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Chapter 1

Teruji Thomas:

The Maslov Index

1.1 Introduction: The landscape of the Maslov index

There are several different things called “the Maslov index”. See [CLM] for the connections
between them. In this chapter we will consider only the “algebraic” version developed in
[Th] and references.

Let (V, ω) be a vector space over any field (with characteristic 6= 2) with symplectic
form ω. There is a set of Lagrangian subspaces

Lagr(V, ω) :=
{
L < V : L = L⊥

}
,

where W⊥ = {v ∈ V : ω(v, w) = 0 for all w ∈ W}.

Idea. The Maslov index is an invariant associated to any n-tuple in Lagr(V ), more
precisely a quadratic form. So it is a morphism

τ :
(
Lagr(V, ω)

)n −→ {
quadratic forms

}
.

(This will be made precise later.) Commonly we have n = 3, and τ is invariant (at least)
under the action of the symplectic group.

Here are some contexts in which the Maslov index plays an important role.

Example 1.1.1. If M is any smooth manifold, T ∗M is canonically a symplectic manifold
with symplectic form ω = −dλ, where λ is the canonical Liouville 1-form. So T (T ∗M)
is a family of symplectic vector spaces. For example, the vertical tangent spaces are La-
grangians. This is the original setting for the Maslov index in the theory of Maslov-Arnold
[MA], Leray [Le], Kashiwara-Schapira [KS], under the name of “micro-local analysis”.

Example 1.1.2. Let G be a Lie group with Lie algebra g. Then g∗ is a disjoint union of
coadjoint orbits (i.e. orbits under the coadjoint action of G on g∗). Each of these is again
a symplectic manifold. Kirillov studied these structures in the context of representation
theory, under the name “orbit method”. The role of the Maslov index was explained by
Lion, Perrin [LP], and others. Something similar can also be done for finite nilpotent
groups [KT].

Example 1.1.3. Let M be a real manifold of dimension 4n + 2. Then H2n+1(M ; k) is a
symplectic vector space. The role of the Maslov index here was independently developed
by Wall [Wa], and is related to surgery theory and higher cobordisms.
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4 J. T. Thomas: The Maslov Index

Example 1.1.4. Hermitian K-theory (Karoubi). The role of the Maslov index has not
been satsifactorily developed yet.

1.1.1 Symplectic vs. projective geometry

Motto. The Maslov index is to symplectic geometry as the cross ratio is to projective
geometry.

The projective linear group PGL(2; k) acts transitively on P1
k and simply transitively

on P3, the space of triples of distinct points. So consider the space P4 of quadruples
(L1, L2, L3, L4). By the action of PGL(2) we can map it to (0, 1,∞, L), and L ∈ k \ {0, 1}
is the cross ratio of the quadruple. Thus two quadruples of distinct points are in the same
PGL(2; k)-orbit if and only if they have the same cross ratio.

Let let us look at the symplectic group. Note that for any choice of symplectic form
on k2, we have Sp(2; k) = SL(2; k), and Lagr(k2) = P1

k. In general, PSL(2) is a proper
subgroup of PGL(2), so it does not act transitively on P3. Rather, the set of PSL(2)-
orbits of P3 corresponds to the quotient PGL(2)

/
PSL(2). Taking determinants gives an

isomorphism
det : PGL(2; k)

/
PSL(2; k) ∼−→ k∗

/(
k∗

)2 .

The right-hand side is the set of 1-dimensional quadratic forms up to isomorphism. This
map τ : P3 → k∗

/
(k∗)2 is a version of the Maslov index (and it is independent of any

choices).

Example 1.1.5. If k = R, then R∗
/
(R∗)2 = {−1, +1}, and RP1 ∼= S1. The Maslov index

of L1, L2, L3 is positive if the three lines are in cyclic order, and negative if they are not.

Theorem 1.1.6 ([RR, Theorem 2.11]). Consider the action of Sp(V, ω) on Lagr(V, ω)3.
Two triples L,L′ ∈ Lagr(V, ω)3 are in the same Sp(V, ω)-orbit if and only if they are in
the same GL(V )-orbit and τ(L) = τ(L′).

1.2 The Maslov index of three transverse Lagrangians

Here is a more somewhat general construction of the Maslov index. For any symplectic
vector space (V, ω), consider three transverse Lagrangians L1, L2, L3, so V = L1 ⊕ L3.
Think of L2 as the graph of a linear map f : L1 → L3. So we have maps

L1
f−−−→ L3

∼−−→ V
/
L1 = L∗1 ,

and we can think of L2 as the graph of a map γ : L1 → L∗1. Moreover, L2 is Lagrangian if
and only if γ is symmetric considered as a map L1 ⊗ L1 → k. So we define τ(L1, L2, L3)
to be γ considered as a quadratic form. Explicitly, τ(L1, L2, L3) is the symmetric form on
L1 given by

a⊗ b 7→ ω(a, f(b)).

This was Leray’s definition [Le]. The full definition will consider arbitrary n-tuples of
Lagrangians.

1.3 Categories of symplectic/symmetric spaces

Terminology. We will say “symplectic space” for a symplectic vector space, and “quad-
ratic space” for a vector space with a non-degenerate, symmetric bilinear form. Since
2 6= 0, symmetric bilinear forms and quadratic forms determine each other uniquely.
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We construct a category Q+, whose objects are quadratic spaces. If V1, V2 are quadratic
spaces, then morphisms are given by

HomQ+(V1, V2) := Lagr(V ◦
1 ⊕ V2) ,

where (V, q)◦ := (V,−q), and (just as in the symplectic case) L < V is “Lagrangian” if
L = L⊥ with respect to the quadratic form. Lagr(V ◦

1 ⊕V2) is sometimes called the space of
“Lagrangian correspondences”. Composition of morphisms is like composition of general
correspondences (think of composing functions f : A → B and g : B → C via the subsets
of A×B and B × C).

Example 1.3.1. If f : V1 → V2 is an isometry, then the graph Γf ⊂ V ◦
1 ⊕V2 is Lagrangian.

We construct another category Q− in the same way, only that we take the objects to
be symplectic spaces, and (V, ω)◦ := (V,−ω).

Definition 1.3.2. The Witt group of a field k is W (k) := π0(Q+). To spell this out, we say
that two quadratic spaces are Witt equivalent if there exists a Lagrangian corrrespondence
between them. For example, (V, q) is equivalent to 0 if and only if it contains a Lagrangian.
THen W (k) is the group whose elements are Witt equivalence-classes of quadratic spaces,
with addition induced by direct sum. Note that inverses are given by −(V, q) = (V, q)◦.

For example,
(
k2,

(
+1 0
0 −1

)) ≡ 0. For k = R,

index: W (R) ∼−−→ Z ,

where the index(q) is the number of positive eigenvalues minus the number of negative
eigenvalues. For k = C (or any algebraically closed field) we have

dim: W (C) ∼−−→ Z
/
2Z .

What we are going to do is to define a function L 7→ (TL, qL) from the set Lagr(V )n

of n-tuples of Lagrangians in a symplectic space, to the category Q+ of quadratic spaces.
The class of (TL, qL) in W (k) will be, by definition, the Maslov index of L.

1.4 Signatures of manifolds

First we consider a parallel construction coming from topology.
There is a relation between Lagrangian correspondences and the cobordism cate-

gory. Recall that the category of cobordisms Cob4n+1 has as objects closed, oriented
4n-manifolds. For any such manifold M , write M◦ for M with the opposite orientation.
A morphism from M1 to M2 is a cobordism (W,M1,M2), where W is a (4n+1)-dimensional
manifold-with-boundary such that ∂W = M◦

1 tM2.
There is a functor sig : Cob4n+1 → Q+. On objects,

sig(M) = (H2n(M,k),∪).

Note that sig(M◦) = sig(M)◦. On morphisms,

sig(W,M1,M2) = im
(
H2n(W ) → H2n(M◦

1 )⊕H2n(M2)
)
.

The point is that this image is Lagrangian. The traditional “signature of M” is the class
of sig(M) in W (k). The existence of this functor shows that class to be “cobordism
invariant”.
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6 J. T. Thomas: The Maslov Index

1.5 Definition and properties of the Maslov index

Following [Th], we will define the Maslov Index as an n-ary map

τ : Lagr(V, ω)Z/nZ → obQ+ → W (k) .

Given an n-tuple L = (L1, . . . , Ln) of Lagrangians, we have a cochain complex

CL :=
⊕

(Li ∩ Li+1)
∂−→

⊕
Li

Σ−→ V ,

concentrated in degrees 0, 1 and 2. Here Σ just sums the components, while ∂ takes
a ∈ Li ∩ Li+1 to (a,−a) ∈ Li ⊕ Li+1. As Beilinson pointed out, one can think of this
cochain complex topologically as a “decorated cell complex,” namely a n-gon with the
face labelled by V , edges labelled by the Li, and vertices labelled by Li ∩Li+1 (see Figure
1.1).

L2 ∩ L3

L3 ∩ L1

L1

L3

L2

L1 ∩ L2

V

Figure 1.1: The cell complex when n = 3.

In analogy to the situation with signatures of manifolds, the “middle cohomology”
TL := H1(CL) = kerΣ/ im ∂ of the complex is equipped with a “cup product” symmetric
form, given explicitly by

qL

(
a, b

)
=

∑

i>j

ω(ai, bj).

Here we have lifted a, b ∈ TL to representatives (ai), (bi) ∈
⊕

Li.

Proposition 1.5.1. (TL, qL) is a quadratic space, i.e. qL is well defined, symmetric, and
non-degenerate. It is called the “Maslov form”.

Definition 1.5.2. The Maslov index τ(L1, . . . , Ln) is the quadratic space (TL, qL) ∈
W (k).

Proposition 1.5.3. The obvious identities

T (L1, . . . , Ln) = T (Ln, L1, . . . , Ln−1)
= T (Ln, . . . , L1)◦

are isometries.

In our topological interpretation, Figure 1, these isometries come from the dihedral
symmetry of the polygon.

Proposition 1.5.4. There exist canonical Lagrangian correspondences

T (L1, . . . , Lk)⊕ T (L1, Lk, . . . , Ln) → T (L1, . . . , Ln)

for each k < n. In particular, these give rise to equalities for τ in the Witt group.
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C(L1, L2, L3) C(L1, L3, L4)

C(L1, L2, L3, L4)

Figure 1.2: A “cobordism” between cell complexes defining the Lagrangian correspondence
of Proposition 1.5.4 (n = 4, k = 3).

Using this proposition, one can always reduce to the case of three Lagrangians. In the
topological interpretation, these Lagrangian correspondences come from a “cobordism”
(Figure 1.5). These pictures are given a precise meaning in [Th].

Propositions 1.5.3 and 1.5.4 show that “τ is a cocycle”:

τ(L1, L2, L3)− τ(L1, L2, L4) + τ(L1, L3, L4)− τ(L2, L3, L4) = 0. (1.5.1)

This is the most important property of τ .

1.6 The topology of the Lagrangian Graßmannian

1.6.1 Over the real numbers

Recall the identities
W (R) ∼= Z ∼= π1(Lagr(V, ω)) .

Let π : L̃agr(V, ω) → Lagr(V, ω) be the universal cover of the Lagrangian Graßmannian.

Theorem 1.6.1 ([Le]). There exists a function m : (L̃agr(V ))2 → Z such that

τ
(
π(L̃1), . . . , π(L̃n)

)
=

∑

i∈Z/nZ
m(L̃i, L̃i+1) .

Remark 1.6.2. We can think of m as a function of homotopy classes of paths in the
Lagrangian Graßmannian.

We now describe the construction of Leray’s function m. For the standard Graßman-
nian Grk(V ) of k-dimensional planes in V , the tangent spaces are

TLGrk(V ) = Hom
(
L, V/L

)
.

In the Lagangian case, V/L = L∗ and the tangent space consists of symmetric maps,

TL Lagr(V ) = Sym
(
L,L∗

)
=

{
quadratic forms on L

}
.

So we can speak of tangents being positive, negative, etc. A path is positive, etc, if all its
tangents are. The identification π1(Lagr(V )) = (Z) is chosen so that 1 ∈ Z is represented
by a positive path.

Lemma 1.6.3. Between any L1 and L2 there exists a unique homotopy class γ± of paths
L1 → L2 such that
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8 J. T. Thomas: The Maslov Index

• γ+ is positive, γ− is negative.

• γ±(t) ∩ L1 = γ±(t) ∩ L2 = L1 ∩ L2 for t ∈ (0, 1).

Definition 1.6.4. Suppose that γ : L1 → L2 is a path. Then

m(γ) = γ+(L2, L1) ◦ γ + γ−(L2, L1) ◦ γ .

Here each summand is an element of π1(Lagr(V ), L1) = Z.

Remark 1.6.5. Lagr(V ) has a unique double cover L(2). For any pair L̃1, L̃2 ∈ L(2), the
number m(L̃1, L̃1) is well-defined modulo 4.

1.6.2 General ground fields

In the previous section, we studied real vector spaces. To generalise the notions to general
ground fields, we observe the following correspondences.

• The double cover L(2) corresponds to the set Λ of oriented Lagrangians (L, o), where
o ∈ ΛtopL

/
(k∗)2 is the ‘orientation.’

• Z corresponds to the general Witt group W (k).

• The ideals 2Z, 4Z, etc. correspond to ideals I := ker
(
dim: W (k) → Z/2

)
, I2, etc.

(Note that the Witt group is in fact a ring with multiplication given by ⊗.)

Theorem 1.6.6 ([PPS]). There exists a function m : Λ× Λ → W (k) such that

τ(L1, . . . , Ln) =
∑

i

m(Li, Li+1) mod I2 .

Moreover, m is invariant under the natural action of Sp(V ) on Λ× Λ.

1.7 The Metaplectic Group (Postscript)

The cocycle property (1.5.1) has the following consequence. Choose L ∈ Lagr(V ). Let
Mp1(V ) be the set W (k)× Sp(V ) equipped with the multiplication

(q, g)(q′, g′) = (q + q′ + τ(L, gL, gg′L), gg′).

Then Mp1(V ) is a group and gives a central extension 0 −→ W (k) −→ Mp1(V ) −→ Sp(V ) −→
1.

Moreover, Theorem 1.6.6 implies that, choosing L̃ ∈ Λ over L ∈ Lagr(V ), the subset

Mp2(V ) =
{

(m(gL̃, L̃) + q, g) : q ∈ I2, g ∈ Sp(V )
}
⊂ Mp1(V )

is a subgroup, giving a central extension 0 −→ I2 −→ Mp2(V ) −→ Sp(V ) −→ 1. Finally, it is
traditional to quotient I2 by I3 to define a central extension

0 −→ I2/I3 −→ Mp(V ) −→ Sp(V ) −→ 1

in which Mp(V ) is called the metaplectic group.
Over R, I2/I3 = Z/2Z, so Mp(V ) is then the (unique) double cover of Sp(V ). In

this case Mp1(V ) has four connected components, among which Mp2(V ) is the identity.
Mp2(V ) is the universal covering group of Sp(V ).
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Remark 1.7.1. Instead of choosing a Lagrangian L ∈ Lagr(V ), one can construct the
metaplectic group more canonically by observing that Sp(V ) embeds into Lagr(V ◦ ⊕ V ),
by g 7→ Γg, the graph of g. Then define multiplication on Mp2(V ) by

(q, g)(q′, g′) = (q + q′ + τ(Γ1, Γg,Γgg′), gg′).

Moreover, Γg has a canonical orientation. But the first construction using L is convenient
in many contexts.
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