogeneous”
because Laumon in [La3] uses “homogeneous” in the case when χ is trivial.

Remark 3.2. Suppose that χ1 is a character of µN1 , and N1 divides N2; then we
obtain a character χ2(x) := χ1(xN2/N1) of µN2 . There is, moreover, a canonical
equivalence of categories D(X)χ1 → D(X)χ2 .

Remark 3.3. Suppose that X → B is a vector bundle, with Gm acting by homo-
theties (this is the main case of interest). Then X(1)(S) is the groupoid of triples
(A , s, a) with A a line-bundle on S, s an S-point of B, and a : A → O(s∗X) a
map of locally free sheaves (i.e. here O(s∗X) means the sheaf of sections of the
pulled-back vector bundle s∗X over S). Thus there is a universal line-bundle Ã
over X(1). In these terms, X(n) is the µn-gerbe over X(1) parametrising nth roots
of Ã .

3.2. Duality and Functoriality. We will often write as if a χ-homogeneous sheaf
f ∈ D(X)χ is an object on X rather than X(N). For example, if F : X → Y
is a Gm-equivariant map, then it induces also a map F(N) : X(N) → Y(N), and
we write things like F!(f) when we mean F(N),!(f). Bearing this in mind, the
functors F!, F∗, F

∗, F ! take χ-homogeneous complexes to naturally χ-homogeneous
complexes, and if f is χ-homogeneous, then Df is naturally χ∗-homogeneous.

We will use the following lemma repeatedly in calculations:

Lemma 3.1. Suppose given f ∈ D(X)χ, with χ non-trivial. Let Gm act trivially
on X′, and suppose given a Gm-equivariant map F : X′ → X. Then F ∗f = F !f = 0.
Similarly, given equivariant F : X → X′, we have F∗f = F!f = 0.

Proof. It suffices to show that a χ-homogeneous complex on X′ is zero. Since the
actions aX′ and a

(N)
X′ are equal, µN acts trivially on every object of D(X′(N)). But

we assumed that χ was non-trivial. �

3.3. The Fourier Transform. Let aV : Gm × V → V be the action of Gm on a
vector bundle V by homotheties, and define

I = IV := ev−1
V (1) ⊂ V×B V∗.

(See §2.3 for notation.) The action of Gm on V∗ by (g, x) 7→ g−1x makes pI
V∗ and

pI
V into Gm-equivariant maps.

3.3.1. Definition. Suppose that χ is non-trivial. Define a functor FV : D(V)χ →
D(V∗)χ∗ by

FV = (pI
V∗)! ◦ (pI

V)∗ ◦ 〈r − 1〉
where pI

V∗ , p
I
V are the projections of I to V∗ and V. We call FV the χ-homogeneous

Fourier transform.

Remark 3.4. Laumon [La3] considered a similar construction when χ is trivial,
i.e. he considered Gm-equivariant sheaves on V. In that case our definition is not
appropriate (the resulting functor does not agree with Fourier-Deligne, and is not
even an equivalence).
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4. Properties of the Fourier Transform

Theorem 4.1.
(a) Involutivity. There is a canonical isomorphism of functors

FV∗ ◦ FV ∼= id: D(V)χ → D(V)χ.

(b) Duality. There is a canonical isomorphism of functors

FV ◦D ∼= D ◦ FV : D(V)χ → D(V∗)χ∗ .

(c) Exactness. If f ∈ D(V) is perverse, then so is FVf .

Proof. (a) By Lemma 3.1, we have i∗Vf = 0 = i∗V∗FVf in D(B), so it suffices to
compare f ′ := j∗Vf with j∗VFV∗FVf . Let

h : I×V∗ I → V◦ ×B V◦

be the natural map, and p1, p2 the projections of V◦ ×B V◦ to V◦. By base change
and the projection formula we have canonical isomorphisms

j∗VFV∗FVf = (p2 ◦ h)!(p1 ◦ h)∗f ′ 〈2r − 2〉 = p2,!(h!Q̄` ⊗ p∗1f
′) 〈2r − 2〉 .

To calculate the right-hand side, we consider the closed embedding i : V◦×PV V◦ →
V◦×BV◦ and the complementary open embedding j. It suffices to describe canonical
isomorphisms

(1) p2,!i!i
∗(h!Q̄` ⊗ p∗1f

′) = f ′ 〈2− 2r〉

(2) p2,!j!j
∗(h!Q̄` ⊗ p∗1f

′) = 0.

To prove (1), consider the cartesian square

I ı̃ //

∆◦pI
V◦

��

I×V∗ I

h

��

V◦ ×PV V◦ i // V◦ ×B V◦

.

where ∆ and ı̃ are diagonals. Since pI
V◦ makes I into an affine Ar−1-bundle over

V◦, we find by base change

i∗h!Q̄` = ∆!(pI
V◦)!Q̄` = ∆!Q̄` 〈2− 2r〉 .

Therefore the projection formula gives

p2!i!i
∗(h!Q̄` ⊗ p∗1f

′) = p2!(∆!Q̄` ⊗ i∗p∗1f
′) 〈2− 2r〉 = f ′ 〈2− 2r〉

as desired.
For (2), let ̃ be the open complement to ı̃, so that

p2!j!j
∗(h!Q̄` ⊗ p∗1f

′) = p2!

(
h!̃!̃

∗Q̄` ⊗ j!j
∗p∗1f

′) .
Now h◦̃ is an affine Ar−2-bundle over the image of j. Thus h!̃!̃

∗Q̄` = j!Q̄` 〈4− 2r〉
and

p2!

(
h!̃!̃

∗Q̄` ⊗ j!j
∗p∗1f

′) = p2!j!j
∗p∗1f

′ 〈4− 2r〉 .
Finally, j!j∗p∗1f

′ is χ-homogeneous with respect to the action (id×aV) on V◦×B V◦.
We conclude from Lemma 3.1 that p2!j!j

∗p∗1f
′ = 0, as desired.

(b) The isomorphism D ◦FV ◦D = FV arises from the fact that both D ◦FV ◦D
and FV are right-adjoint to FV∗ (cf. the proof of Laumon’s Theorem 4.1 [La3]).

(c) I is an affine Ar−1-bundle over both V◦ and V∗◦. Thus if f is perverse then
(pI

V)∗f 〈r − 1〉 is perverse, and by [BBD] 4.1.2, it follows that FVf lies in positive
perverse degrees. But we also have DFVf = FVDf , so DFVf lies in positive degrees
as well. Therefore FVf is perverse, as desired. �
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Theorem 4.2. Suppose F : W → V is a linear map of vector bundles. There are
canonical isomorphisms of functors

FV ◦ F!
∼= G∗ ◦ FW FV ◦ F∗ ∼= G! ◦ FW FW ◦ F ! ∼= G∗ ◦ FV FW ◦ F ∗ ∼= G! ◦ FV

where G : V∗ → W∗ is the adjoint of F .

Proof. The four isomorphisms are related by applications of D and F, so it suffices
to explain the first one. By base change, FV ◦ F!

∼= A! ◦ B∗ where A,B are the
projections of IV ×V W to V∗ and W. On the other hand G∗ ◦ FW = C! ◦D∗ where
C,D are the projections of IW ×W∗ V∗ to V∗ and W. But the identities

IW ×W∗ V∗ = {(w, λ) ∈ W× V∗ | evV(F (w), λ) = 1}
= {(λ,w) ∈ V∗ ×W | evW(w,G(λ)) = 1} = IW ×W∗ V∗

give a canonical isomorphism A! ◦B∗ ∼= C! ◦D∗. �

4.1. Fourier-Deligne. For the remainder of this section, suppose that the ground
field k has characteristic p > 0; choose a non-trivial additive character ψ : Fp → Q̄×

`

and let Lψ be the corresponding Artin-Schreier sheaf on A1 (see [La2]). Then one
has the Fourier-Deligne transform

FDV : D(V) → D(V∗), FDV f = (pV∗)!(ev∗VLψ ⊗ p∗Vf) 〈r〉 .

Finally, let ρ(N)
V : V → V(N) be the quotient map (for V(N) defined as in §3.1).

Theorem 4.3. There exists a rank-1 local system γχ on Spec(k), depending only
on χ and ψ, and a canonical isomorphism of functors D(V)χ → D(V∗)χ∗ :

FDV ((ρ(N)
V )∗(−)) ∼= γχ ⊗ (ρ(N)

V∗ )∗(FV(−)).

In fact, we can define γχ := RΓc(Gm, χ⊗ Lψ) 〈1〉 (compare to [De, §4]).

Proof. Consider the closed embedding i : I0 := ev−1
V (0) → V ×B V∗. Since the

restriction i∗(ev∗VLψ ⊗ p∗Vf) = i∗p∗Vf is χ-homogeneous on I0 with respect to (aV ×
id), Lemma 3.1 implies that

(pV∗)!i!i∗(ev∗VLψ ⊗ p∗Vf) = 0.

Therefore, if j is the open complement to i,

(3) FDV f = (pV∗)!j!j∗(ev∗VLψ ⊗ p∗Vf) 〈r〉 .
Now, we have a commuting diagram

(4) Gm × I α //

pr

��

V×B V∗ − I0
pV∗

��

I
pI

V∗ // V∗

where α is given by the action of Gm on the first factor V. Moreover, by the
χ-homogeneity of f ,

α∗j∗(ev∗VLψ ⊗ p∗Vf) = (χ⊗ Lψ) � (pI
V)∗f.

Therefore (3) and the commutativity of (4) give

FDV f = pr!(χ⊗ Lψ) � (pI
V∗)!(p

I
V)∗f 〈r〉

and thence the first statement of the theorem.
For the second, choose V := A1 = V∗ over B := Spec(k), and f := (jA1)∗χ 〈1〉.

By direct calculation, FVf = (jA1)∗χ∗ 〈1〉. Thus by the first part, j∗A1FDV = γχ ⊗
χ∗ 〈1〉 is clearly the sum of rank-1 local systems, in possibly various degrees; but
by t-exactness of FDV , it must also be an irreducible perverse sheaf. This can only
happen if γχ has rank one and sits in degree zero. �
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5. The Theta Sheaf

We continue with the notation from §1.3.1. In this section we define the sheaf Θε

on BunMp, for any choice of sign ε = ±1. The format of the definition is illustrated
by the following diagram:

V∗

�� ""FFFFFFFFF V

����
��

��
��

BunMp B

There is a stack V∗, smooth and surjective over BunMp, and V∗ is itself a vector
bundle over a base B. Let ζ be the unique non-trivial character of µ2. The pull-
back of Θε to V∗ is ζ-homogeneous under homotheties, and we describe its Fourier
transform, a ζ-homogeneous sheaf f on the dual bundle V.

5.1. The Stacks B,V,V∗.

5.1.1. Let Bunn be the moduli stack of rank-n vector bundles on X. So Bunn(S)
is the groupoid of vector bundles on XS . Let L̃ be the universal bundle on XBunn

,
and in general we use tildes to mark the universal families over various moduli
stacks.

Let B = Bεn be the open substack of Bunn parameterising the bundles L such
that H0(Sym2(L ∨)) = 0, and such that (−1)h

0(L ) = −ε.

Remark 5.1. The condition that H0(Sym2(L ∨)) = 0 implies that H0(L ∨) = 0
(since otherwise φ 7→ φ⊗φ defines a non-zero functionH0(L ∨) → H0(Sym2(L ∨))).
Thus −ε is just the parity of the Euler characteristic of L .

5.1.2. Let V be the vector bundle over B, such that V(S) is the groupoid of pairs
(L , v) with L ∈ B(S) and v ∈ Homsym(L ∗,L ).

5.1.3. Let V∗ be the dual bundle; V∗(S) is the groupoid of symmetric extensions,
i.e. data (L , γ) with L ∈ B(S), and γ an extension

(5) γ = [ 0 // L ∨ γ1 // V
γ2 // L // 0 ]

with V ∈ BunSp(S) and γ2 = γ∨1 ◦ bV . Thus L ∨ is a Lagrangian subbundle of V .

5.2. The map V∗ → BunMp. There is a canonical lift pV∗
BunMp

: V∗ → BunMp of
the natural map

pV∗
BunSp

: V∗ → BunSp (L , γ) 7→ V .

Namely, pV∗
BunMp

(L , γ) = (V ,D , δ) where D := (det pXS ,∗L ) and δ is the composi-
tion

δ : (det pXS ,∗L )⊗2 → (det pXS ,∗L )⊗ (det pXS ,∗L
∨) → det pXS ,∗V .

We will describe the sheaf Θε in terms of its pullback to V∗. The following Lemma
shows that it is determined by this pullback; it can be proved in the same way as
[Ly, Lemma 6].

Lemma 5.1. The natural map pV∗
BunMp

: V∗◦ → BunSp is smooth and surjective.
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5.3. Definition. Let W be the vector bundle over B that parameterises data
(L , w) with w ∈ Hom(O,L ). Define

σ : W → V

by σ(L , w) = (L , v := w ◦ w∗). Let

(6) σ∗Q̄` 〈dim W〉 = f0 ⊕ f

be the decomposition into irreducible perverse sheaves, in such a way that f0 is
Gm-equivariant, and f is ζ-homogeneous.

Let a : Spec(k[x]/(x2 + 1)) → Spec(k) be the natural map. Since a is a two-fold
cover, a∗Q̄` is Z/2Z-graded; let L be the odd part (thus L is trivial if and only if
−1 is a square in k). Finally, let Lχ be the following local system on V∗: on the
component of V∗ with h0(L ) = m, Lχ equals the pullback of L⊗b(m−1)/2c from
Spec(k). Here b(m− 1)/2c denotes the integral part of (m− 1)/2.

Definition-Theorem 5.2. There is an irreducible perverse sheaf Θε on BunMp

and an isomorphism (pV∗
Mp)∗Θε 〈dim V∗ − dim BunMp〉 ∼= Lχ ⊗ FVf .

Theorem 5.2 was proved in [Ly] in positive characteristic (using FDV instead of
FV), by giving an alternative construction of Θε, which we explain in this generalized
setting in §6.

Remark 5.2. The appearance of the twist Lχ in Theorem 5.2 corresponds to the
choice, in the original [Ly, Proposition 7], of a square-root of −1 in k. 1

6. Direct description of Θε.

Following [Ly], stratify

BunSp =
∐
m≥0

mBunSp

so that mBunSp parameterises symplectic bundles V with h0(V ) = m. The corre-
sponding strata mBunMp are trivial µ2-gerbes over each mBunSp. Let cm be the
2-fold cover cm : mBunSp → mBunMp. To be precise, let cm(V ) = (V ,D , δ) where
D := detR0pXS ,∗ and δ : D ⊗D → detRpXS ,∗V is the isomorphism

D ⊗D → D ⊗ (detR1pXS ,∗V
∨)∗ → D ⊗ (detR1pXS ,∗V )∗ = detRpXS ,∗V

induced by Serre duality and the symplectic form on V .
Then cm,∗Q̄` is naturally Z/2Z-graded; let Autm be the odd part. Finally, let

Autg and Auts be the Goresky-MacPherson extensions of Aut0 〈dim BunMp〉 and
Aut1 〈dim BunMp − 1〉 respectively to BunMp.

Proposition 6.1. If one defines

Θ+ = Autg Θ− = Auts

then there exist isomorphisms as in Theorem 5.2, canonical up to sign.

The proof of this proposition is essentially the same as that of Lysenko’s Propo-
sition 7, so we won’t give all the details. The main step is to calculate the stalks of
the ‘finite dimensional model’ of FDV f (Lysenko’s Propositions 1 and 2). We now
carry out the analogous calculation for FVf .

1Having said that, it still puzzles me a bit. Should there be another sign that cancels it
somehow?



CHARACTERISTIC CYCLES OF THETA SHEAVES 9

6.1. Finite Dimensional Model. Let W be a vector space of dimension r over
k, i.e. a vector bundle over B := Spec(k), and let V = Sym2W . Define σ : W → V
by w 7→ w ⊗ w.

We can decompose σ!Q̄` 〈r〉 into irreducible perverse sheaves

σ!Q̄` 〈r〉 = f0 ⊕ f

where f0 is constant on the image of σ, and f is ζ-homogeneous(recall that ζ is the
non-trivial character of µ2).

Alternatively, allowing Z/2Z to act on W by the sign representation, and on V
trivially, σ!Q̄` 〈r〉 is naturally Z/2Z-graded, and f is the odd part.

Definition 6.1. Set Sr := FV f . It is an irreducible perverse sheaf on V ∗.

6.2. Description of Stalks. V ∗ is stratified by substacks im : Qm ↪→ V ∗, 0 ≤
m ≤ r, where Qm consists of the symmetric forms on W with kernel of dimension
m. Let cm : Q̃m → Qm be the 2-fold cover whose fiber over q consists of the
square-roots of the discriminant det q|W/ ker q.

Let Autm be the odd-Z/2Z-graded part (cm,∗Q̄`)− of cm,∗Q̄`; it is a GL(W )-
equivariant local system on Qm.

Whenever r −m is odd, set

Cm := Spec(k[x]/(x2 − (−1)(r−m−1)/2)).

Thus Cm is a Z/2Z-torsor over Spec(k); let `m ∈ D(Spec(k)) be the corresponding
sheaf, i.e. the odd-graded part of the push-forward of Q̄` from Cm to Spec(k).

Here is the analogue of [Ly, Propositions 1]:

Proposition 6.2. There are isomorphisms i∗mSr ∼= `m⊗Autm 〈dimV −m〉 when-
ever r−m is odd, and i∗mSr = 0 whenever r−m > 0 is even. These isomorphisms
are canonical up to a sign. In particular, Sr is the Goresky-MacPherson extension
of `0 ⊗Aut0 when r is odd, and of `1 ⊗Aut1 when r is even.

Proof. Since Sr is a geometrically non-constant, GL(W )-equivariant complex, and
GL(W ) acts transitively on Qm, it suffices to calculate i∗Sr for any single point
i : Spec(k) → Qm. Let q be the corresponding quadratic form on W . Let N be the
closed subscheme of W given by q(w) = 1. The action of Z/2Z on W preserves N ,
and i∗Sr is the odd part RΓc(N, Q̄` 〈r + dimV − 1〉)−.

Consider a q-orthogonal decomposition W = K ⊕ H ⊕ P , where K = ker q
and q|H is hyperbolic; that is, there is a decomposition H = L ⊕ L∗ for which
q(a⊕ a′) = a′(a).

Lemma 6.3. Let N ′ := N ∩ P . There is a canonical isomorphism between i∗Sr
and the odd part

RΓc(N ′, Q̄` 〈r + dimV − 1− 2 dimK − dimH〉)−.

Proof. Let U ⊂ W be the complement of U ′ := K ⊕ L ⊕ P in W . Then N ∩ U
is an Ah−1+1-bundle over (L−B)⊕ P , where h = dimL, m = dimK. Thus
RΓc(N∩U, Q̄`) = RΓc((L−B)⊕P, Q̄` 〈2− 2h− 2m〉). This last complex is acyclic,
because of the distinguished triangle

RΓc((L−B)⊕ P, Q̄`) −→ RΓc(L⊕ P, Q̄`)
∼=−→ RΓc(P, Q̄`).

On the other hand, N ∩ U ′ is a Am+h-bundle over N ′. Therefore we have

i∗Sr 〈1− r − dimV 〉 = RΓc(N ∩ U ′, Q̄`)− = RΓc(N ′, Q̄` 〈−2m− 2h〉)−
as stated in the Lemma. (We remark that this isomorphism is independent of the
decomposition H = L⊕ L∗.) �
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Now, to prove the Theorem, we specialize q. If r−m is even, we can assume that
q is hyperbolic, i.e. P = 0, whence N ′ = ∅, so the lemma gives i∗Sr = 0 as desired.
If r − m is odd, we can assume that P is one-dimensional, and even that q|P is
isometric to the quadratic form x 7→ x2. Thus N ′ = Spec(k) t Spec(k). On the
other hand, since (−1)(r−m−1)/2 det q is a square in k, there is an isomorphism of
Z/2Z-torsors i∗Q̃m ∼= Cm. The isomorphism demanded by the theorem is induced
by a choice of isomorphism N ′ ∼= Cm ⊗Z/2Z i

∗Q̃m. �

7. Characteristic Cycles

In this section the ground field k is assumed to have characteristic zero. The
material in §7.1 goes back to MacPherson [Ma], and was developed in the sources
cited below.

7.1. Characteristic Cycles and Characteristic Functions. Given a stack S,
let C(S) be the abelian group of Z-valued locally constructible functions on S (that
is, they are certain functions on the set of geometric points of S; see [Jo]). To
each locally closed, reduced substack T of S, we associate its characteristic function
1T ∈ C(S); these locally generate C(S).

For any map F : S → S′ there is a functorial pull-back F ∗ = F ! : C(S′) → C(S)
defined in an obvious way: F ∗1T = 1F−1(T). If F is representable of finite type (but
see [Jo] for generalisations), there are functorial push-forwards F! = F∗ : C(S) →
C(S′), characterised by the following property (see [G-S], Proposition 1.1):

(F∗1T)(p) = χ(T×S′ Spec(k̄))

for every geometric point p : Spec(k̄) → S′. Here χ is the (`-adic, compact-support)
Euler characteristic.

There is a group homomorphism CF: K0(D(S)) → C(S) that assigns to a con-
structible sheaf f the function giving the rank of f at each point, and CF com-
mutes with F∗, F!, F

!, F ∗ in the obvious sense. We also have CF(Df) = CF(f) and
CF(f) 〈1〉 := CF(f 〈1〉) = −CF(f).

7.1.1. Let CC(S) be the abelian group of conic Lagrangian cycles in the cotangent
stack T ∗S (i.e. locally finite formal sums of conic Lagrangian substacks). There
is an isomorphism cyc: C(S) → CC(S), see [Ke], and therefore associated to each
complex f a cycle CC(f) := cyc(C(f)). The properties and functoriality of the
‘characteristic cycle’ map CC have been studied in detail (see e.g. [Gi1]), but we
only need the following simple cases.

(a) If f is a local system of rank n on S, then CC(f) = n[S] (that is, the class
of the zero section S ⊂ T ∗S, with multiplicity n).

Given F : X → Y with X and Y smooth, consider the natural diagram

T ∗X X×Y T
∗Yaoo b // T ∗Y.

(b) Suppose F is smooth of relative dimension d. Then

CC(F ∗f 〈d〉) = a∗b
∗ CC(f).

(c) Suppose F = F2◦F1, where F1 is an étale epimorphism, and F2 is the closed
embedding of a smooth substack. Then

CC(F∗f) = b∗a
∗ CC(f).

7.2. The Effect of Fourier. Suppose given f ∈ D(V)χ, with χ a non-trivial
character. We wish to describe CC(FVf) in terms of CC(f). We deduce our result
(Theorem 7.2) from analogous work by Brylinski [Br] and Laumon [La1] on the
Radon transform.
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7.2.1. The Radon Transform. Let us first recall that theory. Let I0 ⊂ PV∗ ×B PV
be the incidence variety (i.e. the image of ev−1

V (0)), and pI0
V∗ , p

I0
V the projections to

V∗ and V. The Radon transform R : D(PV) → D(PV∗) is defined by

(7) R = (pI0
V∗)! ◦ (pI0

V )∗ ◦ 〈r − 2〉 .

We now describe how characteristic cycles transform under Radon. First, identify
T ∗(PV × PV∗) ∼= T ∗PV × T ∗PV∗; here we take the standard isomorphism twisted
by the homothety −1 on the second factor. The conormal bundle T ∗I0(PV × PV∗)
then gives a correspondence Υ between T ∗PV and T ∗PV∗.

Define

UV := (T ∗PV− PV×B T
∗B) UV∗ := (T ∗PV∗ − PV∗ ×B T

∗B).

The following theorem is stated in [La1, Appendix] and essentially proved by Brylin-
ski [Br].

Theorem 7.1.
(a) The correspondence Υ restricts to an isomorphism

Υ: UV → UV∗ .

(b) Suppose f ∈ D(PV)) is such that CC(f)∩(PV×BT
∗B) ⊂ PV. Then similarly

CC(Rf) ∩ (PV∗ ×B T
∗B) ⊂ PV∗ and

CC(R(f))|UV∗ = Υ∗(CC(f)|UV).

7.2.2. Now suppose f is a χ-homogeneous sheaf. The characteristic function CF(f)
is Gm-invariant, and i∗Vf = 0, so there exists a constructible function cf(f) on PV
such that

CF(f) = (jV)!(ρ◦V)∗ cf(f).

Similarly put cc(f) = cyc(cf(f)). Thus cc(f) and CC(f)|T∗V∗◦ are related by
7.1.1(b) applied to F := ρ◦V.

Theorem 7.2. Suppose f ∈ D(V)χ is a χ-homogeneous sheaf such that cc(f) ∩
(PV ×B T

∗B) ⊂ PV, and such that (π̄◦V)! cf(f) is locally constant. Then cc(FVf) ∩
(PV∗ ×B T

∗B) ⊂ PV∗ and

cc(FVf)|UV∗ = Υ∗(cc(f)|UV).

Proof. First we relate the Fourier and Radon transforms.

Lemma 7.3. For any f ∈ D(V)χ we have

cf(FVf) = R(cf(f)) + (−1)r−1(π̄◦V∗)
∗(π̄◦V)! cf(f).

Proof. The three terms in this equation are (up to sign) the transforms of cf(f)
under the correspondences between PV and PV∗ given by I, I0, and PV∗ ×B PV,
respectively. The equation follows from the partition PV∗ ×B PV = I t I0. (The
signs are explained by the fact that FV includes a shift 〈r − 1〉 while R includes a
shift 〈r − 2〉.) �

Now, the condition on cf(f), combined with Lemma 7.3, shows that cf(FVf) =
R(cf(f)) up to a locally constant function. So cc(FVf) = cyc(R cf(f)) up to a
multiple of the zero section. Thus Theorem 7.2 follows from Theorem 7.1(b). �

8. The Cotangent Stacks of V and V∗

We continue to consider the stacks B, W, V, and V∗ defined in §§5.1 and 5.3,
and the notation of §2.2.
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8.1. The object of this section is to prove the following results.

Theorem 8.1. The cotangent stacks T ∗V and T ∗V∗ are both canonically isomor-
phic to the stack of commuting diagrams

(8) γ = [ 0 // L ∨ //

v

��

V

v′
||xx

xx
xx

xx
x

// L // 0 ]

L ⊗ Ω

with (L , v) ∈ V and (L , γ) ∈ V∗.

Theorem 8.2. The cotangent stack T ∗W parameterises commutative diagrams

(9) β = [ 0 // Ω //

w

��

M //

w′
{{ww

ww
ww

ww
w

L // 0 ]

L ⊗ Ω

with (L , w) ∈ W and β ∈ Ext(L ,Ω).

Let Υ′ denote the isomorphism Υ′ : T ∗V → T ∗V∗ induced by Theorem 8.1.

Proposition 8.3. The isomorphism Υ′ induces the isomorphism Υ in Theorem 7.1.
That is, Υ′ maps V◦ ×PV UV ⊂ T ∗V isomorphically onto V∗◦ ×PV∗ UV∗ ⊂ T ∗V∗,
and the following diagram commutes:

V◦ ×PV UV

��

Υ′
// V∗◦ ×PV∗ UV∗

��

UV
Υ // UV∗

Remark 8.1. For any vector bundle V → B there is a canonical isomorphism
Υ′ : T ∗V → T ∗V∗. Namely, the graph of Υ′ inside T ∗V ×B T

∗V∗ ∼= T ∗(V ×B V∗)
(see 7.2.1) equals the graph of the differential of the function evV : V×B V∗ → A1.
Moreover, Proposition 8.3 always holds for this canonical Υ′.

8.2. Proof of Theorem 8.1. Define a complex on XV:

CV := [ Homsym(L̃ , L̃ ∨)
ṽ◦ // Hom(L̃ , L̃ ⊗ Ω) ]

in degrees [0, 1]. (Recall from §5.1.1 that (L̃ , ṽ) denotes the universal family over
XV := X × V, so ṽ : L̃ ∗ → L̃ .) The statement to be proved about T ∗V amounts
to the identity

(10) T ∗V = Vect(τ [0,1] ◦RpXV,∗(CV))∗

of vector bundles over V (see [LMB], example 14.4.10 and Theorem 17.16, in which
our notation Vect stands for their notation V).

Now recall that the tangent stack TB classifies extensions

α = [ 0 // L // W // L // 0 ]

over L an object of B (see §6.5 in [FG]). In the same way, TV classifies diagrams

(11) α∗ = [ 0 // L ∗ //

v

��

W ∗ //

v0

��

L ∗ //

v

��

0 ]

α = [ 0 // L // W // L // 0 ]
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with v∗0 = v0. (The canonical projection to V takes value (L , v), and that to TB
takes value α.) This description (11) of TV shows that as a vector bundle over V,

TV = Vect(τ [0,1] ◦RpXV,∗(C
∨
V [−1]))∗

where

C ∨
V [−1] := [ Hom(L̃ , L̃ )

◦ṽ // Homsym(L̃ ∗, L̃ ) ]

in degrees [0, 1]. Therefore (10) follows by duality.
Similarly, we wish to show that

(12) T ∗V∗ = Vect(R[0,1]pXV∗ ,∗(CV∗))∗

where CV∗ is the complex of coherent sheaves on V∗

CV∗ := [ Hom(Ṽ , L̃ ⊗ Ω)
◦γ̃1 // Homsk(L̃ ∨, L̃ ⊗ Ω) ]

in degrees [1, 2]. Dually, we wish to show

(13) TV∗ = Vect(R[0,1]pXT B,∗C
∨
V∗ [−1])∗

where, in degrees [−1, 0],

(14) C ∨
V∗ [−1] = [ Homsk(L̃ , L̃ ∨) // Hom(L̃ , Ṽ ) ].

Now, TV∗ classifies diagrams

(15) 0

��

0

��

0

��

α∨ = [ 0 // L ∨ //

��

W ∨ //

��

L ∨ //

��

0 ]

0 // V //

��

V ′ //

��

V //

��

0

α = [ 0 // L //

��

W //

��

L //

��

0 ]

0 0 0

where the columns are symmetric extensions γ, γ̃, γ. We find that as vector bundles
over V∗, we have TV∗ = Vect(R[0,1]pXT B,∗K )∗ where

K := [ Homsym(Ṽ , Ṽ ) // Homsym(L̃ ∨, L̃ ) ]

in degrees [0, 1]. On the other hand, there is a quasi-isomorphism C ∨
V∗ [−1] → K ,

Homsk(L̃ , L̃ ∨)

��

// Hom(L̃ , Ṽ )

φ

��

// 0

��

0 // Homsym(Ṽ , Ṽ ) // Homsym(L̃ ∨, L̃ )

given by φ(a) = a ◦ γ̃2 + γ̃1 ◦ a∨. Hence (13).
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8.3. Proof of Theorem 8.2. The first part of Theorem (8.2) states that

(16) T ∗W = Vect(R[0,1]pXW,∗(CW ))∗

where
CW := [ Hom(L̃ ,Ω)

w◦ // Hom(L̃ , L̃ ⊗ Ω) ]

in degrees [0, 1]. Now, TW classifies maps of short exact sequences

0 // O //

w

��

O ⊕ O //

��

O //

w

��

0

0 // L // W // L // 0

Therefore, as vector bundles over W, we have TW = Vect(R[0,1]pXW,∗C
∨
W[−1])∗,

with
C ∨

W[−1] := [ Hom(L̃ , L̃ )
◦w // Hom(Õ, L̃ ) ]

in degrees [0, 1]. Dualize to obtain (16).
Finally, the last part of Theorem 8.2 is the observation that T ∗(L ,w◦w∗)σ is in-

duced by the map of complexes

σ∗CV = [ Homsym(L̃ , L̃ ∨)

w∨◦
��

w◦w∨◦// Hom(L̃ , L̃ ⊗ Ω)

id

��

]

CW = [ Hom(L̃ ,Ω)
w◦ // Hom(L̃ , L̃ ⊗ Ω) ].

8.4. Proof of Proposition 8.3. To show that the diagram commutes, it suffices
to show that the graph Γ(Υ) ⊂ T ∗V×T ∗V∗ ∼= T ∗(V×V∗) of Υ lies in the conormal
bundle T ∗I0(V×B V∗), where I0 := ev−1

V (0) as in §7.2.1.

8.4.1. To understand the conormal stack to I0, we first describe the pairing

TV×TB TV∗ → TA1 = A1 × A1 → A1

(projection to the fibre of TA1 over A1). From (11) we see that as vector bundles
over TB

TV = Vect(τ [0,1] ◦RpXT B,∗(CTB))∗

where CTB is the complex

CTB := [ Homsk(L̃ ∗, L̃ )
◦α̃1 // Hom(L̃ ∗, W̃ )

α̃2◦ // Homsk(L̃ ∗, L̃ ) ]

in degrees [0, 2]. In fact, CTB is exact in degrees 0 and 2; let C ′
TB be the sheaf

H1(CTB) on XTB. Thus TV parameterizes data (L , α, v′′) with (L , α) ∈ TB and

(17) v′′ ∈ H0 (ker[Hom(L ∗,W ) → Homsk(L ∗,L )]/ Im Homsk(L ∗,L )) .

Similarly,
TV∗ = Vect(τ [0,1] ◦RpXT B,∗(C

∨
TB[−1]))∗

where C ∨
TB[−1] is the complex

Homsk(L̃ , L̃ ∨)
◦α̃2 // Hom(W̃ , L̃ ∨)

α̃1◦ // Homsk(L̃ , L̃ ∨)

in degrees [−1, 1]. The pairing TV×TBTV∗ → A1 is induced by the duality between
CTB and C ∨

TB[−1].
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8.4.2. To prove Proposition 8.3, consider the (non-commuting) diagram

X := (TV∗ ×TB TV)×(V∗×BV) (T ∗V∗ ×B T
∗V)

tthhhhhhhhhhhhhhhhhh

�� **VVVVVVVVVVVVVVVVVV

TV∗ ×V∗ T
∗V∗

++VVVVVVVVVVVVVVVVVVVVVV TV∗ ×TB TV

��

TV×TV T
∗V

sshhhhhhhhhhhhhhhhhhhhhh

A1

Let f1, f2, f3 be the three compositions. It is clear that

Γ(Υ) ⊂ I0 ×V∗×BV (T ∗V∗ ×B T
∗V).

We want to show that f1 = −f3 when restricted to T I0 ×I0 Γ(Υ) ⊂ X. Let E be
the stack of diagrams

LW α2
//

W ′

γ′2

��
66

66
66 α′2

))TTTTTTTTTTTTTTTTT

L ∨

γ1

��

γ′1

��
66

66
66

66
66

66
66

V α′1
))TTTTTTT

γ2

��

L α1
//

(L , α, α′, γ, γ′) :

where each line is a short exact sequence, and γ is a symmetric extension; thus we
have natural projections to (L , α) ∈ TB and (L , γ) ∈ V∗.

The projection E → V∗ factors through an epimorphism E → TV∗. Indeed, as a
stack over V∗ we have

E = Vect(τ [0,1] ◦RpXV∗ ,∗Hom(L̃ , Ṽ ))∗

and the map E → TV∗ is induced by the inclusion Hom(L̃ , Ṽ ) → C ∨
V∗ [−1] (see

(13), (14)).
Let X̃ := E×TV∗ (T I0×I0 Γ(Υ)), and let f : X̃ → X be the natural map. We wish

to show

(18) f1 ◦ f = −f3 ◦ f.

Suppose, then, given data (L , α, α′, γ, γ′, v, v′′, v′) defining a point of X̃. We will
write

(−,−) 7→ Tr(− ∪−)

for various pairings given by Serre duality.
First, f1 ◦ f factors through E×V∗ T

∗V∗ → TV∗ ×V∗ T
∗V∗ → A1, which is

(19) (L , α, α′, γ, γ′; v′) 7→ Tr(v′ ∪ α′).

Similarly, f3 ◦ f factors through E×TB×BV∗ (TV×V T
∗V) −→ TV×V T

∗V −→ A1,

(20) (L , α, α′, γ, γ′; v0, v′) 7→ Tr(γ′ ∪ v′′)− Tr(v′ ∪ α′).

Finally, f2 ◦ f factors through E×TB TV → TV∗ ×TB TV → A1, which is

(21) (L , α, α′, γ, γ′; v′′) 7→ Tr(γ′ ∪ v′′).

Since, however, f2 ◦ f = 0, we deduce from (19) and (20) that f1 ◦ f = −f3 ◦ f , as
desired.
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9. Proof of Theorem 1.1

9.1. We calculate CC(Θε), following the definition in §5.3 step-by-step.

9.1.1. By 7.1.1(a), the characteristic cycle of the local system Q̄` 〈dim W〉 on W is
just the zero section: CC(Q̄` 〈dim W〉) = [W].

9.1.2. Now we calculate CC(σ∗Q̄` 〈dim W〉)|T∗V◦ . The restricted map σ◦ : W◦ →
V◦ satisfies the premises of 7.1.1(c). Therefore, if we define Y and r by the cartesian
square

Y r //

��

W◦ ×V◦ T
∗V◦

b

��

W◦ // T ∗V◦

we have CC(σ∗Q̄` 〈dim W〉)|T∗V◦ = CC(σ◦∗Q̄` 〈dim W〉) = 2[Im(b ◦ r)]. The mul-
tiplicity 2 arises because σ◦ has degree 2 over its image, and corresponds to the
decomposition (6). Taking f as in (6), we therefore have

(22) CC(f)|T∗V◦ = [Im(b ◦ r)].

9.1.3. Before going further, we describe Y explicitly. First, W◦ ×V◦ T
∗V◦ param-

eterises diagrams

(L , γ, w, v′) : L ∨ γ1 //

w∨

��

V

v′

��


























γ2 // L

Ω

w

��

L ⊗ Ω

over (L , γ, v′) ∈ T ∗V◦ and (L , w) ∈ W◦. The projection to T ∗W◦ is given by

b(L , γ, w, v′) = (L , w, β, w′)

with β := (w∨)∗(γ) and w′ := w⊕v′ : Ω⊕L∨V → L⊗Ω. Therefore Y parameterises
diagrams

(L , γ, w,w0) : L ∨ γ1 //

w∨

��

V

w0
}}{{

{{
{{

{{

γ2 // L

Ω

over (L , w) ∈ W◦ and (L , γ, w, v′ := w ◦ w0) ∈ W◦ ×V◦ T
∗V◦.

9.1.4. Next we apply Theorem 7.2 to describe CC(Ff)|T∗V∗◦ . According to that
corollary, we should check first that (π̄◦V)! cf(f) is locally constant on B; but it equals
(π̄◦W)!1 (pushforward of the constant function), and therefore has locally constant
value h0(L ) at L .

Second, we must show that CC(f)|T∗V◦ ∩ (V◦ ×B T
∗B) is contained in the zero

section V◦. Now, V◦ ×B T
∗B parameterises diagrams

(L , v, γ, v′) : L ∨

v

��

id // L ∨ ⊕L

v′=(v,φ)xxrrrrrrrrrr
id // L

L ⊗ Ω
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over (L , φ) ∈ T ∗B and (L , v) ∈ V◦; we are required to show that if such (L , v, γ, v′)
lies in Im(b ◦ r), then φ = 0. But (V◦ ×B T

∗B)×T∗V Y parameterises diagrams

(L , γ, w,w′) : L ∨ id //

w∨

��

L ∨ ⊕L
id //

w′=(w∨,φ0)
yytttttttttt

L

Ω

over (L , v := w ◦ w∨, γ, v′ := w ◦ w′) ∈ Y. Since H0(L ∨) = 0 (see Remark 5.1),
we have φ0 = 0, hence φ = w ◦ φ0 = 0, as desired.

9.1.5. Let Y′ ⊂ Y be the open substack consisting of those (L , γ, w,w0) with
(L , γ) ∈ V∗◦. From Theorem 7.2 we conclude that CC(FVf)|T∗V∗◦ ∩ (V∗◦×B T

∗B)
is contained in the zero section V∗◦, and moreover from (22) that

CC(FVf)|T∗V∗◦−V∗◦ = [Im(Υ ◦ b ◦ r|Y′)].

Here
F := Υ ◦ b ◦ r : (L , γ, w,w0) 7→ (L , γ, v′ := w ◦ w0) ∈ T ∗V∗◦.

9.1.6. Finally, let M, as in the statement of the theorem, be the stack over BunMp

whose fiber over (V , d) is Hom(V ,Ω) − {0}. We have Y′ = V∗◦ ×BunMp M =
(V∗◦ ×BunMp T

∗BunMp)×T∗BunMp M, in other words a Cartesian square

Y′
p1 //

p2

��

V∗◦ ×BunMp T
∗BunMp

b

��

a // T ∗V∗◦

M s // T ∗BunMp

with s as in Theorem 1.1 and a, b as in 7.1.1(b). By definition of Θε,

CC((pV∗◦
BunMp

)∗Θε 〈dim V∗ − dim BunMp〉)|TV∗◦−V∗◦ = CC(FVf)|TV∗◦−V∗◦

= [Im(F |Y′)] = [Im(a ◦ p1)]

On the other hand, it also equals a∗b∗ CC(Θε). The map Υ◦b◦r : Y′ → T ∗V∗ is a◦p1.
The only way this can happen is if CC(Θε)|T∗BunMp−BunMp = [Im b ◦ p1] = [Im s].
This determines CC(Θε) as in the desired statement, up to the multiplicity of the
zero section; but that multiplicity is clear from Proposition 6.1. �

9.2. Remark. Instead of appealing to Proposition 6.1, one can calculate the mul-
tiplicity of the zero section (and indeed the whole characteristic function of Θε)
directly, using Lemma 7.3. In any case one has the following result.

Proposition 9.1. As a constructible function of (V , δ) ∈ BunMp,

(23) CF(Θε[dim BunMp])(V , δ) = 1
2 ((−1)h

0(V ) + ε).

In particular, the zero section [BunMp] occurs with multiplicity (1+ε)/2 in CC(Θε).

The calculation comes down to finding the Euler characteristic of a quadratic
cone, for which one has the following elementary result.

Lemma 9.2. Let s : V → V ∗ be a symmetric map of vector spaces, and Λ the
quadratic cone Λ := {v | 〈s(v), v〉 = 0}. Then the Euler characteristic

χ(PΛ) = dim ker s+ 2bdimV−dim ker s
2 c.
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