
COBORDISMS, CATEGORIES, QUADRATIC FORMS

TERUJI THOMAS

1. Introduction

These are some notes of a talk I gave at the Oxford topology seminar on 11
February 2008. The first object, in §3, is to explain how the classical theory of the
signature of manifolds can be formulated as a TFT, that is, as a functor from the
cobordism category to a certain symmetric monoidal category of quadratic forms. I
then sketch two closely related generalisations. The first, in §5, describes the Maslov
index as the signature on a category of “decorated cobordisms.” The second, in §7
explains how to define a signature 2-functor on a 2-category of cobordisms.

So far, of course, this is a story of old wine in new bottles. One point of categories
is to clarify structural relationships, and for me, that is already a powerful motive.
A more concrete point is the role of categories in K-theory since Quillen. In §4
I describe very briefly a connection between the present work and Hermitian K-
theory. In some sense these notes are prospective to studying that relationship.

Finally, in §8, I explain in categorical terms the relationship between the Maslov
index and the universal covering space of the Lagrangian Grassmannian (or of the
symplectic group). This was one reason the Maslov index was originally studied
(by Leray, Hormander, Kashiwara, etc.; another route was through Wall’s work in
topology, as in §6). On the other hand, this clean categorical statement is hard to
find; in the TFT literature, one sees vague and possibly incorrect statements.

Serge Lang once told me that what is called 2π should have been called π. In a
similar spirit, my “Maslov index” τ in these notes differs from the traditional one
by a sign.

2. Signatures

Let F be any field; when F has characteristic 2, one probably has to be more
careful than I have been.

2.1. Quadratic spaces. A quadratic space is a vector space V over F equipped
with a non-degenerate quadratic form q. Non-degenerate means that V ⊥ = 0.

Now suppose our ground field F = R. The signature of V can be defined (as
apparently by Sylvester) in the following way. Choose an orthonormal basis {ei}
for V , so that q(ei) = ±1. Then

Sig(V ) :=
∑

q(ei).

It is an integer, and is independent of the choice of basis.
When F 6= R, the signature of V can be defined not as an integer but as a class

in the Witt group W (F ), as I explain in §3.

2.2. Manifolds. Let M be a closed oriented 4n-manifold. Then VM := H2n(M,F )
is a quadratic space under Poincaré duality. That is, one has the cup product
VM⊗VM → H4n(M,F ), and the orientation gives an isomorphism H4n(M,F ) → F .

One now defines (following Thom) Sig(M) := Sig(VM ), and one has the following
well-known properties.

(a) Sig(M tN) = Sig(M) + Sig(N)
1
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(b) Sig(∂M) = 0 whenever M is a (4n + 1)-manifold.
In other words, Sig is a cobordism invariant.

3. The Signature Functor

Let (4n + 1)-cob be the category of cobordisms between closed, oriented 4n-
manifolds. It is a symmetric monoidal (under t) category with duality (orientation-
reversal). The idea of this section is to define a corresponding symmetric monoidal
category Q+ of quadratic spaces and a monoidal ‘signature’ functor (4n+1)-cob →
Q+. One recovers the classical signature theory from the fact that π0(Q+) = Z
when F = R; in general, π0(Q+) is the Witt group W (F ).

3.1. The monoidal category Q+. Here is the definition.

Objects: Quadratic spaces.
Monoidal structure: Direct sum.

Duals: If V = (V, q) then the dual is V := (V,−q).
Morphisms: HomQ+(V,W ) := Lagr(V ⊕W ).

Here Lagr(V ) := {L ⊂ V | L = L⊥} is the Lagrangian Grassmannian of V .
Thus a morphism is a certain kind of correspondence between V and W . Com-

position is given by the composition of correspondences. It is easy to see, but a bit
surprising, that this composition is well-defined. The monoidal and dual structures
affect morphisms in an obvious way.

Theorem 3.1. There is a functor Sig : (4n + 1)-cob → Q+ defined as follows.
(a) If M is a 4n-manifold, define Sig(M) = VM .
(b) For N a (4n+1)-manifold, define Sig(N) = image[H2n(N,F ) → Sig(∂N)].

3.2. Symplectic version. We also define a category Q− in the same way, but
using symplectic spaces rather than quadratic spaces as the objects. Then one gets
a functor Sig : (4n + 3)-cob → Q−.

Since π0(Q−) = 0, the corresponding classical theory is trivial (or, anyway, one
needs to be cleverer). However, Q− has non-trivial higher homotopy groups.

4. Digression on K-theory.

In the literature on on Hermitian K-theory, it is not Q+ that appears, but its
subcategory Q+

mon, having as its morphisms all monomorphisms in Q+. This is a
version of “Giffen’s category”. It was proved by Marco Schlichting [Sch] that there
is a homotopy fibration sequence

K → K+ → Q+
mon

where the first map, from usual to Hermitian K-theory, is the hyperbolic map:
it is induced by the functor that takes a vector space V to the quadratic space
(V ⊕ V ∗, (a, λ) 7→ λ(a)).

5. Decorated Manifolds and the Maslov Index.

One can give a simple-minded generalisation of cobordism categories by replacing
the constant sheaf F by a more general sheaf satisfying a ‘self-duality’ property.

Let us say that a decorated manifold is a triple (M,P, φ) where M is an oriented
manifold with boundary, P a constructible sheaf of F -vector spaces, and φ : P⊗P →
F a (skew, say) pairing satisfying the following property:

Let j be the inclusion of the interior of M into M , and let D be Verdier duality.
Then we require that the natural map

j!j
∗P → DP [−dim M ],
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induced by φ, is an isomorphism.

The idea is to mimic the duality between Hi(M,F ) and Hdim M−i(M,∂M,F ).
The boundary of a decorated manifold, equipped with the restrictions of P and

φ, is again decorated. As before, one obtains a symmetric monoidal category (4n+
1)-c̃ob of decorated cobordisms, and a signature functor

Sig : (4n + 1)-c̃ob → Q−

that takes a decorated 4n-manifold (M,P, φ) to H2n(M, j!j
∗P ). This last is natu-

rally a symplectic space, because I have (arbitrarily) assumed that each φ is a skew
pairing. One similarly gets a functor (4n + 3)-c̃ob → Q+.

5.1. The Maslov Index. As explained in [Th], the Maslov index appears natu-
rally in the context of decorated cobordisms. To a symplectic space V and La-
grangians L1, . . . , Ln ∈ Lagr(V ) one associates a quadratic space and therefore a
class τ(L1, L2, . . . , Ln) ∈ π0(Q+) in the following way.

On a 2-sphere S draw an n-gon G and define a sheaf P on S that is constructible
with respect to the stratification defined by the vertices, the edges, and the interior
and exterior of G. Outside G, the stalk of P is 0; inside, the stalk is V ; the stalk
on the ith edge is Li, and the stalk at the vertex between edges i and j is Li ∩ Lj .
The transition maps between stalks are the natural inclusions.

The symplectic form on V defines a pairing φ : P ⊗ P → F , and, as explained
in [Th], the resulting triple (M,P, φ) is a decorated manifold whose signature is
τ(L1, . . . , Ln).

Moreover, one can prove identities involving the Maslov index by considering
decorated cobordisms between decorated manifolds. For example, one has

(1) τ(L1, L2, L3) + τ(L1, L3, L4) = τ(L1, L2, L3, L4).

This identity and its corollary (2) play a key role in the classical theory of the
Maslov index as developed by Kashiwara [KS] and others.

6. Wall’s Non-Additivity

Now I push a little further to consider 2-categories of cobordisms. Suppose that
M,N are 4n-manifolds, and that we have boundary decompositions

∂M = X1 ∪A X2 ∂N = X2 ∪A X3

with the Xi being (4n−1)-manifolds with boundary A = X1∩X2 = X2∩X3. Then
one can glude M,N along X2 to get a new manifold M ′ with boundary X1 ∪A X3.

In this situation, when M has a boundary, it is W := H2n(M,∂M,F ) that
carries a quadratic form; this quadratic form, however, is usually degenerate, and
one defines Sig(M) to be the signature of the quadratic space W/W⊥.

Wall’s theorem [Wa] states:

Theorem 6.1. Sig(M ′) = Sig(M) + Sig(N) + τ(L1, L2, L3), where Li := Sig(Xi)
is a Lagrangian in the symplectic space Sig(A).

Wall considered the case F = R, but the result makes sense and is true in general.

7. The Signature 2-Functor

Let (4n)-cob2 be the 2-category of cobordisms (so an object is a closed, oriented
(4n− 2)-manifold). The object here is to define a 2-categorical version of Q− that
will receive a 2-functor from (4n)-cob2.
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7.1. Step 1. Given a symplectic space V , define the Maslov category MV to have
Lagr(V ) as its set of objects, HomMV

(L1, L2) = W (F ), and composition given by

L2

q2

))RRRRRRRRRRRRRRRRRR

L1

q1

55llllllllllllllllll
q1+q2+τ(L1,L2,L3)

// L3

The only problem is to show that this composition is associative. This boils
down to checking the cocycle condition

(2) τ(L1, L2, L3) + τ(L1, L3, L4) = τ(L1, L2, L4) + τ(L2, L3, L4).

According to (1), both sides equal τ(L1, L2, L3, L4).

7.2. Step 2. Define a 2-category Q−
2 .

Objects: Symplectic spaces.
Morphisms: HomQ−2

(V,W ) is the category MV⊕W .
Composition

on objects: composition of Lagrangian correspondences.
on morphisms: addition in WF twisted by the Maslov index.

To be precise, suppose given

q1 ∈ WF = HomMV⊕W
(L1, L2) q2 ∈ WF = HomMW⊕X

(M1,M2).

Then the composition q3 ∈ WF = HomMV⊕X
(M1 ◦ L1,M2 ◦ L2) equals

q1 + q2 + τ(M1 ⊕ L1,M1 ◦ L1 ⊕∆W ,M2 ⊕ L2).

Here ∆W is the diagonal in W ⊕ W and the Maslov index is of Lagrangians in
V ⊕W ⊕W ⊕X.

That this composition is associative and functorial can be proved in the same
spirit as (2).

7.3. Signature 2-functor.

Theorem 7.1. There is a functor Sig
2
: (4n)-cob2 → Q−

2 defined as follows.

(a) If M is a (4n− 2)-manifold then Sig
2
(M) is the symplectic space Sig(M).

(b) If L is a (4n− 1)-manifold then Sig
2
(L) equals Sig(L) ∈ Lagr(Sig(∂L)).

(c) If N is a 4n-manifold then Sig
2
(N) equals Sig(N) ∈ W (F ).

7.4. Higher Categories. When defining the Maslov categories MV , it is tempting
to let the morphisms HomMV

(L1, L2) to be the category Q+ instead of the set
W (F ) = π0(Q+). The result would be a lax 2-category.1

One can try to “keep going” to define an ω-categorical version of MV and thence
of Q+. However, taking cobordism theory into account, it seems more natural to
start dealing with quadratic complexes rather than vector spaces, in the style of
Balmer [Ba] and Ranicki [Ra].

1In a usual weak 2-category one has isomorphisms of the form f1 ◦ (f2 ◦ f3) ∼= (f1 ◦ f2) ◦ f3.

Lax means, rather, that one has n-ary composites for each n, and morphisms (not necessarily
isomorphisms) of the form

f1 ◦ (f2 ◦ f3)→ f1 ◦ f2 ◦ f3 ← (f1 ◦ f2) ◦ f3.

See [Le] for more details.
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8. Relation to the fundamental groupoid

The Maslov category MV associated to a symplectic space V is a W (F )-gerbe,
that is, a connected groupoid such that the automorphism group of any object
is W (F ). The action of these automorphism groups on the hom-sets makes each
hom-set into a W (F )-torsor.

When F = R, W (F ) = Z; on the other hand, Lagr(V ) is a manifold with
π1(Lagr(V )) = Z, making the fundamental groupoid ΠV := Π1(Lagr(V ) into a
Z-gerbe as well.

Since MV and ΠV have “the same” objects and morphisms, it is natural to
conjecture (and common to assume) that the identity map MV → ΠV extends to
an isomorphism of categories; but this is not true.

What is true is that the identity map on objects extends to a functorial isomor-
phism

Π⊗2
V → MV .

Here Π⊗2
V is the following Z-groupoid. It has the same objects as ΠV , but the set of

morphisms HomΠ⊗2
V

(L, L′) is the tensor product HomΠV
(L,L′) ⊗Z HomΠV

(L,L′)
of Z-torsors; composition is induced by that in ΠV .
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