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1. Basic Setup

Let X = P1 over Fq, and fix a set of four points S = {x1, x2, x3, x4} ⊂ X(Fq). For
simplicity of exposition, we work with automorphic forms on PGL(2), so all the vector
bundles are considered up to the action of the Picard group of X.

2. Geometry of the space of parabolic (“qp”) bundles

Let P be the set of isomorphism classes of indecomposable ‘qp’ bundles. These
are data (L, `1, `2, `3, `4) where L is a rank-2 vector bundle and each `i is a line in the
fiber L|xi . ‘Indecomposable’ means that we cannot write L = A⊕B with each li lying
in one of the summands.

Let P̃ be the set of isomorphism classes of indecomposable ‘eqp’ bundles, meaning
that for each xi we also fix an isomorphism φi : L|xi

/`i → `i. Thus there is a projection
π : P̃→ P whose fiber is a (F×q )4-torsor.

Lemma 2.1. An indecomposable qp bundle has height 0,1,or 2. (By definition, the
height of O(i)⊕O(j) is i− j if i ≥ j.)

Proof. It suffices to consider L = O ⊕O(3), and to assume that none of the lines li lies in the

summand O(3). The space of sections of L has dimension dim H0(L) = 5. Thus there is a trivial
summand of L containing any four lines li. �

Lemma 2.2. There is a unique indecomposable qp bundle N of height 2. In fact,
it has a canonical eqp structure.

Proof. The same argument as previous lemma shows there is only one. It and the canonical

eqp structure can be obtained as follows. Let N0 be the non-trivial extension of O by Ω. Take upper
modifications along the four lines Ω|xi . We get a degree 2 bundle N , canonically an extension of O
by Ω(S). The lines giving the qp structure are the images of N0 in the fibers N|xi . The canonical
eqp structure comes from the fact that the fibers N|xi are essentially trivialized. �
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Proposition 1. P is the set of Fq points of a non-separated scheme P having two
components, corresponding to even and odd degrees: P = Pev tPod, and

Pev
∼= Pod = X̂ := (X with S doubled).

Similarly, P̃ comes from a (Gm)4-torsor π : P̃→ P, P̃ = P̃ev t P̃od.

Proof. In fact the identification of Pod with X̂ is canonical. Consider L ∈ Pod. We can assume
degL = 1. There is a unique hom s : O(−1) → L so that the image of s in L|xi is contained in li.

On the other hand L is an extension of O by O(1); let p : L → O. Then p ◦ s : O(−1) → O vanishes

somewhere. The claim is that the map “location of the zero of p◦s” gives the identification Pod = X̂.

For Pev: an isomorphism Pev
∼= Pod is given by the taking a modification along the line l1. Or,

roughly speaking, we can take the cross ratio of the lines li. �

3. The Function Space, Hecke Operators, and Cyclic Vector

Now fix a generic character µ : (F×q )4 → Q̄×. Our space C0 of automorphic
forms consists of the functions on P̃ that are µ-equivariant on the fibres of π. Write
C0 = Cod ⊕Cev where functions in Cod are supported over P̃od, and similarly for Cev.

3.0.1. Here is the precise condition on µ. Write µ = µ1⊗· · ·⊗µ4. First, we require that µ2
i 6= 1

for all i. We also require that
Q

µ
εi
i 6= 1 for any (ε1, . . . , ε4) ∈ {±1}4 .

There are two purposes for this latter condition (the first condition is probably not serious).

First, a priori, we should consider all parabolic bundles, not just indecomposable ones; but, because

µ is generic, any µ-equivariant function is supported on the indecomposable locus.

Second, this condition ensures that all our automorphic forms are cuspidal.

3.1. Description of the Hecke operators. The Hecke algebra H acting on C0

is generated by one operator Tv for each v ∈ X(Fq)−S and two operators T±xi
for each

xi ∈ S. Thus these generators are again parameterized by X̂(Fq). Each generator
interchanges Cod and Cev. Moreover, T+

xi
T−xi

= q.
Consider the Hermitian form on C0, defined by

〈f, g〉 :=
∑
L∈P

f(L)g(L)

(each summand is well-defined, i.e. we can choose an arbitary eqp structure on each
L). For v /∈ S the Hecke operator Tv is self-adjoint, while T+

xi
is adjoint to T−xi

.

3.2. The Cyclic Vector. The delta function1 δN (where N is the canonical eqp
bundle, see Lemma 2.2) represents the ‘first Fourier coefficient’ functional. It is a cyclic
vector for H, by the proof of the multiplicity one theorem and the fact that all our
automorphic forms are cuspidal.

4. Key Calculation: Orthogonality of Hecke Basis

Proposition 2. The functions {TvδN }v∈X̂ form an orthogonal basis for Cod, and

〈TvδN , TvδN 〉 = q.

Similarly, fix one of the special Hecke operators, say T+
x1

. Then the functions
{TvT+

x1
δN }v∈X̂ form an orthogonal basis for Cev, and〈

TvT+
x1

δN , TvT+
x1

δN
〉

= q2.

1To be precise, δN ∈ C0 is supported over π−1π(N ) and δN (N ) = 1.
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Remarks. The second statement follows from the first, using the fact that T+
x1

is
adjoint to T−x1

and T+
x1

T−x1
= q.

The first statement requires a (rather short) calculation. One can say that the
Hecke and delta bases are related by “Radon transform.”

5. Algebraic Formulae for the Structure Constants.

According to Proposition 2, we have two orthogonal bases for C0: a basis of Hecke
operators as well as the obvious basis of delta functions. Moreover, proposition 2
allows us to write the structure constants, in either basis, in terms of the
matrix coefficients of the Hecke operators.

5.1. Delta basis. For L ∈ P̃od we can express the delta function δL as

δL = 1
q

∑
v∈X̂(Fq)

〈δL, TvδN 〉TvδN = 1
q

∑
v∈X̂(Fq)

TvδN (L) · TvδN

so for L,M odd and K even eqp bundles, the structure constants c are given by

(1) c(L,M,K) =
1
q2

∑
v,w∈X̂(Fq)

TvδN (L) · TwδN (M) · TvTwδN (K).

For L,M,K all even degree, a similar formula.
5.1.1. Delta basis, version 2. We also have the ‘smaller’ but less symmetrical formula

c(L,M,K) = 1
q

X
v∈X̂(Fq)

TvδN (L) · TvδM(K).

5.2. Hecke basis. By orthogonality,

TvTw = 1
q2

∑
Tz

〈
TvTwδN , TzT

+
x1

δN
〉
TzT

+
x1

.

So we can define a structure constants function s on X̂(Fq)3,

(2) s(Tv, Tw, Tz) :=
〈
TvTwδN , TzT

+
x1

δN
〉
.

5.3. Eigenfunction basis. If {g} is a complete set of Hecke eigenfunctions with Tvg = tgvg

then it is easy to prove formulas like

s(Tv , Tw, Tz) =
X

g

tgvtgwtgzt+g
x1

〈g, g〉

where, moreover, 〈g, g〉 = 2
q

P
v |tv |2.

6. ‘Geometric Reformulation’ of the Algebraic Formulae

Let us give a geometric interpretation of the formula (2). Of course one can
(and probably should) work with the delta basis instead. But the bases are closely
related (by “Radon transform”) and the Hecke basis is more convenient because: (a)
The structure constants function is defined on X̂(Fq)3 rather than on a torsor over
this space; (b) it is slightly annoying to formulate “associativity” for the delta basis
(because of odd vs even degree).
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6.1. Format for the geometric description. Let p : T → X̂3 be the trivial
bundle with fiber (Gm)4. There is a certain closed subscheme M ⊂ T whose generic
fiber under p is an affine rational variety of dimension 3. The character µ defines a
function on M(Fq) and the function s is obtained by summing over the fibers of p.

6.2. Definition of the space M . M is the moduli space of diagrams

M(Fq) :=

{(
N Tv

↪→ K1
Tw
↪→ K2

Tz←↩ K3

T+
x1←↩ N

)}
.

Let me explain the notation. K1,K2,K3 are qp bundles that are allowed to vary,

and Tv, Tw, Tz are allowed to vary in X̂(Fq). An arrow like N Tv
↪→ K1 means that

we represent N as a lower modification of K1 in the sense used to define the Hecke
operator Tv.

6.3. The map p : M → X̂3. It is just the projection to (Tv, Tw, Tz). The fiber is
clearly rational since it is parameterized by quadruples of lines (the lines along which
we take the modifications at v, w, z, x1). For the same reason it is easy to see that the
fiber is affine. The fiber is actually three dimensional, not four, because if we fix K3,
there is a unique way to modify K3 at x1 to get N .

6.4. The embedding pdet : M → T over X̂3. Given an element of M(Fq)
represented by a diagram as shown above, K2 inherits two different eqp structures
(because it is represented as a modification of N in two different ways). The ratio of
these eqp structures is an element of (F×q )4. Thus we obtain a map pdet : M → T .
One can show that pdet is a closed embedding.

Remark 1. Everything can be described by explicit equations.

Remark 2. A very similar picture holds for the delta basis (except now “T” is a
bundle over P̃3, not just over X̂3.)

7. Associativity Property.

Associativity for structure constants s means, for every u, v, w and y

(3)
∑
Tz

s(Tu, Tv, Tz)s(Tz, Tw, Ty) =
∑
Tz

s(Tv, Tw, Tz)s(Tz, Tu, Ty).

7.1. Algebraic argument. In terms of the Hermitian product, (3) becomes∑
Tz

〈
TuTv, TzT

+
x1

〉 〈
TzTw, TyT+

x1

〉
=
∑
Tz

〈
TvTw, TzT

+
x1

〉 〈
TzTu, TyT+

x1

〉
.

But the left-hand-side, for example, is∑
Tz

〈
TuTvT+

x1

∗, Tz

〉 〈
Tz, T

∗
wTyT+

x1

〉
which, by the orthogonality of the Hecke basis, is just

=
〈
TuTvT+

x1

∗, T ∗wTyT+
x1

〉
=
〈
TuTvTw, TyT+

x1

2
〉

.

Similar manipulations on the right-hand-side give the same result.
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7.2. ‘Geometric’ reformulation. For every u, v, w, y ∈ X̂(Fq), we want to con-
sider the spaces

A1
u,v,w,y(Fq) =

⋃
Tz

Mu,v,z ×Mz,w,y

A2
u,v,w,y(Fq) =

⋃
Tz

Mv,w,z ×Mz,u,y

where Mu,v,z is the fiber of M over (u, v, z) (see 6.3). In other words, A1, A2 are
collections of diagrams:

A1(Fq) =

{
N Tu

↪→ K1
Tv
↪→ K2

T+
x1←↩ K3

Tz←↩ N Tz
↪→ L3

Tw
↪→ L2

T+
x1←↩ L1

Ty←↩ N

}
.

A2(Fq) =

{
N Tv

↪→ K1
Tw
↪→ K2

T+
x1←↩ K3

Tz←↩ N Tz
↪→ L3

Tu
↪→ L2

T+
x1←↩ L1

Ty←↩ N

}
.

As in 6.4, A1
u,v,w,y and A2

u,v,w,y come with maps pdet to G4
m, and we want to

show that ∑
E∈A1

u,v,w,y(Fq)

µ ◦ pdet(E) =
∑

E∈A2
u,v,w,y(Fq)

µ ◦ pdet(E)

Definition. Inside Ai consider the divisor Di defined by K3 = L3.

Proposition 3.
(1) There is a natural isomorphism D1

u,v,w,y → D2
u,v,w,y over G4

m.
(2) The sum of µ ◦ pdet over the complement of Di

u,v,w,y in Ai
u,v,w,y vanishes,

i.e. ∑
E∈Ai

u,v,w,y(Fq)

µ ◦ pdet(E) =
∑

E∈Di
u,v,w,y(Fq)

µ ◦ pdet(E).

Sketch of Proof. (1) Fix K3 = L3. For any fixed Tz, K3 occurs as a modifi-
cation of N in at most one way (at least generically). So essentially

D1 ≈

{
N Tu

↪→ K1
Tv
↪→ K2

T+
x1←↩ K3 = L3

Tw
↪→ L2

T+
x1←↩ L1

Ty←↩ N )

}
× {Tz}

and

D2 ≈

{
N Tv

↪→ K1
Tw
↪→ K2

T+
x1←↩ K3 = L3

Tu
↪→ L2

T+
x1←↩ L1

Ty←↩ N

}
× {Tz}.

But now these diagrams are in bijection because the Hecke operators commute.
(2) The idea is that A1 −D1 (sim. for i = 2) is fibred over a base{

N Tu
↪→ K1

Tv
↪→ K2

T+
x1←↩ K3 6= L3

Tw
↪→ L2

T+
x1←↩ L1

Ty←↩ N

}
with fibres isomorphic to Gm (i.e. the fiber parameterizes the choice of Tz ∈ X̂, but
only Gm worth of choices are admissible). The sum of µ ◦ pdet over each fibre is the
sum of a non-trivial character. �
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