
WEIL REPRESENTATION AND TRANSFER FACTOR

TERUJI THOMAS

Abstract. This paper concerns the Weil representation of the semi-direct
product of the metaplectic and Heisenberg groups. First we present a canoni-
cal construction of the metaplectic group as a central extension of the symplec-
tic group by a subquotient of the Witt group. This leads to simple formulas
for the character, for the inverse Weyl transform, and for the transfer factor
appearing in J. Adams’s work on character lifting. Along the way, we give for-
mulas for outer automorphisms of the metaplectic group induced by symplectic
similitudes. The approach works uniformly for finite and local fields.

1. Introduction

1.1. This paper presents some calculations related to the character of the Weil
representation. This representation has a fundamental role in the representation
theory of the symplectic group and in many related contexts. Before explaining the
results, let us recall the classical theory as explained by Lion and Vergne [LV].

Let V be a symplectic finite-dimensional vector space, with symplectic form ω.
The ground field may be any finite or local field F of characteristic not 2; for exam-
ple, most classically, F could be the real numbers. Let Sp(V ) be the corresponding
symplectic group, that is, the group of automorphisms of V preserving ω. Choose a
non-trivial, continuous group homomorphism ψ : F → U(1) ⊂ C×; for example, in
the case of the real numbers, one may take ψ(x) = eix. Choose also a Lagrangian
subspace ` ⊂ V . From the data (ψ, `), one constructs a central extension

(1) 1 → ZF → Mpψ,`(V ) → Sp(V ) → 1.

Mpψ,`(V ) is known as “the” metaplectic group; as we will see, it is essentially
independent of ψ and `. In the special case when F is C or a finite field1, the
central factor ZF is trivial, so that Mpψ,`(V ) is nothing but the symplectic group
Sp(V ); in all other cases, ZF = Z2 = {±1}, and the extension is non-trivial. For
example, when F = R, Mpψ,`(V ) is the unique connected double cover of Sp(V ).

The construction of Mpψ,`(V ) goes hand-in-hand with the construction of a
unitary representation ρψ,`Mp, known as ‘the Weil representation’ (also as ‘the oscilla-
tor’ or ‘metaplectic representation’). One starts from the Heisenberg group H(V ),
which is a central extension of V by F , as additive groups; thus

H(V ) = V × F (as a set).

Associated to the data (ψ, `) is an irreducible unitary representation ρψ,`H of H(V )
whose restriction to the centre F ⊂ H(V ) is ψ (it is, up to non-unique isomorphism,
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the unique such representation, but its construction depends also on `). Meanwhile,
the natural action of Sp(V ) on V defines a semi-direct product Sp(V )nH(V ). The
central extension Mpψ,`(V ) is defined so that ρψ,`H naturally extends to a represen-
tation ρψ,` of the covering group Mpψ,`(V ) nH(V ). Its restriction to Mpψ,`(V ) is
the Weil representation ρψ,`Mp.

1.2. A number of people have recently studied the character Tr ρψ,`, defined to be
the generalized function on Mpψ,`(V ) nH(V ) whose integral against any smooth,
compactly supported measure h on Mpψ,`(V ) nH(V ) is

(2)
∫
h · Tr ρψ,` = Tr

(∫
h · ρψ,`

)
.

(The right-hand side is the trace of a trace-class operator – see Remark 5.1.) The
studies mentioned make some restrictions, focusing on Mpψ,`(V ) (e.g. [Th2]), or on
some open subset (e.g. [Ma, GH]); and/or making a particular choice of field (e.g.
[dGL] for the reals, [GH, Pr] for finite fields). This article completes the project in
the following ways.

(A) The different metaplectic groups Mpψ,` corresponding to varying data (ψ, `)
are canonically isomorphic. The first task is to construct an extension

(3) 1 → ZF → Mp(V ) → Sp(V ) → 1

isomorphic to (1), but defined without any reference to ψ and `. Using
this canonical construction, we give explicit formulas for the isomorphisms
between the various groups Mpψ,`(V ). As a by-product, we find explicit
formulas for the conjugation action of GSp(V ) on Mp(V ) and Mpψ,`(V ).

(B) Because of (A), every Weil representation ρψ,` can be considered as a rep-
resentation of the single group Mp(V ) n H(V ). We give a formula for the
character Tr ρψ,` as a generalized function on Mp(V ) nH(V ). The isomor-
phisms described in (A) allow easy translation of this character formula to
other versions of the metaplectic group.

(C) The answer to (B) also yields explicit formulas for the ‘invariant presen-
tation’, or inverse Weyl transform, of ρψ,`Mp; this is (roughly speaking) a
homomorphism from Mp(V ) into the ψ-coinvariant group algebra of H(V ).

(D) Writing ρψ,`Mp = ρψ,`+ ⊕ ρψ,`− as the direct sum of two irreducibles, We cal-
culate the character of the virtual representation ρψ,`+ − ρψ,`− (which then
determines the characters of ρψ,`+ and ρψ,`− separately). This is a generalized
function on Mp(V ). Over a finite field, the method leads naturally to a
‘geometric’ version of this virtual character, in the sense of Grothendieck’s
sheaf-function dictionary.

The virtual character in (D) plays a key role in Jeff Adams’s theory [Ad] of
character lifting between metaplectic and orthogonal groups, which provides one of
my main motivations for studying this subject.

Remark 1.1. The method for (B) is closely related to Roger Howe’s wonderful
unpublished notes [Ho], and some similar ideas have been exploited by Gurevich
and Hadani [GH] over finite fields, and de Gosson and Luef [dGL] over the reals.
In particular, the work of de Gosson (op cit. and references therein) gives a very
nice, and closely related, character formula in terms of the Conley-Zehnder index
of paths in the real symplectic group.
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1.3. Results.

(A). The construction of the canonical metaplectic extension (3) proceeds in two
steps, which make sense for any field F of characteristic not 2. The details are
given in §2; here we outline the basic features, to fix our notation. First we define
a central extension

0 →W (F )/I3 →M(V ) → Sp(V ) → 1

where W (F ) is the Witt ring of quadratic spaces over F , and I ⊂W (F ) is the ideal
of even-dimensional quadratic spaces (see Appendix A.1). This construction is by
means of a cocycle, so that

M(V ) = Sp(V )×W (F )/I3 as a set.

Second, we define Mp(V ) to be a certain subgroup of M(V ). In short, Mp(V ) is
the unique subgroup extending Sp(V ) by I2/I3:

(4) 0 → I2/I3 → Mp(V ) → Sp(V ) → 1.

It turns out (see Theorem A.2) that, for a finite or local field, we can identify
I2/I3 with the group ZF , thus obtaining (3) as a special case. Concretely, for each
g ∈ Sp(V ), define a bilinear form σg on (g − 1)V by the formula

σg((g − 1)x, (g − 1)y) = ω(x, (g − 1)y) ∀x, y ∈ V.

Then σg is nondegenerate as a bilinear form, but, in general, asymmetric. It
nonetheless has a rank dimσg = dim(g−1)V and discriminant detσg ∈ F×/(F×)2.
This is enough to determine a class [σg] in W (F )/I2 – the class of quadratic spaces
with the same rank modulo 2 and the same signed discriminant as σg (see A.1).
The definition of Mp(V ) is as follows:

Mp(V ) = {(g, q) ∈M(V ) | q = [σg] mod I2/I3}.

In Proposition 2.4 we show that this definition makes Mp(V ) into a subgroup of
M(V ), and therefore obviously an extension of Sp(V ) by I2/I3.

In §2.6 we also recall the construction of Mpψ,`(V ) from [LV] – this construction
requires F to be finite or local. In §3 we describe canonical isomorphisms Mp(V ) →
Mpψ,`(V ). They are ‘canonical’ in the sense of being unique as isomorphisms of
central extensions (see §3.1).

Remark 1.2. The idea of constructing an extension by I2/I3 comes from [PPS]
(using, however, a choice of Lagrangian ` ⊂ V ; see §2.7.1 for a synopsis). It also
follows from the work of Suslin [Su] that these extensions can be characterized by
a universal property; see Remark 2.1.

Remark 1.3. The Weil representation (which, again, is defined only when F is a
finite or local field) can be extended very naturally to a representation of M(V )
rather than Mp(V ), and practically all the results stated herein for Mp(V ) hold
also for M(V ). However, we will continue to refer primarily to Mp(V ), to connect
better with the literature.

(B). For the rest of this introduction, we take F to be a finite or local field, so that
ρψ,` is defined (we recall the definition in §4). We consider it as a representation of
Mp(V ) nH(V ). To describe its character, we need some further notation.
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Notation. Let γψ : W (F )/I3 → C× be the Weil index (see Appendix A.3, especially
A.4.1(d)). For any g ∈ Sp(V ), let Qg be the associated Cayley form: it is a
symmetric, usually degenerate, bilinear form on (g − 1)V defined by

Qg((g − 1)x, (g − 1)y) := 1
2ω((g + 1)x, (g − 1)y) ∀x, y ∈ V.

Some further comments about the Cayley form are given in Appendix A.6.
Finally, let µσg be the Haar measure on (g−1)V self-dual with respect to ψ ◦σg,

and µV the Haar measure on V self-dual with respect to ψ ◦ ω (see Appendix
A.3.1 for conventions on measures). Define a generalized function Dψ

g on V by the
equation

(5)
∫
V

fDψ
g µV =

∫
(g−1)V

f µσg

for all compactly supported, smooth functions f on V .
If F is a finite field, then this definition amounts to the following: Dψ

g is the
function on V supported on (g−1)V and equal there to the constant

√
# ker(g − 1).

When F is infinite, we just have Dψ
g (v) = ‖det(g − 1)‖−1/2 if det(g − 1) 6= 0 (and,

as standard, we choose the norm ‖ · ‖ on F× such that d(ax) = ‖a‖ dx for any
translation-invariant measure dx on F ).

Character Formula.

Theorem B. For fixed (g, q) ∈ Mp(V ), the character Tψ(g,q)(v, t) := Tr ρψ,`(g, q; v, t)
is a well-defined generalized function of (v, t) ∈ H(V ), supported on (g − 1)V × F ,
and given by

Tψ(g,q)(v, t) = ψ( 1
2Qg(v, v)) ·D

ψ
g (v) · γψ(q) · ψ(t).

The main part of the proof, using the Weyl transform, is given in §5. Note that
the right-hand side is manifestly independent of `, reflecting the independence of
ρψ,` up to non-unique isomorphism.

Theorem B can be read as a formula for a locally integrable function2 on Mp(V )n
H(V ) representing Tr ρψ,`, but it says something more precise. The point is that,
when F is infinite, Tr ρψ,` is smooth almost everywhere, but ‘blows up’ on the
locus where det(g− 1) = 0. Theorem B gives a natural extension of Tr ρψ,` to that
singular locus – ‘natural’ in the sense that it satisfies Theorem C below.

Restriction to Mp(V ). If we are only interested in the representation ρψ,`Mp of Mp(V ),
then Theorem B takes on the following simple form. Let

D0(g) :=
√

#V g or D0(g) := ‖det(g − 1)‖−1/2

depending on whether F is finite or infinite. Here V g := ker(g − 1).

Corollary 1.4. As generalized functions of (g, q) ∈ Mp(V ),

Tr ρψ,`Mp(g, q) = D0(g) · γψ(q).

2That is, for F infinite, Dψg (v) = ‖ det(g − 1)‖−1/2 for almost all g, and (g, q, v, t) 7→
ψ( 1

2
Qg(v, v)) · ‖ det(g− 1)‖−1/2 · γψ(q) ·ψ(t) is locally integrable on Mp(V ) nH(V ): the modulus

is just ‖ det(g − 1)‖−1/2, so that the singularities of order k/2 lie in subspaces of codimension at
least k.
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The extreme simplicity of this formula suggests that the cocycle we have used
to define Mp(V ) is the natural one in this context. In particular, it is much better
than the formula we developed in [Th2]. (In Remark 2.6 we explain how the thing
called Mp(V ) in [Th2] is related to the present one.)

(C). The formula of Theorem B also makes explicit the ‘invariant presentation’
of the Weil representation emphasized, for example, in [GH]. Let us recall that
description. Let Aψ be the quotient of the L2-group algebra of H(V ), obtained by
taking ψ-coinvariants along the centre F ⊂ H(V ). Concretely, Aψ consists of all
L2-measures on V , equipped with the ‘convolution’ multiplication

(f1 ? f2)(x) :=
∫
v∈V

f1(v)ψ( 1
2ω (v, x)) f2(x− v).

It is well known, and we prove in Proposition 5.2, that there is an isomorphism
Wψ,` from Aψ to the algebra of Hilbert-Schmidt operators on the representation
space of ρψ,`. This Wψ,` is called the Weyl transform.

Theorem C. For any f ∈ Aψ, the convolution (Tψ(g,q)µV ) ? f is well-defined and
lies in Aψ, and

Wψ,`((Tψ(g,q)µV ) ? f) = ρψ,`(g, q) ◦Wψ,`(f).

Theorem C may be restated more transparently when F is a finite field: it says
that the map (g, q) 7→ Tψ(g,q) µV is a multiplicative homomorphism Mp(V ) → Aψ,

and Wψ,`(Tψ(g,q)µV ) = ρψ,`(g, q).
Versions of Theorem C are well known (see for example [GH, §1.2] or [Ho, The-

orem 2.9]), so the new aspect is the explicit formula provided by Theorem B;
nonetheless, we will find it convenient and easy to prove Theorem C in §6.

(D). The representation space of ρψ,` can be understood as the space of L2 func-
tions on V/`. One has a decomposition ρψ,`Mp = ρψ,`+ ⊕ ρψ,`− into irreducibles, where
ρψ,`+ acts on the subspace of even functions, and ρψ,`− on the subspace of odd ones.
In §7 we give two proofs of the following result.

Theorem D. As generalized functions of (g, q) ∈ Mp(V ),

Tr(ρψ,`+ − ρψ,`− )(g, q) = γψ(Qg) · Tr ρψ,`Mp(−g, q).

Again, the right-hand side in Theorem D is manifestly independent of `.

Geometrization. Suppose that F = Fq is a finite field.3 In this situation, the
central extension (7) is split, so that we may consider ρψ,` as a representation
of Sp(V ) n H(V ). We can also consider Sp(V ) n H(V ) as the Fq-points of a
group scheme G = Sp(V ) n H(V ). Gurevich and Hadani [GH] have constructed
an irreducible perverse sheaf K on G corresponding (under Grothendieck’s sheaf-
function dictionary) to the character Tr ρψ,`. The proof of Theorem D (specifically
(33)) shows that there is, as well, an irreducible perverse sheaf K′ on G whose
pull-back to Sp(V ) corresponds to the virtual character Tr(ρψ,`+ − ρψ,`− ); namely,
K′ is just the Fourier-Deligne transform of K along V with respect to the pairing
ψ ◦ 1

2ω.

3Lafforgue and Lysenko [LL] have also considered a geometric version of the even part of the
Weil representation over a local field Fq((t)).
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Remark 1.4. The fact (33) that Tr(ρψ,`+ − ρψ,`− ) is related to Tr ρψ,` by a Fourier
transform explains the relationship between Theorem B and Theorem D: recall
(Theorem A.4) that the γψ(Qg) appearing in Theorem D is itself related by Fourier
transform to the ψ ◦ 1

2Qg appearing in Theorem B.

1.5. Remarks.

1.5.1. Dependence on ψ. Let us briefly clarify the dependence of our results on the
character ψ. For any chosen ψ, any other non-trivial additive character is uniquely
of the form ψa(x) = ψ(ax), with a ∈ F×. The isomorphism class of ρψa,`Mp depends
only on the class of a modulo (F×)2. For (g, q) ∈ Mp(V ), we have

γψa(q) = γψ(q) · (γψ(a)/γψ(1))dim(g−1)V (a,detσg)H

where (·, ·)H is the Hilbert symbol (see Lemma 3.13 and A.1.1). Moreover, Dψa
g =

Dψ
g · ‖a‖

−(dimV g)/2 (see Appendix A.3.1).

1.5.2. Special Fields. The framework presented here gives a uniform treatment for
any choice of field F . However, some simplifications are possible, case-by-case.

When F = C, the central factor ZF is trivial, and both γψ and the Hilbert
symbol always equal 1. When F is finite, ZF is again trivial. This means that for
each g, there is a unique q ∈W (F )/I3 with (g, q) ∈ Mp(V ). One has

γψ(q) = γψ(1)dim(g−1)V−1γψ(detσg).

Moreover, the Hilbert symbol always equals 1; γψ takes values in the fourth roots
of unity Z4 (or even Z2 if −1 is a square); and the common expression γψ(a)/γψ(1)
equals 1 if a is a square, and −1 if not.

1.6. Acknowledgements. I am grateful to Jeff Adams for discussing his work
with me and posing some interesting questions; to Vladimir Drinfeld for empha-
sising to me the importance of the Weyl transform; to Maurice de Gosson and
Amritanshu Prasad for sharing their results with me; and to Masoud Kamgarpour
for many useful discussions. While preparing this paper I was supported by a Seggie
Brown Fellowship from the University of Edinburgh.

2. Metaplectic Cocycles

In this section we construct the canonical metaplectic extension (4), which exists
for any field of characteristic not 2. We also recall the traditional construction (1)
in §2.6, which makes sense only for a finite or local field, and depends on the
choice of a Lagrangian ` and a character ψ. In §2.7 we examine these choices more
closely. This will allow us to give give explicit isomorphisms between all these
various incarnations of the metaplectic group in §3.

The key tools are the Maslov index τ and the Weil index γψ. The relevant facts
and notation concerning these objects are recalled in Appendix A.

2.1. Generalities. Suppose that G is a group and A an abelian group, written
additively; by a 2-cocycle c : G×G→ A we mean a function such that

(6) c(g, g′)− c(g, g′g′′) + c(gg′, g′′)− c(g′, g′′) = 0 and c(1, 1) = 0.

Given such a 2-cocycle, define G̃ = G×A as a set, with a multiplication operation

(g, a)(g′, a′) := (gg′, a+ a′ + c(g, g′)).



WEIL REPRESENTATION AND TRANSFER FACTOR 7

Then it follows from (6) that G̃ is a group, with A as a central subgroup, and
G = G̃/A. In other words, we have constructed a central extension

0 −→ A −→ G̃ −→ G −→ 1.

Now let us apply this construction to various 2-cocycles, with G = Sp(V ).

2.2. The Canonical Cocycle. Here we allow F to be any field (but always of
characteristic not 2). Let V be the symplectic vector space (V,−ω). Then for each
g ∈ Sp(V ), the graph Γg = {(x, gx) ∈ V ⊕ V } is a Lagrangian subspace of V ⊕ V .
Define

c(g, h) = τ(Γ1,Γg,Γgh)

for g, h ∈ Sp(V ).

Lemma 2.3. The function c : G×G→W (F ) is a 2-cocycle.

Proof. The left-hand side of (6) is

τ(Γ1,Γg,Γgg′)− τ(Γ1,Γg,Γgg′g′′) + τ(Γ1,Γgg′ ,Γgg′g′′)− τ(Γ1,Γg′ ,Γg′g′′).

The last term is −τ(Γg,Γgg′ ,Γgg′g′′), applying A.5(d) to 1 ⊕ g ∈ GL(V ⊕ V ).
Thus the sum is a sum over the faces of the following tetrahedron, with each face
contributing the Maslov index of its vertices, in the manner explained in §A.5.2.

Γ1

EEEEE Γg

Γgg′ Γgg′g′′ .

The sum therefore vanishes. �

From now on we reduce the values of c modulo I3, where (as explained in Ap-
pendix §A.1), I ⊂ W (F ) is the ideal of even-dimensional quadratic spaces.4 Thus
we obtain the following definition.

Definition 2.1. Let M(V ) be the central extension

(7) 0 →W (F )/I3 →M(V ) → Sp(V ) → 1

defined by the cocycle c.

2.3.1. Reduction to I2/I3. We now construct Mp(V ) as a subgroup of M(V ),
fitting into a central extension

(8) 0 → I2/I3 → Mp(V ) → Sp(V ) → 1.

When F is a finite or local field, I2/I3 = ZF (see Theorem A.2), yielding the central
extension (3).

4The reduction modulo I3 is not crucial. We could deal with extensions of Sp(V ) by W (F )
and I2 rather than W (F )/I3 and (as below) I2/I3. However, it is convenient that in the cases of
interest (finite and local fields), we can identify I2/I3 with the group ZF (see Theorem A.2. The
reduction modulo I3 is also necessary for Proposition 3.16.
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Definition 2.2. Let σg be the nondegenerate bilinear form on (g − 1)V defined5 by

σg((g − 1)x, (g − 1)y) = ω(x, (g − 1)y) ∀x, y ∈ V.
Let [σg] be the class in W (F )/I2 generated by quadratic spaces with the same rank
mod 2 and the same signed discriminant as σg (see Remark A.1). Let Mp(V ) ⊂
M(V ) be the subset of pairs (g, q) such that q = [σg] mod I2/I3.

We will have constructed a central extension (8) if we can prove

Proposition 2.4. Mp(V ) is a subgroup of M(V ).

Proof. We use the calculation of the rank and discriminat of the Maslov index
described in A.5.1. Write αg = (1, g) : Γ1 → Γg. Choose a non-zero o1 ∈ det(Γ1),
and let og = αg(o1) ∈ det(Γg). Let us calculate Q(Γg, og; Γ1, o1), as defined in
A.5.1. Using α = α−1

g , this is the class in W (F )/I2 of the the bilinear form

q(x, gx; y, gy) = ω(x, gy)− ω(x, y) = ω(x, (g − 1)y)

pairing (x, gx) and (y, gy) ∈ Γg/Γg ∩ Γ1. But (x, gx) 7→ (g − 1)x is an isometry
between (Γg/Γg ∩ Γ1, q) and ((g − 1)V, σg). Therefore

Q(Γg, og; Γ1, o1) = [σg] ∈W (F )/I2.

Now, according to (34) and the preceding discussion,

τ(Γ1,Γg,Γgg′) = Q(Γ1, o1; Γg, og) +Q(Γg, og; Γgg′ , ogg′) +Q(Γgg′ , ogg′ ; Γ1, o1)

= −Q(Γg, og; Γ1, o1)−Q(Γg′ , og′ ; Γ1, o1) +Q(Γgg′ , ogg′ ; Γ1, o1)

(all modulo I2) and therefore, by our calculation,

(9) τ(Γ1,Γg,Γgg′) = [σgg′ ]− [σg′ ]− [σg] mod I2.

This is exactly the condition for Mp(V ) to be closed under multiplication. �

2.4.1. Uniqueness. Before proceeding, note that in fact Mp(V ) is the unique sub-
group of M(V ) such that the projection to Sp(V ) makes it a central extension of
Sp(V ) by I2/I3. Indeed, the following general statement applies.

Lemma 2.5. Suppose that G̃ is a central extension of Sp(V ) by an abelian group
A. For any subgroup B ⊂ A such that A/B has no 3-torsion, there is at most
one subgroup G̃′ ⊂ G̃ such that the given projection G̃′ → Sp(V ) is surjective with
kernel B.

In our case, A = W (F )/I2 and B = I2/I3; the lemma applies because A/B =
W (F )/I2 has only 2-primary torsion (being isomorphic to the group W0(F ) de-
scribed in Appendix A.1). In fact, W (F ) itself, and therefore any subquotient, has
only 2-primary torsion (see [Lam, Ch. 8, Thm. 3.2]).

Proof of Lemma 2.5. Suppose that G̃′ and G̃′′ are two such subgroups. Then
for each g ∈ Sp(V ) there exists f(g) ∈ A such that (g, a) ∈ G̃′ if and only if
(g, a+ f(g)) ∈ G̃′′. Moreover, f(g) is unique modulo B, and f is a homomorphism
Sp(V ) → A/B. Thus it is enough to prove that there are no non-trivial homomor-
phisms Sp(V ) → A/B. In fact, Sp(V ) is perfect unless V ∼= F2

3 (see [Gr, Props.

5To see that σg is well defined, suppose that (g−1)x = 0. The claim is that ω(x, (g−1)y) = 0.
By direct calculation, ω(x, (g − 1)y) = −ω((g − 1)x, gy) = −ω(0, gy) = 0. To see that σg is
nondegenerate, observe that if, for some (g− 1)y and all (g− 1)x, σg((g− 1)x, (g− 1)y) = 0, then

ω(x, (g − 1)y) = 0 for all x, whence (g − 1)y = 0 by the nondegeneracy of ω.
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3.7–3.8]). In that exceptional case, the abelianization of Sp(V ) is cyclic of order 3
(one can compute that Sp(V ) ∼= SL2(F3) has 24 elements, and that the commutator
subgroup is the unique subgroup of order 8). Since, by assumption, A/B has no
3-torsion, any homomorphism Sp(V ) → A is trivial. �

Remark 2.1. The metaplectic extension Mp(V ) of Sp(V ) by I2/I3 also has a uni-
versal property, which can be deduced from the work of Suslin [Su]. Namely, the
metaplectic extension of Sp2n(F ) is the universal central extension that extends to
SL2n(F ) and splits over SLn(F ).

2.6. The Traditional Cocycle. Now we assume that F is finite or local, which
allows us to use the Weil index γψ (see A.3).

That is, for chosen Lagrangian subspace ` ⊂ V and nontrivial additive character
ψ : F → C×, define

cψ,`(g, g′) = γψ(τ(`, g`, gg′`)).
Then cψ,` is a 2-cocycle with values in the group Z8 ⊂ C× of eighth-roots of unity
(as can be proved in parallel to Lemma 2.3).

Definition 2.3. Define a central extension

(10) 1 −→ Z8 −→Mψ,`(V ) −→ Sp(V ) −→ 1

using the cocycle cψ,`.

2.6.1. Reduction to ZF . We now construct Mpψ,`(V ) as a subgroup of Mψ,`(V ),
fitting into a central extension

(11) 1 → ZF → Mpψ,`(V ) → Sp(V ) → 1.

We use the notation of A.5.1. Choose an orientation o ∈ det(`), and, for each
g ∈ Sp(V ), let go be the corresponding orientation of g`. The class Q(g`, go; `, o) ∈
W (F )/I2 is independent of the choice of o.

Definition 2.4. Let Mpψ,`(V ) ⊂Mψ,`(V ) be the subset of pairs (g, ξ) with

ξ = γψ(Q(g`, go; `, o)) mod ZF .

(Recall that Q(g`, go; `, o) is defined modulo I2, and that γψ(I2) = ZF (A.4.1(d)).)

It follows easily from (34) that Mpψ,`(V ) is a subgroup of Mψ,`(V ); indeed, by
Lemma 2.5, it is the unique subgroup yielding a central extension of Sp(V ) by ZF .

Remark 2.2. The definition of Mpψ,`(V ) can be unwound a bit to give a standard
formula, as follows. For each g ∈ Sp(V ), choose a basis (q1, . . . , qn) of ` and a basis
(p1, . . . , pm, qm+1, . . . , qn) of g`, such that (qm+1, . . . , qn) is a basis for ` ∩ g` and
ω(pi, qj) = δij . Let θ`(g) ∈ F× be the scalar such that

gqq ∧ · · · ∧ gqn = θ`(g)(p1 ∧ · · · ∧ pm ∧ qm+1 ∧ · · · ∧ qn)

in det(g`). The class of θ`(g) in F×/(F×)2 is independent of the bases. Then
Mpψ,`(V ) ⊂Mψ,`(V ) is the subset of pairs (g, ξ) with

ξ = γψ(1)dim(`/`∩g`)−1γψ(θ`(g)) mod ZF .

Indeed, this follows from A.4.1(c): dim(`/` ∩ g`) and θ`(g) are just the rank and
discriminant of the quadratic form used to define Q(g`, go; `, o) in A.5.1.
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Remark 2.3. For a brief history of this construction of the metaplectic group and the
related calculation of the cocycle of the Weil representation, see the bibliographical
note in [LV].

2.7. Intermediate Cocycles. The transition from Mp(V ) to Mpψ,`(V ) involves
two choices: that of the Lagrangian ` ⊂ V , and that of the character ψ. To clarify
the relationship between the different versions of the metaplectic group, we now
examine these choices separately.

2.7.1. Choice of Lagrangian. The definitions follow the same pattern as before,
and make sense for any F .

Definition 2.5. Let M `(V ) be the central extension

(12) 0 →W (F )/I3 →M `(V ) → Sp(V ) → 1

defined by the cocycle
c`(g, h) = τ(`, g`, gh`).

The following definition comes from [PPS].

Definition 2.6. Let Mp`(V ) ⊂ M `(V ) be the subset of pairs (g, q) such that q =
Q(g`, go; `, o) mod I2 (in the notation of Definition 2.4). In other words, q has
rank n := dim(`/` ∩ g`) mod 2 and signed discriminant (−1)n(n−1)/2θ`(g) (in the
notation of Remark 2.2).

With this definition, one can show that Mp`(V ) is a subgroup of M `(V ), and,
indeed, it is the unique (cf. §2.4.1) subgroup of M `(V ) yielding a central extension

(13) 0 → I2/I3 → Mp`(V ) → Sp(V ) → 1.

Remark 2.4. The following relationship is crucial to the proof of Theorem B. As
in §2.2, let V be the symplectic vector space (V,−ω). Then the map M(V ) →
MΓ1(V ⊕ V ) given by (g, q) 7→ (1 ⊕ g, q) is a homomorphic embedding (and, by
§2.4.1, it embeds Mp(V ) into MpΓ1(V ⊕V )). All of what we have said about Mp(V )
can thereby be reduced to facts about MpΓ1(V ⊕ V ).

2.7.2. Choice of an Additive Character. Here we assume that F is finite or local.

Definition 2.7. Define a central extension

(14) 1 −→ Z8 −→Mψ(V ) −→ Sp(V ) −→ 1

using the cocycle
cψ(g, g′) = γψ(τ(Γ1,Γg,Γgg′)).

We again construct a subgroup Mpψ(V ) ⊂Mψ(V ) fitting into a central extension

(15) 1 → ZF → Mpψ(V ) → Sp(V ) → 1

and this subgroup is again unique, by Lemma 2.5.

Definition 2.8. Let Mpψ(V ) ⊂ Mψ(V ) be the subgroup consisting of pairs (g, ξ)
with ξ = γψ([σg]) mod ZF . Equivalently (using A.4.1(c)), the requirement is that

ξ = γψ(1)dim(g−1)V−1γψ(detσg) mod ZF .
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2.8. Remarks.

Remark 2.5. Given the existence of a unique isomorphism I2/I3 → ZF (Theo-
rem A.2), the introduction of a character ψ may seem entirely extraneous to the
construction of the metaplectic group. Indeed. Its use is motivated by the Weil rep-
resentation, which may be considered as a representation of Mψ(V ) (or Mψ,`(V ))
in which the central factor Z8 acts by scalar multiplication.

Remark 2.6. Let us explain the relationship between the present constructions
and the version of the metaplectic group used in [Th2]. Let Gr(V ) be the set of all
Lagrangian subspaces ` ⊂ V . As we explain in the next section, there is a canonical
isomorphism δψ``′ : Mpψ,`(V ) → Mpψ,`

′
(V ) for every pair `, `′ ∈ Gr(V ). Then

G = {(g`) ∈
∏

`∈Gr(V )

Mpψ,`(V ) | δψ``′(g`) = g`′ for all `, `′ ∈ Gr(V )}

is a group under component-wise multiplication, with the obvious projections mak-
ing G isomorphic to each Mpψ,`(V ). This G is essentially what was called Mp(V )
in [Th2, Def. 5.2]. By construction, it does not depend on any particular choice of
` ∈ Gr(V ); one could, of course, remove the apparent dependence on ψ by a similar
trick.

3. Isomorphisms Between Metaplectic Groups

In this section, we describe isomorphisms between the different versions of the
metaplectic group that were introduced in §2. First we consider the choice of La-
grangian, describing canonical (see §3.1) isomorphisms that fit into a commutative
diagram (omitting V from the notation)

M `
α`ψ

//

δ``′

��

Mψ,`

δψ
``′

��

M

αψ

@@

α` 66nnnnnn
α`′

((PPPPPP Mψ.

αψ`iiSSSSSS
αψ
`′

uullllll

M `′
α`

′
ψ

// Mψ,`′

(The dotted arrows are homomorphisms, not isomorphisms, but all the maps shown
restrict to isomorphisms between the various groups Mp•(V ).) Next we consider
the choice of additive character, describing a commutative diagram of canonical
isomorphisms

Mψ
αψ` //

δψψ′

��

Mψ,`

δ`
ψψ′

��

M

α`

@@

αψ 66

αψ′

((

M `

α`ψii

α`
ψ′

uu

Mψ′
αψ

′
` // Mψ′,`.

Finally, we describe canonical actions of GSp(V ) on M(V ) and Mψ,`(V ) that
cover the action by conjugation on Sp(V ).

As in §2, objects labelled by the character ψ are defined only when F is a finite
or local field; objects that do not involve ψ make sense more generally.
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3.1. In the above overview, we used the word ‘canonical’ to mean ‘unique’ in the
following sense. If G̃ and G̃′ are central extensions of a group G by an abelian
group A, then ‘an isomorphism of central extensions’ is an isomorphism G̃ → G̃′

which covers the identity G→ G and restricts to the identity A→ A. The claim is
that all the isomorphisms are unique as isomorphisms of central extensions. This
uniqueness is guaranteed by the following lemma.

Lemma 3.2. Let G̃ and G̃′ be central extensions of Sp(V ) by an abelian group A
with no 3-torsion. Then there exists at most one isomorphism G̃ → G̃′ of central
extensions.

Proof. If f1, f2 : G̃ → G̃′ are isomorphisms of central extensions, then (g, a) 7→
f1(g, a) ·f2(g, a)−1 is a homomorphism Sp(V ) = G̃/A→ A ⊂ G̃′. But, as explained
in the proof of Lemma 2.5, any such homomorphism is trivial. �

As we noted after Lemma 2.5, the Witt group W (F ) has only 2-primary torsion,
so Lemma 3.2 applies to all the central extensions of interest.

3.2.1. Coboundary description. We will repeatedly use the following basic observa-
tion. If G̃ and G̃′ are defined by 2-cocycles c and c′, then an isomorphism f : G̃→ G̃′

of central extensions is equivalent to giving a function s : G→ A such that

c′(g, g′)− c(g, g′) = s(gg′)− s(g)− s(g′).

(This expresses c′ − c as the coboundary of s.) Namely, f(g, a) = (g, a+ s(g)).

3.3. Choice of Lagrangian.

Proposition 3.4. There is a unique isomorphism α` : M(V ) → M `(V ) of central
extensions, and it is given by

(16) α`(g, q) = (g, q + τ(`⊕ `,Γ1,Γg, `⊕ g`)).

It restricts to an isomorphism Mp(V ) → Mp`(V ), also unique.

Proof. For α` to be an isomorphism, it suffices, by §3.2.1, to check

(17) c`(g, g′)− c(g, g′) + s(g) + s(g′)− s(gg′) = 0

where s(g) := τ(`⊕`,Γ1,Γg, `⊕g`). Observe that τ(`, `, `) = 0: according to A.5(e),
it is represented by the zero bilinear form on `. Therefore

c`(g, g′) = τ(`, g`, gg′`) = τ(`⊕ g`, `⊕ gg′`, `⊕ `)

by A.5(c). Moreover, s(g′) = τ(` ⊕ g`,Γg,Γgg′ , ` ⊕ gg′`) by A.5(d) applied to
(1, g) ∈ GL(V ⊕V ). Graphically, then, (17) is a sum over the faces of the polyhedron

Γ1

`⊕ `

iiiiiiiiiiiiiiiii

www
www EEEEE Γgg′ Γg

9999

`⊕ gg′` `⊕ g`

jjjjjjjjjjjjjj

and therefore vanishes, as explained in §A.5.2.
The fact that α` maps Mp(V ) to Mp`(V ) follows from the uniqueness property of

Mp`(V ) (§2.4.1), or by direct computation, using (34); the uniqueness of α` follows
from Lemma 3.2. �
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Corollary 3.5. There is a unique isomorphism αψ` : Mψ(V ) →Mψ,`(V ) of central
extensions, and it is given by

(18) αψ` (g, ξ) = (g, ξ · γψ(τ(`⊕ `,Γ1,Γg, `⊕ g`))).

It restricts to an isomorphism Mpψ(V ) → Mpψ,`(V ), also unique.

3.6. Change of Lagrangian.

Proposition 3.7. There is a unique isomorphism δ``′ : M `(V ) → M `′(V ) of cen-
tral extensions, given by

δ``′(g, q) = (g, q + τ(`, g`, g`′, `′)).

It restricts to an isomorphism Mp`(V ) → Mp`
′
(V ), also unique.

Proof. The proof is very similar to that of Proposition 3.4. The main difference is
that we must now show

(19) c`′(g, g′)− c`(g, g′) + s(g) + s(g′)− s(gg′) = 0

where now s(g) := τ(`, g`, g`′, `′). Observe that s(g′) = τ(g`, gg′`, gg′`′, g`′) by
A.5(d). Thus (19) is a sum over the faces of the polyhedron

`

`′

kkkkkkkkkkkkkk

��
��

�
77

77
gg′` g`

5555

gg′`′ g`′

llllllllllll

and again vanishes by §A.5.2. �

Corollary 3.8. There is a unique isomorphism δψ``′ : M
ψ,`(V ) → Mψ,`′(V ) of

central extensions, given by

δψ``′(g, ξ) = (g, ξ · γψ(τ(`, g`, g`′, `′))).

It restricts to an isomorphism Mpψ,`(V ) → Mpψ,`
′
(V ), also unique.

3.9. Choice of Additive Character. There are obvious homomorphisms

αψ : M(V ) →Mψ(V ) α`ψ : M `(V ) →Mψ,`(V )

each given by (g, q) 7→ (g, γψ(q)).

Proposition 3.10. The maps αψ, α`ψ are the unique homomorphisms that cover
the identity on Sp(V ) and restrict to γψ : W (F )/I3 → Z8. Moreover, they restrict
to isomorphisms

αψ : Mp(V ) → Mpψ(V ) α`ψ : Mp`(V ) → Mpψ,`(V )

that are unique as isomorphisms of central extensions.

Proof. Uniqueness is a simple variation on Lemma 3.2. The fact that Mp(V ) and
Mp`(V ) map to Mpψ(V ) and Mpψ,`(V ) is immediate from the definitions. The fact
that the restricted maps are isomorphisms follow from the fact that γψ : I2/I3 → ZF
is an isomorphism (A.4.1(d)). �
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3.11. Change of Additive Character. Suppose that ψ,ψ′ are non-trivial addi-
tive characters of F . Let a ∈ F× be the unique scalar such that ψ′(x) = ψ(ax) for
all x ∈ F . In the next proposition, (· , ·)H : F× ⊗Z F

× → ZF is the Hilbert symbol
(defined in A.1.1).

Proposition 3.12. There is a unique isomorphism δψψ′ : Mψ(V ) → Mψ′(V ) of
central extensions, and it is given by

δψψ′(g, ξ) = (g, ra(g)ξ)

where ra(g) := (γψ(a)/γψ(1))dim(g−1)V (a,detσg)H . It restricts to an isomorphism
Mpψ(V ) → Mpψ

′
(V ), also unique.

To prove Proposition 3.12, we first study the dependence of γψ on ψ.

Lemma 3.13. For any quadratic space (A, q),

γψ′(q) = γψ(q) (γψ(a)/γψ(1))dimA(a,det q)H .

Proof. Both sides of the equation define homomorphisms W (F ) → C×. Since any
quadratic space is the perpendicular sum of one-dimensional ones, we can reduce to
the case where A = F and q(x, y) = bxy. Then γψ′(q) = γψ(ab) and the statement
amounts to the standard formula §A.4.1(b). �

Proof of Proposition 3.12. To get an isomorphism, by §3.2.1 we must check

γψ′(τ(Γ1,Γg,Γgg′)) = γψ(τ(Γ1,Γg,Γgg′)) ·
ra(gg′)

ra(g)ra(g′)
.

The right-hand side simplifies to γψ(τ(Γ1,Γg,Γgg′)) · (γψ(a)/γψ(1))d (a, δ)H where
d = dim(gg′ − 1)V − dim(g− 1)V − dim(g′ − 1)V and δ = detσgg′/(detσg detσg′).
Comparing this to Lemma 3.13, we are reduced to checking that τ(Γ1,Γg,Γgg′) has
rank d mod 2 and signed discriminant (−1)d(d−1)/2δ. This is equivalent to (9).

We therefore have an isomorphism; uniqueness follows from Lemma 3.2, and the
fact that Mpψ(V ) maps to Mpψ

′
(V ) follows from Lemma 2.5. �

Here is the analogue of Proposition 3.12 for Mψ,`(V ).

Proposition 3.14. There is a unique isomorphism δ`ψψ′ : M
ψ,`(V ) →Mψ′,`(V ) of

central extensions, and it is given by

δ`ψψ′(g, ξ) = (g, r`a(g)ξ)

where r`a(g) := (γψ(a)/γψ(1))dim(`/`∩g`) (a, θ`(g))H . It restricts to an isomorphism
Mpψ,`(V ) → Mpψ

′,`(V ), also unique.

3.15. Outer Automorphisms. Let GSp(V ) ⊂ GL(V ) be the group of symplectic
similitudes, i.e. linear transformations f ∈ GL(V ) such that there exists λ(f) ∈ F×
satisfying ω (fx, fy) = λ(f)ω (x, y) for all x, y ∈ V . Then GSp(V ) contains Sp(V )
as a normal subgroup, and so acts on it by conjugation. (In fact, according to
[Hu], any automorphism of Sp(V ) can be written as a composition ϕ ◦ Ad f with
f ∈ GSp(V ) and ϕ a field automorphism of F .)

The goal of this section is to describe explicitly an action of GSp(V ) on the
metaplectic group, lifting the conjugation action on Sp(V ). This lifting is unique.

First let us define a function Sp(V ) × F× → W (F )/I3. Given g ∈ Sp(V ), let
bg ∈W (F ) be represented by a quadratic space of rank (g − 1)V and discriminant
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detσg (thus bg = [σg] modulo I2). Now let qg,a = (qa − 1) ⊗ bg. The class of qg,a
in W (F )/I3 is independent of choices.

Proposition 3.16. For any f ∈ GSp(V ) there is a unique automorphism Nf of
M(V ) covering Ad f and restricting to the identity on W (F )/I3. It is given by
Nf (g, q) = (Ad f(g), q + qg,λ(f)).

Proof. Simple variations on Lemma 3.2 and §3.2.1 show that Nf will be a unique
isomorphism so long as

(20) τ(Γ1,ΓAd f(g),ΓAd f(gg′))− τ(Γ1,Γg,Γgg′) = qgg′,λ(f) − qg,λ(f) − qg′,λ(f)

modulo I3. Now,

ΓAd f(g) = {(v, fgf−1v)} = {(fv, fgv)} = (f, f) · Γg ⊂ V ⊕ V.

This and §A.5(d) imply that

(21) τ(Γ1,ΓAd f(g),ΓAd f(gg′)) = qλ(f) ⊗ τ(Γ1,Γg,Γgg′).

Thus the left-hand side of (20) is (qa− 1)⊗ τ(Γ1,Γg,Γgg′). By definition of qg,a, to
establish (20), it suffices to show that

τ(Γ1,Γg,Γgg′) = bgg′ − bg − bg′ mod I2.

But this is equivalent to (9). �

Remark 3.1. Proposition 3.16 is stated for M(V ), but the uniqueness of Mp(V )
(§2.4.1) implies that Nf restricts to an automorphism of that subgroup, which is
again the unique automorphism covering Ad f .

3.16.1. A description of the automorphisms of M `(V ), Mψ(V ), and Mψ,`(V ) cov-
ering the action of GSp(V ) is easily deduced in parallel to Proposition 3.16, using
the isomorphisms of §3.6–3.11. For example, we have

Proposition 3.17. For any f ∈ GSp(V ) there is a unique automorphism Nψ,`
f

of Mψ,`(V ) covering Ad f and restricting to the identity on Z8. It is given by
Nψ,`
f (g, ξ) = (Ad f(g), γψ(τ(`, g`, gf−1`, f−1`)) · rf

−1`
λ(f) (g) · ξ).

Proof. Put a := λ(f), ψ′(x) = ψ(ax), and `′ = f−1`. By §A.5(d), we have

cψ,`(Ad f(g),Ad f(g′)) = γψ(τ(`, fgf−1`, fgg′f−1`)

= γψ′(τ(`′, g`′, gg′`′)) = cψ′,`′(g, g′).

It follows that s : (g, ξ) 7→ (Ad f(g), ξ) is an isomorphism Mψ′,`′(V ) → Mψ,`(V )
and thence that Nψ,`

f (g, ξ) = s ◦ δ`′ψψ′ ◦ δ
ψ
``′ is an automorphism of Mψ,`(V ) of the

required kind. �

Remark 3.2. Proposition 3.17 is related to Proposition 3.16 in the sense that we
must have Nψ,`

f ◦ α`ψ ◦ α` = α`ψ ◦ α` ◦Nf .

4. Heisenberg Group and Weil Representation

Henceforth F is a finite or local field with characteristic not 2.
In this section we recall the definition and basic properties of the Weil represen-

tation ρψ,`. A more detailed exposition can be found in [LV, §1.2-1.4 and appendix].
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4.1. Hilbert spaces and norms. In describing representations, we use natural
Hilbert spaces of half-densities, with the notation laid out in Appendix A.3.1. Thus
if X is a finite-dimensional vector space over F then L2(X) denotes the space of
L2 functions X → Ω1/2(X).

4.2. The Heisenberg Group. The Heisenberg group H(V ) based on V is, as a
set, the direct product H(V ) = V × F , equipped with the multiplication

(v, s)(w, t) = (v + w, s+ t+
1
2
ω (v, w)).

The centre of H(V ) is the factor F . We are interested in representations of H(V )
with fixed central character ψ. To avoid always writing the action of the centre, note
that such a representation ρ is determined by the family of operators {ρ(v)}v∈V ,
which satisfy

ρ(v)ρ(w) = ψ( 1
2ω (v, w)) · ρ(v + w).

Theorem 4.3 (Stone-Von Neumann). H(V ) has, for each non-trivial, continuous
central character ψ, a unique isomorphism class of continuous6, unitary, irreducible
representations.

The proof over R can be found in [LV] §1.3, and a general exposition is in [Pr2].
The main step is Proposition 5.2(a) below.

4.4. Formulas for Its Representation. For chosen ` ∈ Lagr(V ), the represen-
tation from Theorem 4.3 is realized by

ρψ,`H := IndH`×F (ψ̃)

where ψ̃ is the composition ` × F → F
ψ→ C×. One has the following explicit

description of the corresponding Hilbert space Hψ,`. It is the completion of the
space of smooth functions φ : V → Ω1/2(V/`) that satisfy

(22) φ(v + w) = φ(v)ψ( 1
2ω (v, w)) ∀w ∈ `

and that are finite under the norm

|φ|2 :=
∫
v∈V/`

φ(v)φ(v).

The action of H(V ) on Hψ,` is given, for φ ∈ Hψ,` and v ∈ V , by

(23) ρψ,`H (v)φ(x) = φ(x− v)ψ( 1
2ω (v, x)).

4.4.1. Transverse Lagrangians. For any Lagrangian `′ transverse to `, the isomor-
phism V/`→ `′ yields an isometry

Res`′ : Hψ,` −→ L2(`′).

The action of H(V ) on L2(`′) is described by the formula

(24)
(
Res`′ ◦ ρψ,`H (v + v′) ◦ Res−1

`′

)
(φ)(x′) = φ(x′ − v′) · ψ(ω

(
v, x′ − 1

2v
′))

for all v ∈ ` and v′, x′ ∈ `′.

6Unitary operators are given the strong operator topology.
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4.5. The Weil Representation. Since Sp(V ) is the group of automorphisms of
H(V ) preserving the center, one obtains a projective representation ρψ,`Sp of Sp(V )
acting on Hψ,`, characterized by

ρψ,`Sp (g) ◦ ρψ,`H (v) ◦ ρψ,`Sp (g)−1 = ρψ,`H (gv).

In detail, (ρψ,`H )g : v 7→ ρψ,`H (gv) defines a representation of H(V ) on Hψ,` with
central character ψ. By Theorem 4.3, there is a unique-up-to-scale operator ρψ,`Sp (g)
on Hψ,` intertwining from ρψ,`H to (ρψ,`H )g.

Theorem 4.6 (Lion, Perrin [Pe]). There is a true representation ρψ,`Mp of Mpψ,`(V ),
uniquely characterized by the formulas

ρψ,`Mp(g, ξ) ◦ ρψ,`H (v) ◦ ρψ,`Mp(g, ξ)−1 = ρψ,`H (gv) ρψ,`Mp(1, ξ) = ξ · id.

The operators ρψ,`Mp(g, ξ) : Hψ,` → Hψ,` are given on Schwartz functions φ by

ρψ,`Mp(g, ξ)φ(x) := ξ ·
∫
y∈(g−1`)/(`∩g−1`)

φ(g−1x+ y)ψ
(

1
2ω

(
y, g−1x

))
µψ,`g

where µψ,`g ∈ Ω1

(
(g−1`)/(` ∩ g−1`)

)
is the unique invariant measure such that

ρψ,`Mp(g, ξ) is unitary.

Remark 4.1. More concretely, µψ,`g is characterized by the following property. First,
g−1`/(` ∩ g−1`) and `/(` ∩ g−1`) are Pontryagin-dual abelian groups under the
pairing ψ◦ω. Let µ be the measure on `/(`∩g−1`) dual to µψ,`g . Choose a measure µ0

on `∩g−1`. Then µψ,`g ⊗µ0 and µ⊗µ0 are measures on g−1` and ` respectively. The
property is that these measures correspond under the isomorphism g : g−1`→ `.

4.7. Definition. Let ρψ,` be the representation of Mpψ,`(V ) nH(V ) defined by

ρψ,`(g, ξ; v, t) = ρψ,`Mp(g, ξ) ◦ ρψ,`H (v, t).

We also use ρψ,` to denote the corresponding representation of Mp(V ) n H(V ),
defined using the canonical isomorphism α`ψ ◦ α` = αψ` ◦ αψ : Mp(V ) → Mpψ,`(V ).
Thus for q ∈W (F )/I3,

ρψ,`Mp(g, q) := ρψ,`Mp(g, ξ), with ξ := γψ(q + τ(`⊕ `,Γ1,Γg, `⊕ g`)) ∈ Z8.

5. The Character: Proof of Theorem B

The goal of this section is to prove Theorem B. There are two main ideas involved:
first, the Weyl transform, developed in §5.1; second, the homomorphism Sp(V ) →
Sp(V ⊕ V ), studied in §5.4. We conclude the proof of Theorem B in §5.6.

5.1. Weyl Transform. Let S(V ) ⊂ L2(V ) be the subspace of Schwartz-class half-
densities.7 Let End0 Hψ,` ∼= S(V/`×V/`) be the algebra of operators on the Hilbert
space Hψ,` ∼= L2(V/`) that can be represented by Schwartz-class integral kernels.
It is dense in the algebra End Hψ,` ∼= L2(V/`× V/`) of Hilbert-Schmidt operators
(i.e. those with L2 integral kernels).

7 Note that our exposition here differs slightly from the sketch in §1.3(C) in that we use half-

densities rather than measures; the square-root µ
1/2
V of the self-dual measure for ψ ◦ω can be used

to pass between the two.
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The following proposition is well known (it is the heart of the Stone-von Neumann
Theorem 4.3). As usual, µV denotes the measure on V self-dual with respect to
ψ ◦ ω.

Proposition 5.2. For h ∈ S(V ), let Wψ,`(h) be the operator on Hψ,` defined by

(25) Wψ,`(h)(φ)(x) =
∫
v∈V

ρψ,`H (v)φ(x) · h(v)µ1/2
V .

Then
(a) Wψ,` is an isomorphism S(V ) → End0(Hψ,`) and extends to an isometry

Wψ,` : L2(V ) → End(Hψ,`).

(b) If we equip L2(V ) with the multiplication

(f1 ? f2)(x) :=
∫
v∈V

f1(v)ψ( 1
2ω (v, x)) f2(x− v)µ1/2

V

then Wψ,` becomes an algebra isomorphism Wψ,` : L2(V ) → End(Hψ,`).
(c) For h ∈ S(V ), the operator Wψ,`(h) is trace class, and

TrWψ,`(h) · µ1/2
V = h(0).

Proof. Choose `′ transverse to `, and identify L2(V ) = L2(` × `′). Let F0 be the
Fourier transform L2(`) → L2(`′) with respect to the pairing ψ ◦ 1

2ω:

F0f(a′) := ‖2‖−
dimV

4

∫
a∈`

f(a)ψ( 1
2ω (a, a′))µ1/2

V .

(There is a canonical isomorphism Ω1/2(`) ⊗ Ω1/2(V ) = Ω1(`) ⊗ Ω1/2(`′) which
allows us to interpret F0 as a map from half-densities on ` to half-densities on `′.)
Let A ∈ GL(`′ × `′) be the isomorphism A(a′, x′) = (x′ + a′, x′ − a′). Write A∗ for
the corresponding isometry f 7→ ‖2‖(dimV )/4 (f ◦A) of L2(`× `′).

Lemma 5.3. Wψ,` factors as a composition of isometries

L2(V ) L2(`× `′)
F0⊗id

// L2(`′ × `′) A∗ // L2(`′ × `′) End(Hψ,`).

Proof. By (25) and (24), we have

Wψ,`(h)φ(x′) =
∫

(a,a′)∈V

φ(x′ − a′) · ψ(ω
(
a, x′ − 1

2a
′)) · h(a, a′)µ1/2

V

=
∫

a′∈`′

φ(a′)
∫
a∈`

ψ( 1
2ω (a, x′ + a′)) · h(a, x′ − a′)µ1/2

V(26)

with a change of variables a′ 7→ x′ − a′; this is exactly what the lemma claims. �

Part (a) of the proposition follows from the fact that Fourier transforms preserve
the Schwartz class. In part (b), the ?-product is just the product induced on L2(V )
by viewing it as the ψ-coinvariants of the group algebra L2(H(V )); thus the fact
that Wψ,` is a homomorphism is just due to the fact that ρψ,`H is a representation.

As for part (c), formula (26) expresses Wψ,`(h) as a smooth integral kernel; we
calculate the trace by integrating along the diagonal x′ = a′ to find

TrWψ,`(h) · µ1/2
V =

∫
a′∈`′

∫
a∈`

ψ(ω (a, a′)) · h(a, 0)µV = h(0),
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the last equality being Fourier inversion. �

Remark 5.1. Since trace-class operators form an ideal among bounded operators,
we conclude from Proposition 5.2(c) that for any (g, q) ∈ Mp(V ) and any h
smooth and compactly supported (or even Schwartz) on V , the composed oper-
ator ρψ,`Mp(g, q) ◦Wψ,`(h) is also trace-class; its trace is the integral of Tψ(g,q) against

h (this is the defining property of Tψ(g,q) in Theorem B). Moreover, if h is now
compactly supported on Mpψ,`(V ) n H(V ), we can see why Tr ρψ,`(h) (i.e. the
right-hand side of (2)) is well defined. For let hg,ξ,t be the restriction of h to
{(g, ξ)}×V ×{t} ⊂ Mpψ,`(V ) nH(V ); then (g, ξ, t) 7→ ψ(t)ρψ,`Mp(g, ξ) ◦Wψ,`(hg,ξ,t)
is a continuous, compactly supported, hence integrable function from Mpψ,`(V )×F
to trace-class operators, and the trace of its integral is Tr ρψ,`(h).

5.4. Doubling. The metaplectic group Mp(V ) acts on L2(V ) in two ways. First
we have a representation A1,

A1(g, q)(h) := (Wψ,`)−1(ρψ,`Mp(g, q) ◦Wψ,`(h)).

(The right-hand side makes sense – ρψ,`Mp(g, q) ◦Wψ,`(h) is in the image of Wψ,`

– because Hilbert-Schmidt operators form an ideal.) An integral formula for A1

will be given in Proposition 6.2. Second, let us identify Sp(V ) with the subgroup
of Sp(V ⊕ V ) acting trivially on V . The subgroup of MpΓ1(V ⊕ V ) over Sp(V ) is
precisely Mp(V ) (see Remark 2.4). We have an isomorphism

(27) b : V → Γ−1 b(x) = (−x/2, x/2)

and the restriction map ResΓ−1 : Hψ,Γ1 → L2(Γ−1) as in §4.4.1. Define

(28) R : Hψ,Γ1 → L2(V ) R := b∗ ◦ ResΓ−1

so that Mp(V ) acts on L2(V ) by

A2(g, q) := R ◦ ρψ,Γ1
Mp (g, q) ◦R−1.

Proposition 5.5. A1 = A2.

Proof. Consider the representations B1, B2 of H(V ⊕ V ) on L2(V ) defined by

B1(v̄, v)h(x) = (Wψ,`)−1(ρψ,`H (v) ◦Wψ,`(h) ◦ ρψ,`H (v̄)−1)

B2(v̄, v)h(x) = R ◦ ρψ,Γ1
H (v̄, v) ◦R−1(h)(x)

for all (v̄, v) ∈ V ⊕ V . We have

Ai(g, q) ◦Bi(v̄, v) ◦Ai(g, q)−1 = Bi(v̄, gv) Bi(1, q) = γψ(q) · id

for i = 1, 2, and, as in Theorem 4.6, A2 is uniquely characterized by these equations.
We show that in fact B1 = B2, from which it follows that A1 = A2.

Write b′(v) := (v/2, v/2) for v ∈ V , so that (v̄, v) = b(v − v̄) + b′(v + v̄). Then

B2(v̄, v)h(x) = (R ◦ ρψ,Γ1
H (v̄, v) ◦R−1)(h)(x)

= (ρψ,Γ1
H (b(v − v̄) + b′(v + v̄)) ◦R−1)(h)(b(x))

=
(
R−1(h)

)
(b(x)− b(v − v̄)) · ψ(ω (b′(v + v̄), b(x− (v − v̄)/2)))

= h(x+ v̄ − v) · ψ( 1
2ω (v + v̄, x+ v̄))
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using (24) for the third equality. On the other hand,

ρψ,`H (v) ◦Wψ,`(h) ◦ ρψ,`H (v̄)−1 =
∫
x∈V

h(x)ρψ,`H (v)ρψ,`H (x)ρψ,`H (v̄)−1 µ
1/2
V

=
∫
x∈V

h(x)ψ( 1
2ω (v + v̄, x+ v))ρψ,`H (v + x− v̄)µ1/2

V

=
∫
x∈V

h(x+ v̄ − v)ψ( 1
2ω (v + v̄, x+ v̄))ρψ,`H (x)µ1/2

V

using the multiplication law of H(V ) and then a change of variables. It follows that
B1(v)h(x) = h(x+ v̄ − v) · ψ( 1

2ω (v + v̄, x+ v̄)) = B2(v)h(x) as claimed. �

5.6. Proof of Theorem B. By definition of Tψ(g,q), we have∫
V

Tψ(g,q) hµ
1/2
V = Tr

(
ρψ,`Mp(g, q) ◦Wψ,`(h)

)
µ

1/2
V

for any h ∈ S(V ). According to Proposition 5.2(c), the right-hand side equals
A1(g, q)h(0). Therefore, by Proposition 5.5 and Theorem 4.6, we have

(29)

∫
V

Tψ(g,q) hµ
1/2
V = (R ◦ ρψ,Γ1

Mp (g, q) ◦R−1)(h)(0)

= γψ(q) ·
∫
y∈Γ

(R−1h)(y)µψ,Γ1
g

where, for brevity, Γ := Γg−1/Γ1 ∩ Γg−1 . As in the proof of Lemma A.7, define
P : V ⊕ V → V by P (v, w) = w − v; it restricts to an isomorphism P : Γ →
(g−1 − 1)V = (g − 1)V ,

P (x, g−1x) := (g−1 − 1)x = (g − 1)(−g−1x).

We use P to rewrite (29) as an integral over (g − 1)V .
Let p : Γ → Γ−1 be the projection along Γ1, and b : V → Γ−1 as in (27). Then

P = b−1 ◦ p. By (28) and (22) we have, for y ∈ Γ,

(R−1h)(y) = (Res−1
Γ−1

◦ (b∗)−1h)(y) = h(P (y))ψ( 1
2ω(p(y), y − p(y))).

Now (36) gives ω(p(y), y − p(y)) = ω(p(y), y) = −Qg−1(P (y), P (y)). Moreover, it
is easy to verify from the definition (35) that −Qg−1 = Qg. We therefore have∫

V

Tψ(g,q) hµ
1/2
V = γψ(q) ·

∫
v∈(g−1)V

h(v)ψ( 1
2Qg(v, v))P∗µ

ψ,Γ1
g

and it only remains to argue that P∗µψ,Γ1
g = µσg .

To do so, note that the natural action of g on (the second factor of) V ⊕ V fixes
Γg−1 ∩ Γ1 point-wise. Therefore, following Remark 4.1, we conclude that µψ,Γ1

g is
the measure on Γ that is self-dual with respect to ψ ◦ q, where q is the bilinear form
q(x, y) = ω (x, gy) . On the other hand, it is elementary to check that P intertwines
the forms q and σg; that is, σg(P (x), P (y)) = q(x, y). Since µσg is self-dual for
ψ ◦ σg, we must have P∗µg,Γ1 = µσg as desired.
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6. Invariant Presentation: Proof of Theorem C

6.1. Now we deduce Theorem C. Here is a reformulation of Theorem C, in terms
of the representation A1 of Mp(V ) on L2(V ) defined in §5.4. (As noted in footnote
7, we continue to deal with Hilbert spaces of half-densities rather than measures.)

Proposition 6.2. For any (g, q) ∈ Mp(V ) and h ∈ S(V ),
(30)

A1(g, q)(h)(x) = (Tψ(g,q)µ
1/2
V ? h)(x) :=

∫
v∈V

Tψ(g,q)(v)ψ( 1
2ω (v, x))h(x− v)µ1/2

V .

Proof. Suppose h is Schwartz. Setting h̃ := A1(g, q)(h), we want to calculate h̃(x).
For any f ∈ S(V ) one has Wψ,`(f) ◦ ρψ,`H (x) = Wψ,`(fx), where

fx(v) := f(v − x)ψ( 1
2ω (v, x)).

According to Proposition 5.2(c),

h̃(x) = h̃−x(0) = Tr(Wψ,`(h̃−x)) · µ1/2
V .

Unravelling the definitions, we find

h̃(x) = Tr(Wψ,`(h̃) ◦ ρψ,`H (−x)) · µ1/2
V

= Tr(ρψ,`Mp(g, q) ◦Wψ,`(h) ◦ ρψ,`H (−x)) · µ1/2
V

=
∫
V

Tψ(g,q) h−x µ
1/2
V

=
∫
v∈V

Tψ(g,q)(v)ψ( 1
2ω (v,−x))h(v + x)µ1/2

V .

Since Tψ(g,q) is an even function on V , we obtain the right-hand side of (30). �

7. Transfer Factor: Proof of Theorem D

7.1. First, §7.2, we give a purely algebraic proof, using the central characters to
distinguish between ρψ,`+ and ρψ,`− . Then, §7.4, we sketch an alternative argument,
because it emphasizes the structure of the Weyl transform, and leads naturally to
the geometrization mentioned in §1.3. Both methods rely on the following obser-
vation.

The decomposition ρψ,`Mp = ρψ,`+ ⊕ρψ,`− into irreducible representations corresponds
to the decomposition of the representation space Hψ,` ∼= L2(`′) into even and odd
functions. Let Π: Hψ,` → Hψ,` be the parity operator defined by

(Πf)(x) = f(−x).

Then, as generalized functions on Mp(V ),

Tr ρψ,`± (g, q) = 1
2 Tr(ρψ,`Mp(g, q)± ρψ,`Mp(g, q) ◦Π),

whence

(31) Tr(ρψ,`+ − ρψ,`− )(g, q) = Tr(ρψ,`Mp(g, q) ◦Π).
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7.2. ‘Algebraic’ Proof. The representations ρψ,`+ and ρψ,`− have different central
characters, and this can be used to distinguish them. Concretely, the central el-
ement (−1, 1) ∈ Mpψ,`(V ) acts as Π on Hψ,`. Given (g, ξ) ∈ Mpψ,`(V ), one has
(g, ξ)(−1, 1) = (−g, ξ) ∈ Mpψ,`(V ), and therefore

(Tr ρψ,`+ − Tr ρψ,`− )(g, ξ) = Tr ρψ,`Mp(−g, ξ).

On the other hand, if in the notation of §3.3 we have α`(g, q) = (g, ξ), then
α−1
` (−g, ξ) = (−g, q + εg) as elements of Mp(V ), where

εg := τ(`⊕ `,Γ1,Γg, `⊕ g`)− τ(`⊕ `,Γ1,Γ−g, `⊕ (−g)`).

Since the central factor W (F )/I3 ⊂ Mp(V ) acts through γψ, we have

(Tr ρψ,`+ − Tr ρψ,`− )(g, q) = Tr ρ(−g, q + εg) = Tr ρψ,`(−g, q) · γψ(εg).

Thus it remains to prove the following lemma, which relies on the combinatorics of
the Maslov index.

Lemma 7.3. One has εg = Qg in W (F ).

Proof. Consider the polyhedron with two triangular and two quadrilateral faces:

`⊕ `

yy
y HHH

Γ1

RRRRRRRRRR `⊕ g`

Γ−g Γg

As explained in §A.5.2, the sum of the Maslov indices of the faces vanishes. The
sum over the two quadrilateral faces is εg (note that (−g)` = g`); therefore

εg = τ(Γ−g,Γ1,Γg) + τ(Γg, `⊕ g`,Γ−g).

The second term must vanish, since

τ(Γg, `⊕ g`,Γ−g) = −τ(Γ−g, `⊕ g`,Γg) = −τ(Γg, `⊕ g`,Γ−g)

by §A.5(a) and (d) applied to 1⊕ (−1) ∈ GL(V ⊕V ). The first term τ(Γ−g,Γ1,Γg)
equals τ(Γ1,Γg,Γ−1) by §A.5(d) applied to (x, y) 7→ (g−1y, x), with λ = −1; but
Lemma A.7 says that τ(Γ1,Γg,Γ−1) is the class of Qg. �

7.4. ‘Analytic’ Proof.

Lemma 7.5. For any h ∈ S(V ), we have Wψ,`(h)◦Π = Wψ,`(Fh), where F : L2(V ) →
L2(V ) is the Fourier transform

(Fh)(x) := ‖2‖−
dimV

2

∫
v∈V

h(v)ψ( 1
2ω (v, x))µV .

Moreover, Π ◦Wψ,`(h) ◦Π = Wψ,`(Πh) where Πh(v) := h(−v).

Proof. The last statement follows directly from (26). From there, too, one sees that
Wψ,`(h)◦Π is represented by the kernel A∗◦B∗◦(F0⊗id)(h), where B(a, b) = (b, a).
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The result then follows from the commutativity of the diagram

L2(V )

Wψ,`◦F
��

L2(`× `′)
F0⊗id

// L2(`′ × `′)
id⊗F−1

0 //

B∗

��

L2(`′ × `) L2(V )

End(Hψ,`) L2(`′ × `′) L2(`′ × `′)
A∗

oo L2(`× `′)
F0⊗id

oo L2(V ).

Here the top row composes to F and the bottom row to Wψ,` by Lemma 5.3. �

Now to deduce Theorem D. For brevity, we detail only the case when F is finite,
but the infinite case is parallel. Applying the formula for Tr ρψ,`Mp from Corollary
1.4, the claim is that

Tr(ρψ,`+ − ρψ,`− )(g, q) =
√

#V −g · γψ(q)γψ(Qg).(32)

By Theorem C, ρψ,`Mp(g, q) is the Weyl transform Wψ,`(Tψ(g,q) µ
1/2
V ), so (31), Lemma

7.5, and Proposition 5.2(c) give

Tr(ρψ,`+ − ρψ,`− )(g, q) = Tr(ρψ,`Mp(g, q) ◦Π)

= TrWψ,`(F(Tψ(g,q)µ
1/2
V ))

= F(Tψ(g,q))(0).(33)

The result now follows from Theorem B and the definition of γψ in §A.3. In detail:

F(Tψ(g,q))(0) = γψ(q) ·
∫
v∈V

ψ( 1
2Qg(v, v)) ·D

ψ
g · µV (by Thm B)

= γψ(q) ·
∫
v∈(g−1)V

ψ( 1
2Qg(v, v)) · µσg (by def. of Dψ

g )

= γψ(q) ·M
∫
v∈(g−1)V/V −g

ψ( 1
2Qg(v, v)) · µQg (see below)

= Mγψ(q)γψ(Qg) (by def. of γψ).

To explain the third line, there is a unique measure µ on V −g such that µσg is
a product measure µσg = µ ⊗ µQg , and then M :=

∫
V −g µ. However, a self-dual

measure on a vector space X is always 1/
√

#X times counting measure; this implies
that M =

√
#V −g, and the proof of (32) is complete.

Appendix A. Witt, Weil, Maslov, Cayley

A.1. Witt Group. (The basic reference is [Lam].) Let F be a field of characteris-
tic not 2. A quadratic space is a pair (W, q), where W is a finite-dimensional vector
space over F and q : W ⊗W → F is a nondegenerate symmetric bilinear form. The
perpendicular direct sum and the tensor product of two quadratic spaces can be
defined in an obvious way. With these operations, the set of isomorphism classes of
quadratic spaces forms a commutative semiring. The Witt group (or ring) W (F )
is the commutative ring defined by imposing the relation

(W, q) + (W,−q) = 0.

The dimension (or rank) of a quadratic space (W, q) is dimW ∈ Z. The discrimi-
nant of (W, q) is defined as follows. First, q defines a symmetric map Φ: W →W ∗
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such that q(x, y) = Φ(x)(y). Suppose e1, . . . , en is a basis for W , and e∗1, . . . , e
∗
n the

dual basis for W ∗: e∗i (ej) = δij . Then det q ∈ F is the scalar such that

Φe1 ∧ · · · ∧ Φen = (det q)(e∗1 ∧ · · · ∧ e∗n) ∈ ∧nW ∗.

The class of det q in F×/(F×)2 is well defined, and is called the disciminant of
(W, q). The signed discriminant sdet q of (W, q) is (−1)n(n−1)/2 det q ∈ F×/(F×)2.

Define a commutative ring W0(F ) to be Z/2Z × F×/(F×)2 as a set, with the
operations

(d1,∆1) + (d2,∆2) := (d1 + d2, (−1)d1d2∆1∆2)

(d1,∆1)(d2,∆2) := (d1d2,∆d2
1 ∆d1

2 ).

The dimension and signed discriminant together define a surjective homomorphism

Q̃ = (dim, sdet) : W (F ) →W0(F ).

Let I ⊂ W (F ) be the kernel I = ker(dim). Then ker Q̃ = I2 (see [Lam, Ch. 2,
Prop. 2.1]). In other words, Q̃ identifies W (F )/I2 with W0(F ).

Remark A.1. Note that the dimension and signed discriminant make sense for any
nondegenerate bilinear form, symmetric or not. Such a form q therefore defines a
class [q] in W0(F ) = W (F )/I2.

A.1.1. Finite and Local Fields. We want to describe W (F )/I3, in case F is a finite
or local field. For a, b ∈ F×, the Hilbert symbol (a, b)H is defined to equal 1 if a is
a norm from F (

√
b), and to equal −1 if not. Let ZF be the image of the Hilbert

symbol; it is either ZF = {±1} (when F is real or non-archimedean) or ZF = {1}
(when F is finite or complex). The Hasse invariant s(q) ∈ {±1} of a quadratic space
(W, q) over F can be defined inductively by s(q⊕q′) = s(q)s(q′)(det q,det q′)H , and
s(q) = 1 if dim q = 1.

Theorem A.2. Let F be any field of characteristic not 2. Two classes in W (F )
are equal modulo I if and only if they can be represented by quadratic spaces of the
same rank. Two quadratic spaces of the same rank have the same class modulo I2 if
and only if they have the same discriminant. If F is a finite or local field, then two
quadratic spaces of the same rank and discriminant have the same class modulo I3

if and only if they have the same Hasse invariant; moreover, I2/I3 is canonically
isomorphic to ZF .

Proof. For the first statement, every class inW (F ) is represented by some quadratic
space (see e.g. [Lam, Ch. 2, Prop. 1.4(1)]). If our two classes are represented by
(W, q) and (W ′, q′), with dimW − dimW ′ = 2m ≥ 0, let (W0, q0) be any quadratic
space of rank m. Then q ⊕ q0 ⊕ (−q0) has the same class as q′ and the same rank
as q. The second statement follows from the isomorphism Q̃ : W (F )/I2 →W0(F ).

For the third statement, we use the fact that two quadratic spaces of the same
dimension have the same class in W (F ) if and only if they are isometric ([Lam, Ch
2, Prop. 1.4(3)]). There are four cases.

First, suppose F is nonarchimedean local. Then two quadratic spaces are iso-
metric if and only if they have the same rank, discriminant, and Hasse invariant
([Lam, Ch. 6, Thm. 2.12]); moreover, I3 = 0 ([Lam, Ch. 6, Cor. 2.15]). So two
quadratic spaces of the same rank have the same class in W (F ) = W (F )/I3 if and
only if they have the same discriminant and Hasse invariant.
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Second, suppose F = Fq. This time quadratic spaces are isometric if and only
if they have the same rank and discriminant [Lam, Ch 2, Thm. 3.5]); the Hasse
invariant (like the Hilbert symbol) always equals 1. From this it follows that I3 =
I2 = 0, and we can argue as for the nonarchimedean local case.

Third, suppose F = C. Now two quadratic spaces are isometric if and only if
they have the same rank; the discriminant and Hasse invariant (like the Hilbert
symbol) always equal 1. This time I3 = I = 0, and we can argue as before.

Fourth, suppose F = R. Isomorphism classes of quadratic spaces are classified
by pairs (n+, n−) of nonnegative integers, n± being the dimension of the largest
positive/negative-definite subspace. The ‘signature’ sig : (n+, n−) 7→ n+ − n− de-
fines an isomorphismW (F ) → Z, identifying I with 2Z and I3 with 8Z. (For all this
see ([Lam, Ch. 2, Prop 3.2].) One finds that the rank is dim(n+, n−) = n+ + n−,
det(n+, n−) = (−1)n− , and s(n+, n−) = (−1)n−(n−−1)/2. It follows that the rank
and discriminant determine the signature mod 4, and that for fixed rank and dis-
criminant, the two choices of Hasse invariant correspond to the two choices of
signature mod 8.

For the last statement, it is formally only necessary to show that I2/I3 and ZF
have the same number of elements, which follows from the above considerations;
however, we will explain the isomorphism using the Weil index – see A.4.1(d) below.

�

A.3. Weil Index. In this section, let F be a finite or local field of characteristic
not 2. The Weil index is a homomorphism γψ : W (F ) → Z8, where Z8 ⊂ C× is the
group of eighth-roots of unity. It is defined using Fourier transforms.

A.3.1. Densities and Measures. First let us recall some facts about measures and
densities that will be useful both here and in the main text. A nice introduction to
densities can be found in [Wo, §5.9].

For s ∈ R, and X any finite-dimensional vector space over F , let Ωs(X) denote
the space of complex translation-invariant s-densities on X; it is a one-dimensional
complex vector space, the complexification of the space of real translation-invariant
s-densities. In particular, there is a canonical isomorphism Ω1/2(X)⊗C Ω1/2(X) →
Ω1(X), and every positive invariant density (i.e. Haar measure) µ ∈ Ω1(X) has a
canonical square-root µ1/2 ∈ Ω1/2(X). The space of functions X → Ω1/2(X) has a
natural Hermitian inner product:

(f1, f2) :=
∫
X

f1f2

considering f1f2 : X → Ω1/2(X)⊗Ω1/2(X) = Ω1(X) as a density on X. Let L2(X)
denote the corresponding Hilbert space.

A perfect pairing B : X ⊗F Y → U(1) (making X the Pontryagin dual of Y )
associates to each non-zero µ ∈ Ω1(X) a dual measure µ∗ ∈ Ω1(Y ). It can be
usefully characterized by the Fourier inversion formula (Fµ

∗

B∗F
µ
Bf)(z) = f(−z) for

all Schwartz functions f : X → C. Here

(FµBf)(y) =
∫
x∈X

f(x)B(x, y)µ

and B∗(y, x) := B(x, y) for all (x, y) ∈ X × Y .
If Y = X then there is a unique self-dual µ ∈ Ω1(X) such that µ∗ = µ. Of

particular interest is the situation where B = Bψq := ψ ◦ q for some non-trivial,
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continuous homomorphism ψ : F → U(1) and some nondegenerate bilinear form
q : X ⊗F X → F . It is easy to see from the Fourier inversion formula that if
µψq is self-dual for Bψq , then the measure that is self-dual for Bψaq, a ∈ F×, is
µψaq = ‖a‖(dimX)/2

µψq .

A.3.2. Definition. Suppose now that (X, q) is a quadratic space (i.e. q is from
now on symmetric). We fix a non-trivial, continuous homomorphism ψ : F → U(1)
and write fψq for the function fψq (x) = ψ( 1

2q(x, x)).

Theorem A.4 ([We, Thm 2 and Prop. 3]). There exists a number γψ(q) ∈ Z8 such

that F
µψq

Bψq
fψq = γψ(q) ·fψ−q as generalized functions on X. Moreover, (X, q) 7→ γψ(q)

defines a character γψψ : W (F ) → Z8.

Note that fψq is not Schwartz, but its Fourier transform can be defined in the
sense of distributions.

A.4.1. Properties. The following properties of γψ are used in this paper, and go
back to [We]. For a ∈ F×, let qa be the bilinear form qa(x, y) = axy on F , and
write γψ(a) := γψ(qa). We again write (·, ·)H for the Hilbert symbol, and ZF for its
image (see §A.1.1).

(a) If ψ′(x) = ψ(ax), then γψ(qa ⊗ q) = γψ′(q).
(b) γψ(a) γψ(b) = γψ(1) γψ(ab) (a, b)H .
(c) Taking ZF ⊂ {±1} to be the image of the Hilbert symbol (see A.1.1),

γψ(q) ∈ ZF · γψ(1)dim q−1γψ(det q).

In fact the sign is given by the Hasse invariant of q.
(d) γψ is trivial on I3 ⊂W (F ), and γψ restricts to an isomorphism I2/I3 → ZF .

Proofs. Statement (a) follows easily from the definition of γψ in Theorem A.4 (note
that fψqa⊗q = fψ

′

q , Bψqa⊗q = Bψ
′

q , µψqa⊗q = µψ
′

q ). Statement (b) is equivalent to the
last formula on p. 176 of [We]. Statement (c) follows from (b) by induction on the
dimension (i.e. if we decompose q as a perpendicular sum of two smaller spaces).
The first part of statement (d) follows from Theorem A.2: if two classes in W (F )
are equal modulo I3, then they can be represented by spaces of the same rank,
discriminant, and Hasse invariant, and so by (c) have the same Weil index. For the
second part of (d), set qa,b = (q1 ⊕ q−a) ⊗ (q1 ⊕ q−b) = q1 ⊕ q−a ⊕ q−b ⊕ qab, for
any a, b ∈ F×; I2 is generated by forms of this type ([Lam, Ch. 2, Prop. 1.2]). By
(b), γψ(qa,b) = (a, b)H , so indeed γψ(I2) = ZF . To see that I3 is the kernel of γψ
on I2, recall from Theorem A.2 that any two classes in I2 can be represented by
quadratic spaces (W, q), (W ′, q′) of the same rank and discriminant; according to
(c), γψ(q) = γψ(q′) if and only if s(q) = s(q′), in other words (again according to
Theorem A.2) if and only if q = q′ mod I3. �

A.5. Maslov Index. In this section, let F be any field of characteristic not 2. Let
(V, ω) be a finite-dimensional symplectic vector space over F . The Maslov index
τ associates to each arbitrary sequence `1, . . . , `n ⊂ V of Lagrangian subspaces, a
class τ(`1, . . . , `n) in W (F ). It is characterized by the following properties:

(a) Dihedral symmetry:

τ(`1, . . . , `n) = −τ(`n, . . . , `1) = τ(`n, `1, . . . , `n−1).
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(b) Chain condition: For any j, 1 < j < n,

τ(`1, `2, . . . , `j) + τ(`1, `j , . . . , `n) = τ(`1, `2, . . . , `n).

(c) Additivity: If V, V ′ are symplectic spaces, `1, . . . , `n ∈ Lagr(V ), `′1, . . . , `
′
n ∈

Lagr(V ′), so that `i ⊕ `′i ∈ Lagr(V ⊕ V ′), then we have

τ(`1 ⊕ `′1, . . . , `n ⊕ `′n) = τ(`1, . . . , `n) + τ(`′1, . . . , `
′
n).

(d) Invariance: Suppose g ∈ GL(V ) satisfies ω (gx, gy) = λω (x, y) for all x, y ∈
V . Then

τ(g`1, . . . , g`n) = qλ ⊗ τ(`1, . . . , `n)

where qλ ∈W (F ) is the bilinear form on F defined by (x, y) 7→ λxy.
(e) τ(`1, `2, `3) can be represented by the (possibly degenerate) bilinear form

on `2 ∩ (`1 + `3) given by (x, y) 7→ ω(x, y3) (where y = y1 + y3 with yi ∈ `i).
For a definition and proofs of (a) and (b) see [Th]; (c), (d), and (e) are simple
consequences of the definition given there.

A.5.1. Rank and Discriminant. The rank and discriminant were calculated in
[PPS, Prop. 2.1], with the following result. For each Lagrangian `, choose an ‘ori-
entation’ o, that is, a non-zero element det(`), the top exterior power of `. Given
(`, o), (`′, o′), choose an isomorphism α : `→ `′ such that α is the identity on `∩ `′,
and α∗(o) = o′. Consider the nondegenerate bilinear form q(x, y) = ω(α(x), y) on
`/` ∩ `′. Set

Q(`, o; `′, o′) = [q] ∈W (F )/I2

(in the notation of Remark A.1). It is easy to check that Q(`, o; `′, o′), unlike q,
is independent of the choice of α; moreover, Q(`′, o′; `, o) = −Q(`, o; `′, o′). What
[PPS] show is that

(34) τ(`1, . . . , ln) =
∑

i∈Z/nZ

Q(`i, oi; `i+1, oi+1) mod I2

for any choice of orientations oi ∈ det `i.

A.5.2. Polygons and polyhedra. Properties (a) and (b) deserve further comment.
Suppose given an oriented n-sided polygon F with vertices `1, . . . , `n. The dihedral
symmetry (a) allows us to unambiguously define τ(F ) = τ(`1, . . . , `n); reversing
the orientation of the polygon reverses the sign of τ(F ). The chain condition (b)
has the following interpretation: suppose that P is a closed, oriented polyhedron
with vertices `1, . . . , `n. Then (b) implies that∑

F

τ(F ) = 0

where the sum is over the faces F of P .

A.6. Cayley Transform. We continues with any field F of characteristic not 2.
Let (V, ω) be a finite-dimensional symplectic vector space over F .
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A.6.1. Formulas. For all g ∈ Sp(V ) there is a symmetric form Q on V given by

Q(x, y) = 1
2ω ((g + 1)x, (g − 1)y) .

The kernel is V g + V −g (a direct sum in V ). The corresponding map Sp(V ) →
Sym2(V ∗) = sp(V ) is the Cayley transform (usually defined without the factor 1

2 );
it is traditionally formulated [Ca] as a bijection between the open subsets of Sp(V )
and sp(V ) defined (in both cases) by the condition det(g − 1) 6= 0.

The canonical isomorphism V/V g → (g − 1)V transfers Q to a symmetric form
Qg on (g − 1)V , with kernel V −g. This is the form used in the main text:

(35) Qg((g − 1)x, (g − 1)y) := 1
2ω ((g + 1)x, (g − 1)y) ∀x, y ∈ V.

It is easy to check that Qg = −Qg−1 = Q−g−1 .

A.6.2. The Cayley form as a Maslov index. Let V be the same vector space V ,
but equipped with symplectic form −ω. For g ∈ Sp(V ), we write Γg for the graph
Γg = {(v, gv) | v ∈ V } considered as a Lagrangian subspace of the symplectic
vector space V ⊕ V .

Lemma A.7. The class of Qg in the Witt group W (F ) equals the Maslov index
τ(Γ1,Γg,Γ−1).

Proof. Let p : V ⊕ V → Γ−1 be the projection along Γ1. According to A.5(e),
τ(Γ1,Γg,Γ−1) can be represented by the degenerate symmetric bilinear form on Γg
defined by

q(x, y) = ω (x, p(y)) .

Now consider the map P : V ⊕ V → V given by P (v, w) = w − v. We have the
following more precise claim, which is easy to check: P induces an isomorphism
Γg/Γ1 ∩ Γg → (g − 1)V that is an isometry between q and Qg. In particular

(36) Qg(P (x), P (y)) = ω (x, p(y)) .

�

References

[Ad] J. Adams, ‘Lifting of characters on orthogonal and metaplectic grouops’, Duke Math. J. 92
(1998) 129–178.

[Ca] A. Cayley, ‘Sur quelques propriétés des déterminants gauches’, Crelle’s 32 (1846) 119-123.
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