UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

1st Signal Processing and Monitoring (SPaM) in Labour Workshop

17th March - 19th March 2015 Lyon, France

Acceleration and Deceleration Capacity of Fetal Heart Rate in an In-Vivo Sheep Model Presenters: Massimo Walter Rivolta, Tamara Stampalija

Research Group

The team is composed by researchers with different expertise:

Medical Doctors:

- Enrico Ferrazzi
- Tamara Stampalija
- Daniela Casati
- Martin Frash

Dept. Of Woman, Mother and Neonate at Buzzi Children's Hospital, Milan, Italy

Dept. of Obstretics-Gynaecology and Neurosciences at Université de Montréal, Montréal, Canada.

Engineers:

- Roberto Sassi
- Massimo W. Rivolta

Dept. of Computer Science at Università degli Studi di Milano, Milan, Italy

Acceleration and Deceleration Capacity of Fetal Heart Rate in an In-Vivo Sheep Model

Massimo W. Rivolta, Tamara Stampalija, Daniela Casati, Bryan S. Richardson, Michael G. Ross, Martin G. Frasch, Axel Bauer, Enrico Ferrazzi, Roberto Sassi

Introduction (1/2)

• Labor exposes the fetus to repetitive transient hypoxic stress

• Identification of hypoxia and pathologic acidemia are crucial

 Fetal heart rate (FHR) analysis (using CTG) is widely used → high sensitivity and low specificity for fetal acidemia

Introduction (2/2)

- Changes in the power spectrum of FHR are associated with fetal hypoxia and acidemia during labor
 Phase Rectified Signal Averaging (Bauer *et al.*):

 PRSA emphasizes quasi-periodicity
 SNR improvement

 FHR per PRSA also provides:

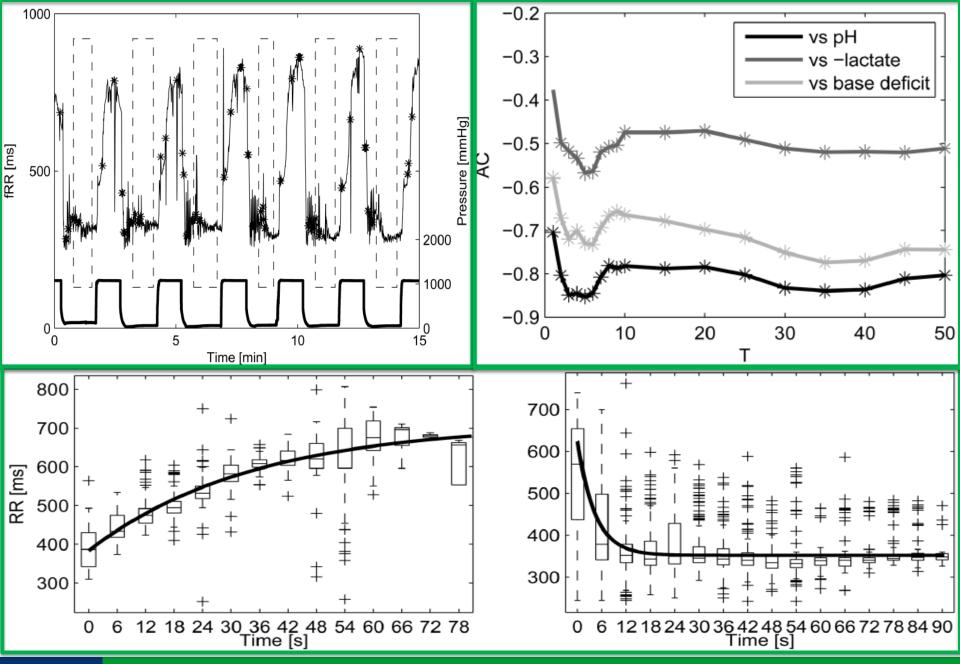
 Acceleration capacity (AC)
 Deceleration capacity (DC)

 FHR signats are corrupted by several horsy sources
 - (e.g., ventricular ectopic beats, maternal uterine contractions, miss-detected beats and signal losses, etc.)
 - \rightarrow Limits for the applicability of spectral analysis

Objectives & Dataset

Objectives:

- 1. Test the sensitivity of AC/DC computed on fRR series to lack of oxygen during labor
- 2. Evaluate of the influence of the parameters T, s and L on AC/DC

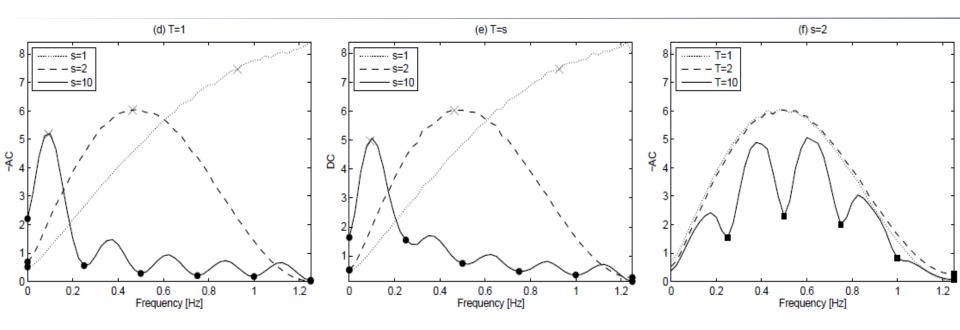

Dataset (retrospectively analyzed):

- 7 near-term pregnant sheep model
- Umbilical cord occlusion (UCO) at 4 different strengths (baseline, mild, moderate and severe)
- Biomarkers as pH, base deficit and lactates were collected
- fRR series extracted from fetal ECG

Objective evaluations:

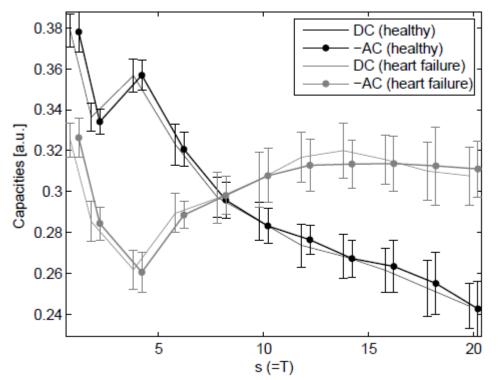
- Computation of the correlation between AC/DC and the biomarkers
- Evaluation of the average rate of FHR response to UCOs

Results & Further Investigations


- FHR accelerations and decelerations have a different change rate
- The rate to return at baseline after UCO is faster
- AC/DC are correlated with biomarkers when T (=s) is in the range 2 to
 6
- The higher the lack of oxygen the higher the AC and DC values (acute insult)

Further investigations on synthetic data:

- What's the theoretical effect of varying the parameters s and T on AC and DC? How they related to the well known Spectral Analisys?
- Do AC and DC represent the typical information associated by spectral analysis to symphatetic and vagal activities, respectively?


Simulation results (1/2)

- AC and DC were computed for autoregressive process with a single dominant oscillatory component, which was varied to different frequencies
- T acts as a low pass filter (but is ONLY involved in the selection of anchor points, it does not act directly on PRSA)
- s acts as a high pass filter on the PRSA series (directly)

Simulation results (2/2)

- More realistic scenarios: RR series generated via AR models fitted on a healthy and a heart failure subject (different ANS regulation)
- AC/DC were statistically different between the healthy and the heart failure subject for many T values
- AC and DC are substantially identical for series generated by a single AR model (time-reversal symmetry)
- \rightarrow AC and DC do not simply represent the same information collected by Spectral Analysis on the symphatetic and vagal activity (they capture lack of time symmetry)

Conclusions

The main results are:

- Robustness of AC and DC to noise on real data
- Correlation of AC/DC with lack of oxygen during labor
- The parameters T and s play as frequency band selectors

Thanks

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

1st Signal Processing and Monitoring (SPaM) in Labour Workshop

17th March - 19th March 2015 Lyon, France

Acceleration and Deceleration Capacity of Fetal Heart Rate in an In-Vivo Sheep Model Presenters: Massimo Walter Rivolta, Tamara Stampalija