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Structure Constants of a Global Hecke Algebra
Part I: Project Summary

0.1. This project concerns the theory of automorphic forms over function fields. The
basic objects are a smooth algebraic curve X over a finite field Fq, and the set Bunn

of isomorphism classes of rank-n vector bundles on X. Our ‘automorphic forms’ are
just finitely supported functions Bunn → Q. The space C0 of all such functions carries
an action of the commutative ‘global Hecke algebra’ H ⊂ End (C0), which is generated
by certain correspondences, called ‘Hecke operators.’ The structure of H is of primary
importance. For example, according to the Langlands conjectures (in this situation a
theorem of Lafforgue), the spectrum of H⊗Q Q̄` is the set of n-dimensional unramified
`-adic representations of the Weil group (essentially the Galois group) of X.

I propose to study the structure constants of H. In §1 I explain how one can make
sense of these structure constants as a function c on Bunn×Bunn×Bunn. This idea was
suggested to me by Vladimir Drinfeld, and a version of it was independently discovered
by Maxim Kontsevich, who describes a closely related project in [Ko].

0.2. One of the basic ideas in the general theory is to replace functions on the set Bunn

by complexes of `-adic sheaves on the underlying moduli stack Bunn. Grothendieck’s
‘sheaf-function correspondence’ (see [Ga]) allows one to recover a function from such
a complex. One can thus apply the techniques of algebraic geometry to the study of
automorphic forms.

Question 1. Is c geometric, that is, how can one represent it by an `-adic complex c
on (Bunn)3?

One motivation is that the complex c might enable us to define a symmetric monoidal
structure on the derived category of `-adic sheaves on Bunn. The result would be a
‘categorified’ version of H.

Even if it is hard to represent c by a complex, it should be relatively easy to find its
class in the Grothendieck group of sheaves. If X were a curve in characteristic zero,
to such a class would be associated a ‘characteristic cycle’ in (T ∗Bunn)3, and under-
standing this cycle might help to construct and understand the underlying complex.
In §2.1 I will sketch a way to make sense of the characteristic cycle of c for a curve in
characteristic zero, without using sheaves. So let us pose

Question 2. What is the characteristic cycle corresponding to c?

In §2.2 I present a conjectural answer in terms of the Hitchin fibration.

0.3. Now suppose n = 2. As I explain in §3, c is conjecturally related to a version of
Jacobi’s theta function. In the classical picture, the theta function may be seen as a
function on the metaplectic group Mp2n(R), the 2-fold cover of Sp2n(R). In the present
situation, θ is a function on the set BunMp8

of ‘metaplectic bundles’ on X. One can
pull back θ to a function on (Bun2)3, and I denote the result by θ+.

Conjecture 1 (Drinfeld). Up to normalisation, c = θ+.

Here are two reasons why the conjecture is important. First, it answers Question
1 in the case n = 2, and may help with Question 2: indeed, as Sergey Lysenko [Ly]
has explained, θ corresponds to a perverse sheaf θ on the moduli stack BunMp8

, so c

should just be the pullback of θ to (Bun2)
3. Second, as I explain in §1, there is some

ambiguity in the definition of the function c; when n = 2, the theta function provides a
canonical normalisation, and I hope that a proper understanding of Conjecture 1 will
allow me to define c on the nose for all n.

0.4. So far we have considered unramified automorphic forms. A simple generalisation
is to allow ‘tame ramification’ at several points x1, x2, . . . , xm ∈ X(Fq). In §4 I describe
some previous calculations giving an explicit formula for c in case X = P1, n = 2, m = 4.
A similar calculation is presented by Kontsevich in [Ko]. It may be possible to find the
characteristic cycle directly in this case, using my calculations and the ideas of [FK].
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Structure Constants of a Global Hecke Algebra
Part II: Project Description

1. Definition of the Structure Constants Function.

1.1. The structure constants of an algebra depend on the choice of a basis. As I
will explain in §1.2, C0 contains a canonical element δ that freely generates a large
submodule H(δ) ⊂ C0. If we had H(δ) = C0, we could identify H with C0, and since
C0 has a basis of delta functions, we would obtain the structure constants of H as a
function c on Bunn × Bunn × Bunn. As H(δ) is slightly smaller than C0, c is only
defined up to some ‘degenerate’ functions. For example, in case n = 2, a function f on
Bun2 is ‘degenerate’ if f(L) depends only on the line bundle ∧2L.

1.2. To be more precise, let C be the space of functions Bunn → Q, so again C0 ⊂ C is
the space of finitely supported ones. Operators in the Hecke algebra H are self-adjoint
with respect to the inner product on C0 defined by

(1) 〈f, g〉 :=
∑

L∈Bunn

1
|AutL|

f(L)g(L∗).

Moreover, this formula identifies C with the dual C∗
0 .

Here is the definition of δ when n = 2. The definition for n > 2 is similar, but
requires more notation, so I omit it.

Definition. Define the first Fourier coefficient1 function δ ∈ C0 by

〈f, δ〉 = f(OX ⊕ Ω1
X)− f(N0) for any f ∈ C.

Here N0 is the unique non-trivial extension of OX by Ω1
X .

Here is the desired property of δ.

Lemma. The map H → C0 given by A 7→ A(δ) is injective. As for the image H(δ), its
annihilator Cd := (H(δ))⊥ ⊂ C coincides with the space of degenerate functions.

Thus H(δ) becomes an algebra isomorphic to H, and it acts on C0; let us write ? for
the action. The functional

γ : u⊗ v ⊗ w 7→ 〈u ? v, w〉
makes sense for u ⊗ v ⊗ w ∈ H(δ) ⊗ C0 ⊗ C0. In fact, because operators in H are
commutative and self-adjoint, one can naturally extend γ’s domain to

γ : H(δ)⊗ C0 ⊗ C0 + C0 ⊗ H(δ)⊗ C0 + C0 ⊗ C0 ⊗ H(δ) → Q.

Definition. The pairing (1) identifies (C0⊗C0⊗C0)∗ with the completed tensor prod-
uct C⊗̂C⊗̂C, i.e. the space of all functions (Bunn)3 → Q. The structure constants
function c is the element of (C⊗̂C⊗̂C)/(Cd⊗̂Cd⊗̂Cd) representing γ.

2. Sheaves and Characteristic Cycles

2.1. Construction of the Characteristic Cycle. Given a complex S of `-adic
sheaves on (Bunn)3, or even just an element of the Grothendieck group of `-adic sheaves,
one obtains two objects: the ‘stalk-wise Euler characteristic’ χS , a constructible func-
tion on (Bunn)3; and the ‘characteristic cycle’ CS , a Lagrangian cycle in (T ∗Bunn)3.
Moreover, there is a map from constructible functions to Lagrangian cycles so that
χS 7→ CS (see [Go]).

To define the characteristic cycle for our function c, it suffices to define the corre-
sponding ‘Euler characteristic’ function χc on (Bunn)3. We first define χc over finite
fields, and then extend it to fields of characteristic zero (or indeed to any field at all).

To avoid talking about degenerate functions, let us fix from the beginning some ad
hoc normalisation of c.2

1The name comes from the equivalent formula 〈f, δ〉 =
P

α∈Ext1(OX ,Ω1
X

) f([α])ψ(α), where ψ is

any non-trivial additive character of Ext1(OX ,Ω
1
X) = Fq , and for any extension α, [α] denotes the

underlying vector bundle.
2E.g. we can require c(OX ⊕A,OX ⊕ B,OX ⊕ C) = 0 for all line bundles A,B, C.
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2.1.1. Definition of χc over finite fields. Let X again be defined over Fq, define X [n] =
X ⊗Fq

Fqn , and for L ∈ Bunn let L[m] be its pullback to X [m]. We then form the zeta
function

ζ(L,M,N ;T ) := exp
(∑

c(L[m],M[m],N [m]) · Tm/m
)

where L,M,N ∈ Bunn and T is a formal parameter. We expect that ζ is a rational
function of T , in which case the following definition makes sense.

Definition. Let χc(L,M,N ) be the order of the zero of ζ(L,M,N ;T ) at T = ∞.

2.1.2. Definition of χc for any field. Let X now be a curve over any field k (e.g.
of characteristic zero), and fix L,M,N ∈ Bunn. Then in fact all of these objects are
defined over a subring R ⊂ k finitely generated over Z. For each closed point v of Spec R,
one has a curve Xv over a finite field, and hence a number χc(L|Xv

,M|Xv
,N|Xv

).

Definition. We expect that the number χc(L|Xv
,M|Xv

,N|Xv
) will be independent of

v after a finite localisation of R. Call the generic value χc(L,M,N ).

2.2. Conjectural Form of the Characteristic Cycle. The conjecture describes
the characteristic cycle of c in terms of the Hitchin fibration π. This π is a Lagrangian
fibration of T ∗Bunn over an affine space B̄. Let B ⊂ B̄ be the locus over which π is
smooth; then A := π−1(B) is a commutative group stack over B (the neutral component
is a gerbe over an abelian scheme). Let S be the inverse image of the zero section of A
by the multiplication A×B A×B A → A.

Conjecture 2 (Drinfeld). The characteristic cycle of c, restricted to A×A×A, is S.

Remark 1. Even though the characteristic cycle of c is a priori only defined up to
degenerate cycles, the statement of the conjecture is precise because such cycles do not
intersect A.

Remark 2. In §3.2 I list some conditions characterising c, and these also determine
properties of the characteristic cycle. One may hope that these properties essentially
determine the cycle (they motivate the conjectural form).

3. The Theta Function

3.1. Definition. For us, a ‘symplectic bundle’ is a vector bundle L on X with a non-
degenerate skew pairing ∧2L → Ω1

X . Let BunSp8
be the set of isomorphism classes of

rank-8 symplectic bundles over X. Lysenko [Ly] has defined the notion of a ‘metaplectic
bundle’ on X. Such an object consists of a pair (L, `) where L ∈ BunSp8

and ` is a
square-root of the one-dimensional vector space det RΓ(X,L). Let BunMp8

denote the
set of isomorphism classes of metaplectic bundles on X; it has a natural projection to
BunSp8

.
There is a canonical function θ on BunMp8

, known classically as the theta function
on the two-fold cover Mp8(A) of the adelic group Sp8(A). A precise definition can be
found in [Ly].

Let Z ⊂ (Bun2)3 be the set of triples (L,M,N ) of bundles with (∧2L)⊗ (∧2M)⊗
(∧2N ) = Ω1

X . For such a triple, L⊗M⊗N is rank-8 bundle with a symplectic structure
defined by the natural map

∧2(L ⊗M⊗N ) → (∧2L)⊗ (∧2M)⊗ (∧2N ) = Ω1
X .

Lemma. The tensor product map t : Z → BunSp8
lifts canonically to t̃ : Z → BunMp8

.

Definition. Define θ+ to be θ ◦ t̃, extended by zero from Z to all of (Bun2)3.

3.2. Approach to Conjecture 1. Here is a way one should be able to prove (or
disprove) Conjecture 1. The function c should be characterised (up to degenerate
functions) by the following properties:

(1) Our c is fixed by the action of the symmetric group S3 on C⊗̂3.
(2) The three actions of H on C⊗̂3 coincide on c.
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(3) For any L,M∈ Bunn, the first Fourier coefficient 〈c(L,M,−), δ〉 is the number
of isomorphisms L →M.

It then remains to check conditions (1,2,3) for θ+, which should be possible because θ
is defined via Fourier decomposition.

Question 3. How can one add further conditions that characterise c = θ+ on the nose,
and not merely up to degenerate functions?

Remark. Even though θ does not seem to make sense for n > 2, one may hope that
a good answer to Question 3 would allow one to define structure constants on the nose
for any rank.

More generally, the existence of θ should help me to study general questions about
c in the rank-2 case.

3.3. The Theta Sheaf. Lysenko described not only the function θ but also a corre-
sponding perverse sheaf θ on BunMp8

. His definition makes sense in characteristic zero,
so Conjecture 1 suggests that in the rank-2 case we ask:

Question 4. What is the characteristic cycle of the complex corresponding to θ+?

Question 4 should reduce to the following problem, interesting in its own right:

Question 4′. What is the characteristic cycle of Lysenko’s complex θ on BunMp2n
?

I hope that Question 4′ will be straightforward using the method of Laumon [La].

4. Previous Calculations: Tamely Ramified Case

The calculations in this section are described in more detail in [Th 2]. Kontsevich
sketches a closely related calculation in [Ko].

Let X = P1 over Fq, and fix a set of four points S = {x1, x2, x3, x4} ⊂ X(Fq). I will
work with automorphic forms on PGL(2), so all the vector bundles are considered up
to the action of the Picard group of X.

4.1. Let P be the set of isomorphism classes of indecomposable ‘parabolic bundles.’
These are data (L, `1, `2, `3, `4) where L is a rank-2 vector bundle and each `i is a line
in the fiber L|xi ; ‘indecomposable’ means that there are only scalar automorphisms.
Let P̃ be the set of isomorphism classes of ‘enriched’ indecomposable parabolic bundles,
meaning that for each xi we also fix an isomorphism φi : L|xi

/`i → `i. Thus there is a
projection π : P̃ → P on whose fiber acts (F×q )4. One can show (cf. [AL 2]) that P is the
set of Fq points of a non-separated scheme P having two components, corresponding to
even and odd degrees: P = Pev t Pod, and as it turns out,

Pev
∼= Pod

∼= (X with S doubled).

Similarly, P̃ comes from a (Gm)4-torsor π : P̃ → P, P̃ = P̃ev t P̃od.

4.2. Now fix a generic3 character µ : (F×q )4 → Q̄×. Our space C0 of automorphic forms
consists of the functions P̃ → Q̄ that are µ-equivariant on the fibres of π.

The Hecke algebra H acting on C0 is generated by one operator Tv for each v ∈
X(Fq) − S and two operators T±xi

for each xi ∈ S. Thus these generators are again
parameterised by X with S doubled.

3Here is the precise condition on µ. If µ = (µ1, µ2, µ3, µ4) where µi : F×q → Q̄×, then we require

first that µ2
i 6= 1 for each i; and second that

Q
µ

εi
i 6= 1 for each (ε1, . . . , ε4) ∈ {±1}4.

There are two purposes for this condition. First, a priori, we should consider all parabolic bundles,

not just indecomposable ones; but because µ is generic, any µ-equivariant function is supported on the

indecomposable locus. Second, this condition ensures that all our automorphic forms are cuspidal.
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4.3. As in the unramified case (§1), there is a distinguished function δ ∈ C0 representing
the ‘first Fourier coefficient’ functional.4 The ‘structure constants’ function c on (P̃)3

is then defined in exactly the same way as in §1. However, our c is defined on the nose
because (in contrast to Lemma 1.2) in this case H(δ) = C0.

4.4. Formula for the Structure Constants. I was able to derive a formula for c in
terms of the matrix coefficients of the Hecke operators [Th 2]. The formula takes the
following geometric format. First of all, c is supported over triples (L,M,N ) ∈ P̃3(Fq)
for which the sum of the degrees is even. Let us just describe c as a function on
(P̃od × P̃od × P̃ev)(Fq). Let p : T → (P̃od × P̃od × P̃ev) be the trivial bundle with fiber
(Gm)4. There is a certain closed subscheme M ⊂ T whose generic fiber under p is an
affine rational variety of dimension 3. The character µ defines a function on M(Fq) and
the function c is obtained by summing over the fibers of p.

Remarks. I was able to interpret the associativity and commutatitivity of H in the
geometric terms of 4.4. Everything can be described by explicit equations.

The case considered here, with X = P1 ramified at four points, is closely related
to the theory of the sixth Painlevé equation. As explained in [AL, Bo], the situation
has many special symmetries, and because of this I do not expect my calculations to
generalise directly.

5. Other Previous Work

My published work has focused on the theory of the metaplectic group Mp and its
‘Weil representation,’ which play an important role in the proposed project, as explained
in §3. In [Th 1] I described a new theory of the Maslov index (the combinatorial
structure underlying the metaplectic group) and in [Th 3] I calculated the character
of the Weil representation. A summary of this work is available as [Th 4]. In my
master’s thesis [Th 5] I gave an account of classical Hecke theory in the language of
vector bundles used in this proposal.
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4The functional can be defined by evaluation at a canonical element N ′
0 ∈ P̃ev constructed as

follows. Let N0 be the non-trivial extension of OX by Ω1
X . If one makes an upper modification

along each of the lines Ω1
X |xi ⊂ N0|xi , one obtains a bundle N ′

0 with a canonical enriched parabolic

structure.


