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SOLUTIONS 1

Chapter One
The Bernoulli model

Solution 1.2.
(a) Follow the arguments in the §1.3.2 to derive the likelihood, with parameter

space Θ03 = (0, 1). First, find the joint density:

fθ03(x1, . . . xn03) = · · · =
{

θx
03 (1 − θ03)

1−x
}n03

,

and then the likelihood. The maximum likelihood estimate for the chance of a
girl in 2003 is then:

θ̂03 = X =
338971

356578 + 338971
= 0.4873.

(b) From (a) we have the joint density for the 2003-data, whereas the joint den-
sity for the 2004-data is given in the text. The parameter is now bivariate,
θ03, θ04, with parameter space Θjoint = (0, 1) × (0, 1) = (0, 1)2. Due to the
independence assumption the joint density for all data is the product:

fθ03,θ04 (x1, . . . , xn03 , y1, . . . , yn04) (S.1.1)

= fθ03(x1, . . . , xn03)fθ04(y1, . . . , yn04)

=
{

θx
03 (1 − θ03)

1−x
}n03

{
θy
04 (1 − θ04)

1−y
}n04

. (S.1.2)

The likelihood function is found by looking at this as a function of the two
parameters θ03, θ04. This likelihood has a product structure with one term
involving θ03 and another term involving θ04. As there are no cross-restrictions
between these parameters each term can be maximized separately giving:

θ̂03 = X =
338971

356578 + 338971
= 0.4873,

θ̂04 = X =
348410

367586 + 348410
= 0.4866,

since, for instance:

∂

∂θ03
�X1,...,Xn03 ,Y1,...,Yn98

(θ03, θ04) =
∂

∂θ03
�X1,...,Xn03

(θ03).

Solution 1.4. Make a coordinate system and plot the four points.
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(a) Use (1.2.3) so:

P(X = −1) = P(X = −1, Y = 0) =
1
4
,

P(X = 0) = P(X = 0, Y = −1) + P(X = 0, Y = 1) =
1
2
,

P(X = 1) = P(X = 1, Y = 0) =
1
4
.

(b) No. Note that Y has the same marginal distribution as X. Then it holds, for
instance that:

P(X = 1, Y = 0) =
1
4
�= P(X = 1)P(Y = 0) =

(
1
4

)(
1
2

)
=

1
8
.

In order to have independence it is necessary that the two variables vary in a
product space. Here the sample space is like a rhomb rather than a square.

Chapter Two
Inference in the Bernoulli model

Solution 2.2. These data can be analyzed using the Bernoulli model. Thus, the
chance of a newborn child being female is estimated by:

θ̂ =
1964

1964 + 2058
= 0.4883

As the data in Table 1.6 are measured in thousands, then:

n = (1964 + 2058) × 1000 = 4022000.

The fact that the reported data are in thousands simply results in a rounding
error of up to 1000, corresponding to a relative error of 0.00025. Thus, in
reporting the estimate for θ the rounding error kicks in on the fourth digit after
the decimal point.
The standard error of the estimate for θ is:

ŝe(θ̂) =

√
θ̂(1 − θ̂)√

n
=

√
0.4883(1 − 0.4883)√

4022000
= 0.000249,

Since the 99.5%-quantile of the standard normal distribution is 2.576 (see Ta-
ble 2.1) this gives a 99%-confidence interval of:

0.4883 − 2.576 × 0.000249 ≤ θ ≤ 0.4883 + 2.576 × 0.000249,

or:

0.4877 ≤ θ ≤ 0.4889.
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This confidence interval overlaps with the confidence interval for the UK re-
ported in §2.3.1, indicating that sex ratios are not all that different between
countries. A formal test could be made as set out in Exercise 2.3.

Solution 2.4. Suppose X
D= Bernoulli[p]. Then:

E (X) = 0 · (1 − p) + 1 · p = p,

Var (X) = (0 − p)2 · (1 − p) + (1 − p)2 · p
= p2 (1 − p) + p (1 − p) = p (1 − p) .

The variance can also be found from the general formula:

E{X − E(X)}2 = E[X2 − 2XE(X) + {E(X)}2] = E
(
X2
)− {E(X)}2.

using that for the Bernoulli case:

E
(
X2
)

= 02 · (1 − p) + 12 · p = p.

Choosing a success probability p the density and distribution functions are:

f(x) =

⎧⎨⎩ 1 − p for x = 0,
p for x = 1,
0 otherwise,

F(x) =

⎧⎨⎩ 0 for x < 0,
1 − p for 0 ≤ x < 1,
1 for 1 ≤ x.

Now, the “confidence intervals” are, for k = 1, 2:

E (X) ± ksdv (X) = p ± k
√

p (1 − p).

Examples:
Let p = 1/2 then E (X) = 1/2, sdv (X) = 1/2 so E (X) ± sdv (X) has
probability 0 (if open interval) while E (X) ± 2sdv (X) has probability 1.
let p = 1/5 then E (X) = 1/5, sdv (X) = 2/5 so E (X) ± sdv (X) has
probability 4/5 while E (X) ± 2sdv (X) has probability 1.

Solution 2.6. Use that expectations are linear operators, and that the expectation,
E(X), is deterministic:

E{X − E(X)}2

= [ complete square ] = E[X2 − 2XE(X) + {E(X)}2]
= [ linearity ] = E(X2) − 2{E(X)}2 + {E(X)}2 = E(X2) − {E(X)}2.

Solution 2.8. The key to the solution is (2.1.8) stating that:

X,Y independent ⇒ E(XY ) = E(X)E(Y ).
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In particular, for constants μx, μy:

X,Y independent

⇔ (X − μx), (Y − μy) independent

⇒ E{(X − μx)(Y − μy)} = E(X − μx)E(Y − μy).

Thus, the problem can be solved as follows:

Cov(X,Y )
= [ Definition (2.1.12)] = E[{X − E(X)}{Y − E(Y )}]
= [ use independence and (2.1.8)] = E{X − E(X)}E{Y − E(Y )}
= [ use E{X − E(X)} = E(X) − E(X) = 0} ] = 0.

Solution 2.10.
(a) This is a straight forward application of the Law of Large Numbers. For in-

stance, the first subsample consists of n/2 independently identical distributed
variables. Thus, their sample average, here denoted Z1 converges in probabil-
ity to their population expectation, θ1 = 1/4.

(b) Here the definition of convergence in probability as stated in Theorem 2.1 has
to be used. Thus, it has to be shown that for any δ > 0 the probability that:∣∣∣∣Y − 1

2

∣∣∣∣ > δ

converges to zero. Now, decompose:

Y =
1
n

n∑
i=1

Yi =
1
n

n/2∑
i=1

Yi +
1
n

n∑
i=n/2+1

Yi

=
(

1
2

)
2
n

n/2∑
i=1

Yi +
(

1
2

)
2
n

n∑
i=n/2+1

Yi =
Z1

2
+

Z1

2
.

Likewise, decompose 1/2 = (1/2)(1/4) + (1/2)(3/4), so:

Y − 1
2

=
1
2

(Z1 − θ1) +
1
2

(Z2 − θ2) .

In particular, by the triangle inequality:∣∣∣∣Y − 1
2

∣∣∣∣ ≤ 1
2
|Z1 − θ1| + 1

2
|Z2 − θ2| .
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Since Z1, Z2 both converge in probability, then for any δ it holds that:

P

(∣∣∣∣Y − 1
2

∣∣∣∣ > δ

)
≤P

(
1
2
|Z1 − θ1| + 1

2
|Z2 − θ2| > δ

)
≤ [ check ]

≤P

(
1
2
|Z1 − θ1| >

δ

2
or

1
2
|Z2 − θ2| >

δ

2

)
= P (|Z1 − θ1| > δ or |Z2 − θ2| > δ) .

Now, the so-called Boole’s inequality is needed. This states that for any events
A, B then:

P(A or B) ≤ P(A) + P(B). (S.2.1)

This comes about as follows. If A and B are disjoint, that is, they cannot both
be true, then (S.2.1) holds with equality. This property was used when link-
ing distribution functions and densities in §1.2.2. If A and B are not disjoint,
split the sets into three disjoint parts: (A but not B), (B but not A), (A and B).
Then the left hand side of (S.2.1) includes these sets once each, whereas the
right hand side includes the intersection set (A and B) twice, hence the in-
equality.
Applying Boole’s inequality it then holds:

P

(∣∣∣∣Y − 1
2

∣∣∣∣ > δ

)
≤ P (|Z1 − θ1| > δ) + P (|Z2 − θ2| > δ) .

Due to (a) both of the probabilities on the right hand side converge to zero.
(c) The Law of Large Numbers requires that the random variables are indepen-

dent, which is satisfied here, as well as having the same distribution, which
is not satisfied here. The theorem therefore does not apply to the full set of
observations in this case. As all inference in a given statistical model is based
on the the Law of Large Numbers and the Central Limit Theorem, it is there-
fore important to check model assumptions. The inference may be valid under
milder assumptions, but this is not always the case.

Chapter Three
A first regression model

Solution 3.2. Recall β̂ = 5.02 and σ̂ = 0.753.

n = 100 4.86 < β < 5.17,
n = 10000 5.00 < β < 5.04.

The widths of the confidence intervals vary with
√

n.
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Solution 3.4.
(a) The first order derivative is given in (3.3.8). Thus the second derivative is:

∂2

∂ (σ2)2
�Y1,...,Yn

(
β̂, σ2

)
=

n

2σ4
− 1

σ6

n∑
i=1

û2
i =

n

2σ6

(
σ2 − 2σ̂2

)
,

giving that the second order condition is satisfied at σ̂2 since:

n

2σ̂6

(
σ̂2 − 2σ̂2

)
= − n

2σ̂6
σ̂2 = − n

2σ̂4
< 0.

Therefore the profile likelihood is locally concave. It is not, however, globally
concave, since the second derive is positive for σ2 > 2σ̂2. To show uniqueness
of the maximum likelihood estimator, global concavity is not needed, however.
Since ∂�/∂σ2 is positive for σ2 < σ̂2 and negative for σ2 > σ̂2 then σ̂2 is a
global maximum.
Note: This argument shows that there is a unique mode for the likelihood.

(b) The profile log-likelihood for θ = log σ is found by reparametrizing (3.3.7):

�Y1,...Yn(β̂, log σ) = −n log σ −
n∑

i=1

û2
i /(2σ

2).

Thus the profile log-likelihood for θ is:

�Y1,...Yn(β̂, θ) = −nθ − exp(−2θ)
n∑

i=1

û2
i /2,

with derivatives:

∂�/∂θ =−n + exp(−2θ)
n∑

i=1

û2
i ,

∂2�/∂θ2 =−2 exp(−2θ)
n∑

i=1

û2
i .

The second derivative is negative for all θ. Thus the profile log-likelihood for
θ is concave with a unique maximum.
Note: This argument shows that with the θ = log σ parametrization the like-
lihood is concave. In particular, there is a unique mode. Concavity is not
invariant to reparametrization, whereas uniqueness of the mode is invariant.

Solution 3.6. We know that if X
D= N[μ, σ2] then E (X) = μ, Var (X) = σ2 so

by (2.1.6) and (2.1.10) we have E (aX + b) = aμ+b and Var(aX+b) = a2σ2.

Solution 3.8. Use Table 2.1.
(a) Due to the symmetry then P(X ≤ 0) = 1/2. Since P(X > 2.58) = 0.005

then the lower quantile satisfies P(0 < X ≤ 2.58) = 0.995.
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(b) Note that X = (Y − 4)/
√

4 = (Y − 4)/2 D= N[0, 1]. Therefore:

P(Y < 0) = P

(
Y − 4

2
<

0 − 4
2

)
= P(X < −2)

Now, using that the normal distribution is symmetric it follows that:

P(Y < 0) = P(X < −2) = P(X > 2) ≈ 0.025

Finally, we want to find a quantile q so P(Y > q) = 0.025. The standard
normal table gives P(X > 2) = 1.96. As Y = 2X + 4 the 97.5%-quantile for
Y is then 2 × 1.96 + 4 = 7.92.

Solution 3.10. We have β̂ =
∑n

i=1 Yixi/(
∑n

i=1 x2
i ) where x1, . . . xn are non-

random constants. The only source of randomness is therefore the Yis. Thus β̂
is a linear combination of independent normal distributed variables and must
be normally distributed, see (3.4.5). Therefore we only need to find the expec-
tation and variance of β̂ using the formulas for the expectation and variance of
sums, (2.1.7), (2.1.11). First the expectation:

E(β̂1)= [ (2.1.7) ] =
∑n

i=1 xiE (Yi)∑n
i=1 x2

i

= [ model : Yi
D= N[βxi, σ

2] so E(Yi) = βxi ]

=
∑n

i=1 xiβxi∑n
i=1 x2

i

= β,

and similarly the variance:

Var(β̂1)= [ (2.1.14) using independence ] =
∑n

i=1 x2
i Var (Yi)

(
∑n

i=1 x2
i )2

= [ model : Yi
D= N[βxi, σ

2] so Var(Yi) = σ2 ]

=
∑n

i=1 x2
i σ

2

(
∑n

i=1 x2
i )2

=
σ2∑n
i=1 x2

i

.

Solution 3.12.
(a) The joint density is:

fλ(y1, . . . , yn) = [ independence, use (3.2.1) ] =
n∏

i=1

fλ(yi)

= [ Poisson distribution ] =
n∏

i=1

λyi

yi!
exp(−λ).

Using the functional equation for powers, see (1.3.1), this can be rewritten as:

fλ(y1, . . . , yn) = λ
∑n

i=1 yi exp(−nλ)
n∏

i=1

1
yi!

=
{
λy exp(−λ)

}n
n∏

i=1

1
yi!

,
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where y = n−1
∑n

i=1 yi is the average of y1, . . . , yn. The likelihood function
is then:

LY1,...,Yn(λ) =
{
λY exp(−λ)

}n
n∏

i=1

1
Yi!

,

with the corresponding log-likelihood function:

�Y1,...,Yn(λ) = n log
{
λY exp(−λ)

}
+ log

(
n∏

i=1

1
Yi!

)
= [ functional equation for logarithm, (1.3.5) ]

= n
{
Y log(λ) − λ

}− n∑
i=1

log(Yi!).

(b) The maximum likelihood equation is found by differentiating the log-likelihood
function �:

∂

∂λ
�Y1,...,Yn(λ) = n

(
Y

λ
− 1
)

,

giving the likelihood equation:

n

(
Y

λ̂
− 1
)

= 0,

which is solved by λ̂ = Y . To show that the solution is unique note either that
the first derivative of � is positive for λ < λ̂ and negative for λ > λ̂ or find the
second derivative:

∂2

∂λ2
�Y1,...,Yn(λ) = −n

Y

λ2
,

which is negative for all values of λ so the log-likelihood function is concave.
Note, that these arguments only apply for Y > 0. If, however, Y = 0 there is
no variation to model.

Chapter Four
The logit model

Solution 4.2. Use (4.2.4) and (4.2.5) to see that:

P(Yi = 0|Xi) = [ (4.2.5) ] = P(Y ∗
i < 0|Xi)

= [ (4.2.4) ] = P(β1 + β2Xi + ui < 0|Xi)
= P(ui < −β1 − β2Xi|Xi).
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Using the definition of the logistic distribution, which is continuous, we get:

P(Yi = 0|Xi) =
exp(−β1 − β2Xi)

1 + exp(−β1 − β2Xi)
.

Extend the fraction by exp(β1 + β2Xi) and use the functional equation for
powers, see (1.3.1), to get:

P(Yi = 0|Xi) =
1

exp(β1 + β2Xi) + 1
.

In particular:

P(Yi = 1|Xi) = 1 − P(Yi = 0|Xi) =
exp(β1 + β2Xi)

1 + exp(β1 + β2Xi)

as desired.

Solution 4.4. Without loss of generality we can assume that the observations are
ordered so the first m regressors Xi are all 1. Then (4.2.8), (4.2.9) reduce as:

m
exp

(
β̂1 + β̂2

)
1 + exp

(
β̂1 + β̂2

) + (n − m)
exp

(
β̂1

)
1 + exp

(
β̂1

) =
n∑

i=1

Yi, (S.4.1)

m
exp

(
β̂1 + β̂2

)
1 + exp

(
β̂1 + β̂2

) =
m∑

i=1

Yi. (S.4.2)

Subtracting equation (S.4.2) from (S.4.1) shows :

(n − m)
exp

(
β̂1

)
1 + exp

(
β̂1

) =
n∑

i=m+1

Yi.

Since the function y = g(x) = exp(x)/{1 + exp(x)} has the inverse x =
g−1(y) = log{y/(1 − y)} this implies:

β̂1 = log
(n − m)−1

∑n
i=m+1 Yi

1 − (n − m)−1
∑n

i=m+1 Yi
.

Correspondingly, from (S.4.2):

̂β1 + β2 = log
m−1

∑m
i=1 Yi

1 − m−1
∑m

i=1 Yi
,

and thus:

β̂2 = log
m−1

∑m
i=1 Yi

1 − m−1
∑m

i=1 Yi
− log

(n − m)−1
∑n

i=m+1 Yi

1 − (n − m)−1
∑n

i=m+1 Yi
.
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Solution 4.6.
(a) Inspect that inserting the expression for pi = p(Xi) in (4.2.6), (4.2.7) gives the

desired answer.
(b) This follows by noting that:

E(Yi | I) = pi, E(YiXi | I) = piXi,

(c) The key to the result is that:

∂

∂β1
pi = pi(1 − pi),

∂

∂β1
pi = pi(1 − pi)Xi,

Apply this to the first derivatives given in (a).
(d) Start with the element ∂2

∂β2
1
�(β1, β2). Since 0 < pi < 1 the diagonal terms

this equals minus one times a sums of positive elements. When it comes to
∂2

∂β2
2
�(β1, β2) the summands are zero if Xi = 0. Provided the Xis are not all

zero the overall sum is positive.
(e) By the Cauchy-Schwarz inequality:{

n∑
i=1

pi(1 − pi)Xi

}2

=

{
n∑

i=1

√
pi(1 − pi)

√
pi(1 − pi)Xi

}2

≤
{

n∑
i=1

pi(1 − pi)

}{
n∑

i=1

pi(1 − pi)Xi

}
,

with identity only if pi(1 − pi) = pi(1 − pi)Xi for all i, that is if Xi = 1 for
all i.

Chapter Five
The two-variable regression model

Solution 5.2. On the one hand, if (Yi|Xi)
D= N[β1 + β2Xi, σ

2] is the correct
model with β1 �= 0, it must be a bad idea to use the simpler model! We will
return to that issue in connection with omitted variable bias. On the other hand
if the simple model is correct this must be better to use. We will return to
that issue in connection with efficiency. In practice it is extremely rare to have
models with regressors, but no intercept. When it comes to time series models
without intercepts are often used in expositions, but rarely in practice
If it is deemed appropriate to omit the intercept a complication one has to be
careful with using the standard output of econometric and statistical software.
While the estimators and t-statistics are fine, a few statistics are not applicable
in the usual way for models without an intercept. This applies for instance to
the R2-statistic and to Q-Q plots (see Engler and Nielsen, 2007 for the latter).
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Solution 5.4. From (5.2.1) we have:

β̂1 = Y − β̂2X, β̂2 =
n∑

i=1

Yi

(
Xi − X

)∑n
j=1

(
Xj − X

)2 .

Therefore:

β̂1 = Y − X

∑n
i=1 Yi

(
Xi − X

)∑n
j=1

(
Xj − X

)2 =
n∑

i=1

wiYi,

where

wi =
1
n
− X∑n

j=1(Xj − X)2
(Xi − X).

It has to be argued that wi = X1·2,i/
∑n

j=1 X2
1·2,j . Thus, from (5.2.12) find:

n∑
j=1

X2
1·2,j = n − 2

(∑n
j=1 Xj

)2

∑n
j=1 X2

j

+

(∑n
j=1 Xj

)2

∑n
j=1 X2

j

= n −
(∑n

j=1 Xj

)2

∑n
j=1 X2

j

,

and find a common denominator for wi so wi=Ni/D where

Ni =
n∑

j=1

(Xj − X)2 − nX(Xi − X), Di = n
n∑

j=1

(Xj − X)2.

Finish, by noting that:

Di =n

⎛⎝ n∑
j=1

X2
j − nX

2

⎞⎠ =
n∑

j=1

X2
j

n∑
j=1

X2
1·2,j

Ni =
n∑

j=1

X2
j − nX

2 − nXXi + nX
2 =

n∑
j=1

X2
j − nXXi

=
n∑

j=1

X2
j

(
1 −

∑n
j=1 Xj∑n
j=1 X2

j

Xi

)
=

⎛⎝ n∑
j=1

X2
j

⎞⎠X1·2,i.

Solution 5.6.
(a) See Figure S.5.1.
(b) The following statistics have sufficient information about the data:

T∑
t=1

Yt = 71.7424,
T∑

t=1

Y 2
t = 756.3848, T = 7,

T∑
t=1

t = 28,
T∑

t=1

t2 = 140,
T∑

t=1

tYt = 311.2105.



12 SOLUTIONS
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Figure S.5.1 Industrial output by period

It follows that:

β̂1 = 6.79, β̂2 = 0.866,

σ̂2 = (0.129)2 , s2 = (0.153)2

δ̂1 = β̂1 + β̂2X = 10.25, δ̂2 = β̂2.

The prediction for the log-output in the period 1975 − 1999 is:

Ŷi = β̂1 + β̂28 = δ̂1 + δ̂2(8 − 4) = 13.72.

Solution 5.8. Model equation Yi = β1+β2Xi+ui with β2 = 0 in data generating
process. The estimators in question are

β̂ = Y , β̂1 =
∑n

i=1 X1·2,iYi∑n
j=1 X2

1·2,j

(a) For β̂ the result can be taken from §3.4.1, that is E(β̂) = β1.
For β̂1 the result can be taken from §5.5.1, that is E(β̂ | I) = β1. The Law of
Iterated Expectations, see (4.1.8), E(β̂) = β1.

(b) The calculation of the variance reported in §3.4.1 also holds conditionally on
I . From this, and from §5.5.1, we have

Var
(

β̂
∣∣∣ I) =

σ2

n
, Var

(
β̂1

∣∣∣ I) =
σ2∑n

i=1 X2
1·2,i

.

In general it holds Var(β̂|I) ≤ Var(β̂1|I) since:

n∑
i=1

X2
1·2,i = n − (

∑n
i=1 Xi)

2∑n
i=1 X2

i

≤ n

since the subtracted ratio is non-negative.
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(c) We have equality, Var(β̂|I) = Var(β̂1|I), when the numerator of the subtracted
ratio is zero, that is

∑n
i=1 Xi = 0.

(d) The ratio of the variances is:

Var
(

β̂1

∣∣∣ I)
Var

(
β̂
∣∣∣ I) =

σ2∑n
i=1 X2

1·2,i

/
σ2

n
=

{
1 − (

∑n
i=1 Xi)

2

n
∑n

i=1 X2
i

}−1

,

that is the inverse of one minus the square of a correlation type coefficient
based on the intercept X1,i and the regressor X2,i = Xi. It this correlation
type quantity is close to one the variance ratio is large. For instance, if it holds
that X1 = · · · = Xm = M while Xm+1 = · · ·Xn = 0 the variance ratio is

Var
(

β̂1

∣∣∣I)
Var

(
β̂
∣∣∣I) =

{
1 − (mM)2

nn(M2)

}−1

=
(
1 − m

n

)−1
,

which is large if m is close to n. Note, that the actual value M of the regressors
does not matter in this particular calculation.

Solution 5.10. The results in (5.2.10) are:

Ŷi = δ̂1 + δ̂2X2·1,i,

where the estimators are:

δ̂1 = Y , δ̂2 =
∑n

i=1 X2·1,i(Yi − Y )∑n
j=1 X2

2·1,j

.

It follows from this that:

Yi − Ŷi = Yi − δ̂1 − δ̂2X2·1,i = Yi − Y − δ̂2X2·1,i,

Ŷi − Y = δ̂1 + δ̂2X2·1,i − Y = δ̂2X2·1,i.

The sum of cross products of these terms are:

n∑
i=1

(
Yi − Ŷi

)(
Ŷi − Y

)
=

n∑
i=1

(
Yi − Y − δ̂2X2·1,i

)(
δ̂2X2·1,i

)
= δ̂2

{
n∑

i=1

(
Yi − Y

)
X2·1,i − δ̂2

n∑
i=1

X2
2·1,i

}
.

It follows from the above definition of δ̂2 that the expression in curly brackets
is zero.
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Solution 5.12.
(a) First, show the identity for the variance estimators. From §5.4.3 it follows that

n
(
σ̂2

R − σ̂2
)
=

n∑
i=1

(
Yi − Y

)2 {1 − (1 − r2
)}

= r2
n∑

i=1

(
Yi − Y

)2
=

{∑n
i=1 X2·1,i

(
Yi − Y

)}2∑n
i=1 X2

2·1,i

= β̂2
2

n∑
i=1

X2
2·1,i.

Secondly, using that F = Z2 and the expression for ŝe(β̂2) and for s2 stated in
§5.5.3 it holds:

F = Z2 =
β̂2

2{
ŝe(β̂2)

}2

=
β̂2

2

∑n
i=1 X2

2·1,i

s2
=

β̂2
2

∑n
i=1 X2

2·1,i

σ̂2n/(n − 2)

Insert the above expression for the variance terms to get:

F =
n
(
σ̂2

R − σ̂2
)

σ̂2n/(n − 2)
=

(
σ̂2

R − σ̂2
)

σ̂2/(n − 2)
.

(b) For the second expression extend the fraction by 1/σ̂2
R and use (5.4.6) to get:

F =

(
σ̂2

R − σ̂2
)

σ̂2/(n − 2)
=

(
1 − σ̂2/σ̂2

R

)
σ̂2/σ̂2

R/(n − 2)
=

r2

(1 − r2)/(n − 2)
.

For the third expression use (5.4.10):

F =
r2

(1 − r2)/(n − 2)
=

ESS/TSS

(RSS/TSS)/(n − 2)
=

ESS

RSS/(n − 2)
.

Solution 5.14. To get r2 we can use the formula r2 = (σ̂2
R − σ̂2)/σ̂2

R. Here:

σ̂2
R = n−1

n∑
i=1

(Yi − Y )2 = n−1
n∑

i=1

Y 2
i − Y

2

= (756.3848/7) − (71.7424/7)2 = 3.014727.

Therefore:

r2 =
3.014727 − (0.129)2

3.014727
= 0.99448.

The test statistics are:

F =
r2/1

(1 − r2)/(7 − 2)
= 900.7971, Z =

√
F = 30.01.
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The tests are:
One-sided t-test: reject since 30.01 > 2.02. (95% quantile of t[5] is 2.02)
Two sided t-test: reject since |30.01| > 2.57. (97.5% quantile of t[5] is 2.57)
F-test: reject since 901 > 6.61. (95% quantile of f[1, 5] is 6.61)

Chapter Six
The matrix algebra of two-variable regression

Solution 6.2.
(a) First multiply matrices:

X′X=
(

1 1 1 1
1 −1 1 −1

)⎛⎜⎜⎝
1 1
1 −1
1 1
1 −1

⎞⎟⎟⎠ =
(

4 0
0 4

)

X′Y =
(

1 1 1 1
1 −1 1 −1

)⎛⎜⎜⎝
1
2
3
4

⎞⎟⎟⎠ =
(

10
−2

)
.

Then find the inverse of X′X. This is a diagonal matrix so the inverse is simply
the inverse of the diagonal elements:

(
X′X

)−1 =
(

1/4 0
0 1/4

)
.

Then multiply matrices to get the least squares estimator:

(
X′X

)−1 X′Y =
(

1/4 0
0 1/4

)(
10
−2

)
=
(

10/4
−2/4

)
=
(

5/2
−1/2

)
.

(b) The matrix multiplication “X′Y(X′X)−1” makes no sense, since X′Y is a
(2 × 1)-matrix, while X′X is a (2 × 2)-matrix, so the column-dimension of
X′Y is one, while the row-dimension of X′Y is two.

The matrix multiplication “
X′Y
X′X

” is not well-defined. Even if X′Y and X′X
had the same dimension it is not clear whether it would mean multiplying X′Y
from the left by the inverse of X′X, or from the right by the inverse of X′X,
or dividing each of the elements of X′Y by the respective elements of X′X.
In general, these operations would give different results.

Solution 6.4.
(a) The inverse of a (2 × 2)-matrix can be found using the formula (6.2.1). Thus,
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the inverse of the matrix X′X in (6.3.3) it then:

(
X′X

)−1 =
( ∑n

i=1 12
∑n

i=1 Xi∑n
i=1 Xi

∑n
i=1 X2

i

)−1

=
1

det (X′X)

( ∑n
i=1 X2

i −∑n
i=1 Xi

−∑n
i=1 Xi

∑n
i=1 12

)
,

where det(X′X) is the determinant of X′X given by:

det
(
X′X

)
=

(
n∑

i=1

12

)(
n∑

i=1

X2
i

)
−
(

n∑
i=1

Xi

)2

.

The least squares estimator is then

β̂ =
1

det (X′X)

( ∑n
i=1 X2

i −∑n
i=1 Xi

−∑n
i=1 Xi

∑n
i=1 12

)( ∑n
i=1 Yi∑n
i=1 XiYi

)
=

1
det (X′X)

( ∑n
i=1 X2

i

∑n
i=1 Yi −

∑n
i=1 Xi

∑n
i=1 XiYi∑n

i=1 12
∑n

i=1 XiYi −
∑n

i=1 Xi
∑n

i=1 Yi

)
.

(b) The expressions in (5.2.1) arise by simplification of the above expression. Con-
sider initially the second element and divide numerator and denominator by∑n

i=1 12 = n:

β̂2 =

(∑n
i=1 12

∑n
i=1 XiYi −

∑n
i=1 Xi

∑n
i=1 Yi

)
/n{

(
∑n

i=1 12)
(∑n

i=1 X2
i

)− (
∑n

i=1 Xi)
2
}

/n

=
∑n

i=1 XiYi − (
∑n

i=1 Xi/n)
∑n

i=1 Yi∑n
i=1 X2

i − n (
∑n

i=1 Xi/n)2
.

=
∑n

i=1 XiYi − X
∑n

i=1 Yi∑n
i=1 X2

i − n
(
X
)2 .

Due to the formula found in Exercise 5.5(b) this reduces to the desired expres-
sion:

β̂2 =
∑n

i=1 Yi

(
Xi − X

)∑n
i=1

(
Xi − X

)2 .

Consider now the first element and divide both numerator and denominator by
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i=1 12 = n:

β̂1 =

(∑n
i=1 X2

i

∑n
i=1 Yi −

∑n
i=1 Xi

∑n
i=1 XiYi

)
/n{

(
∑n

i=1 12)
(∑n

i=1 X2
i

)− (
∑n

i=1 Xi)
2
}

/n

=
∑n

i=1 X2
i (
∑n

i=1 Yi/n) − (
∑n

i=1 Xi/n)
∑n

i=1 XiYi∑n
i=1 X2

i − n (
∑n

i=1 Xi/n)2
.

=
∑n

i=1 X2
i Y − X

∑n
i=1 XiYi∑n

i=1 X2
i − n

(
X
)2 .

Now, add and subtract nX
2
Y to get:

β̂1 =

(∑n
i=1 X2

i − nX
2
)

Y − X
(∑n

i=1 XiYinXY
)

∑n
i=1 X2

i − n
(
X
)2 .

Due to the formula found in Exercise 5.5(b) this reduces to the desired expres-
sion:

β̂1 = Y − β̂2X.

Solution 6.6.
(a) When Yi

D= N[β, σ2] then:

Y =

⎛⎜⎝ Y1
...

Yn

⎞⎟⎠ , X =

⎛⎜⎝ 1
...
1

⎞⎟⎠ .

By matrix multiplication:

X′Y =
n∑

i=1

Yi = nY , X′X =
n∑

i=1

1 = n,
(
X′X

)−1 =
1
n

,

so that:

β̂ =
(
X′X

)−1 X′Y = Y .

(b) When Yi
D= N[βXi, σ

2] then:

Y =

⎛⎜⎝ Y1
...

Yn

⎞⎟⎠ , X =

⎛⎜⎝ X1
...

Xn

⎞⎟⎠ .

By matrix multiplication:

X′Y =
n∑

i=1

XiYi, X′X =
n∑

i=1

X2
i ,

(
X′X

)−1 =

(
n∑

i=1

X2
i

)−1

,
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so that:

β̂ =
∑n

i=1 XiYi∑n
i=1 X2

i

.

(c) When Yi
D= N[β1 + β2Xi, σ

2] then:

Y =

⎛⎜⎝ Y1
...

Yn

⎞⎟⎠ , X =

⎛⎜⎝ 1 X1
...

...
1 Xn

⎞⎟⎠ .

By matrix multiplication:

X′Y =
( ∑n

i=1 Yi∑n
i=1 XiYi

)
,

X′X=
(

n
∑n

i=1 Xi∑n
i=1 Xi

∑n
i=1 X2

i

)
,

(
X′X

)−1 =
1

det (X′X)

( ∑n
i=1 X2

i −∑n
i=1 Xi

−∑n
i=1 Xi n

)
,

where det(X′X) = n
∑n

i=1 X2
i − (

∑n
i=1 Xi)2, so that:

β̂ =
1

det (X′X)

( ∑n
i=1 X2

i

∑n
i=1 Yi −

∑n
i=1 Xi

∑n
i=1 YiXi

n
∑n

i=1 YiXi −
∑n

i=1 Xi
∑n

i=1 Yi

)
.

By Exercise 6.4(b) this reduces further to the expressions in (5.2.1).

(d) When Yi
D= N[β1 + β2Xi, σ

2] with
∑n

i=1 Xi = 0 the expressions in (c) reduce
to:

Y =

⎛⎜⎝ Y1
...

Yn

⎞⎟⎠ , X =

⎛⎜⎝ 1 X1
...

...
1 Xn

⎞⎟⎠ .

By matrix multiplication:

X′Y =
( ∑n

i=1 Yi∑n
i=1 XiYi

)
,

X′X=
(

n 0
0
∑n

i=1 X2
i

)
,

(
X′X

)−1 =
1

det (X′X)

( ∑n
i=1 X2

i 0
0 n

)
=

(
1
n 0
0 1∑n

i=1 X2
i

)
,

where det(X′X) = n
∑n

i=1 X2
i , so that:

β̂ =

⎛⎝ 1
n

∑n
i=1 Yi∑n

i=1 YiXi∑n
i=1 X2

i

⎞⎠ .
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Note, that unlike in (c) this result is a combination of the results in (a) and (b).

Chapter Seven
The multiple regression model

Solution 7.2. The calculations in this exercise are somewhat long. They could be
reduced by using matrix algebra as set out in Chapter 8.

(a) The formula (7.2.8) gives:

δ̂2 = β̂2 + aβ̂3, δ̂3 = β̂3, so β̂2 = δ̂2 − aδ̂3.

Inserting the expression for a in (7.2.6) and forδ̂2 and δ̂3 in (7.2.12) then results
in:

β̂2 =
∑n

i=1 YiX2·1,i∑n
j=1 X2

2·1,j

−
(∑n

j=1 X3·1,jX2·1,j∑n
k=1 X2

2·1,k

)∑n
i=1 YiX3·1,2,i∑n
j=1 X2

3·1,2,j

.

Put these expressions into a common fraction:

β̂2 =

∑n
i=1 YiX2·1,i

⎧⎪⎨⎪⎩∑n
j=1 X2

3·1,j −
(∑n

j=1 X2·1,jX3·1,j

)2

∑n
j=1 X2

2·1,j

⎫⎪⎬⎪⎭∑n
j=1 X2

2·1,j

∑n
j=1 X2

3·1,j −
(∑n

j=1 X2·1,jX3·1,j

)2

−
∑n

j=1 X2·1,jX3·1,j
∑n

i=1 YiX3·1,i∑n
j=1 X2

2·1,j

∑n
j=1 X2

3·1,j −
(∑n

j=1 X2·1,jX3·1,j

)2

+

∑n
i=1 YiX2·1,i

(∑n
j=1 X2·1,jX3·1,j

)2

∑n
j=1 X2

2·1,j∑n
j=1 X2

2·1,j

∑n
j=1 X2

3·1,j −
(∑n

j=1 X2·1,jX3·1,j

)2 ,

which reduces to:

β̂2 =

∑n
i=1 YiX2·1,i

∑n
j=1 X2

3·1,j −
∑n

j=1 X2·1,jX3·1,j
∑n

i=1 YiX3·1,i∑n
j=1 X2

2·1,j

∑n
j=1 X2

3·1,j −
(∑n

j=1 X2·1,jX3·1,j

)2 .

Divide through by
∑n

j=1 X2
3·1,j to see that:

β̂2 =
∑n

i=1 YiX2·1,3,i∑n
j=1 X2

2·1,3,j

.
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(b) The formula (7.2.8) gives:

β̂1 = δ̂1 − δ̂2X2 − δ̂3

(
X3 − aX2

)
.

Start by rewriting the first two components:

δ̂1 − δ̂2X2 =

∑n
j=1 X1,jYj∑n

j=1 X2
1,j

−
∑n

j=1 X2·1,jYj∑n
j=1 X2

2·1,j

(∑n
j=1 X1,jX2,j∑n

j=1 X2
1,j

)
.

Bring them on a common fraction as:

δ̂1 − δ̂2X2 =

∑n
j=1 X1,jYj

∑n
j=1 X2

2·1,j −
∑n

j=1 X2·1,jYj
∑n

j=1 X1,jX2,j∑n
j=1 X2

1,j

∑n
j=1 X2

2·1,j

.

Divide numerator and denominator by
∑n

j=1 X2
2,j to get:

δ̂1 − δ̂2X2 =

∑n
j=1 X1,jYj

{
1 − (

∑n
j=1 X1,jX2,j)2∑n

j=1 X2
1,j

∑n
j=1 X2

2,j

}
∑n

j=1 X2
1·2,j

−

(∑n
j=1 X2,jYj −

∑n
j=1 X2,jX1,j

∑n
j=1 X1,jYj∑n

j=1 X2
1,j

) ∑n
j=1 X1,jX2,j∑n

j=1 X2
2,j∑n

j=1 X2
1·2,j

=

∑n
j=1 X1·2,jYj∑n
j=1 X2

1·2,j

.

Continue by analysing the third component the third component in the same
way. This is:

δ̂3

(
X3 − aX2

)
= δ̂3

{∑n
j=1 X1,jX3,j∑n

j=1 X2
1,j

−
(∑n

j=1 X3·1,jX2·1,j∑n
j=1 X2

2·1,j

)∑n
j=1 X1,jX2,j∑n

j=1 X2
1,j

}

Bring this on a common fraction:

δ̂3

(
X3 − aX2

)
=

δ̂3∑n
j=1 X2

1,j

∑n
j=1 X2

2·1,j

⎡⎢⎣ n∑
j=1

X1,jX3,j

⎧⎪⎨⎪⎩
n∑

j=1

X2
2,j −

(∑n
j=1 X1,jX2,j

)2

∑n
j=1 X2

1,j

⎫⎪⎬⎪⎭
−
⎛⎝ n∑

j=1

X3,jX2,j −
∑n

j=1 X3,jX1,j
∑n

j=1 X1,jX2,j∑n
j=1 X2

1,j

⎞⎠∑n
j=1 X1,jX2,j∑n

j=1 X2
2,j

⎤⎦ .
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Divide numerator and denominator by
∑n

j=1 X2
2,j to get:

δ̂3

(
X3 − aX2

)
= δ̂3

∑n
j=1 X3·2,jX1·2,j∑n

j=1 X2
1·2,j

.

Now bring all the components together:

β̂1 =

∑n
j=1 X1·2,jYj∑n
j=1 X2

1·2,j

−
∑n

j=1 X3·1,2,jYj∑n
j=1 X2

3·1,2,j

(∑n
j=1 X3·2,jX1·2,j∑n

j=1 X2
1·2,j

.

)
.

As before, bring these on a common fraction. Then divide numerator and
denominator by

∑n
j=1 X2

3·2,j to get the desired expression:

β̂1 =

∑n
j=1 X1·2,3,jYj∑n

j=1 X2
1·2,3,j

.

Solution 7.4. The residuals from the two-variable model are given in (5.2.11) as:

Ŷi = (Yi − Y ) − γ̂Y (X2,i − X2),

X̂3,i = (X3,i − X3) − γ̂X(X2,i − X2),

where γ̂Y and γ̂X are the least squares estimators:

γ̂Y =
∑n

i=1(Yi − Y )(X2,i − X2)∑n
i=1(X2,i − X2)2

,

γ̂X =
∑n

i=1(X3,i − X3)(X2,i − X2)∑n
i=1(X2,i − X2)2

.

The least-squares estimator from the regression of Ŷi on X̂3,i is

γ̂ = [ one variable model ] =
∑n

i=1 ŶiX̂3,i∑n
i=1 X̂2

3,i

= [ see below ] =
∑n

i=1 YiX3·1,2,i∑n
i=1 X2

3·1,2,i

.

The denominator is:
n∑

i=1

X̂2
3,i =

n∑
i=1

{(X3,i − X3) − γ̂X(X2,i − X2)}2

=
n∑

i=1

(X3,i − X3)2 − {∑n
i=1(X3,i − X3)(X2,i − X2)}2∑n

i=1(X2,i − X2)2

=
n∑

i=1

X2
3·1,2,i.
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The numerator is:

n∑
i=1

ŶiX̂3,i

=
n∑

i=1

{(Yi − Y ) − γ̂Y (X2,i − X2)}{(X3,i − X3) − γ̂X(X2,i − X2)}

=
n∑

i=1

(Yi − Y )(X3,i − X3)

−
∑n

i=1(Yi − Y )(X2,i − X2)
∑n

i=1(X3,i − X3)(X2,i − X2)∑n
i=1(X2,i − X2)2

=
n∑

i=1

YiX3·1,2,i.

Solution 7.6. The idea is to show that:

n∑
i=1

û2
y·1,2,i = (1 − r2

y,2·1)
n∑

i=1

(Yi − Y )2,

n∑
i=1

û2
3·1,2,i = (1 − r2

3,2·1)
n∑

i=1

(X3,i − X3)2,

n∑
i=1

ûy·1,2,iû3·1,2,i = (ry,3·1 − ry,2·1r2,3·1)

×
{

n∑
i=1

(Yi − Y )2
n∑

i=1

(X3,i − X3)2
}1/2

.

The desired expression then arise by dividing the latter expression with the
square root of the two first. The first two expressions are proved as following.
From the two-variable regression analysis of Yi on X1,i = 1,X2,i it is found
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that:

n∑
i=1

û2
y·1,2,i

=
n∑

i=1

{
(Yi − Y ) −

∑n
j=1(Yi − Y )(X2,j − X2)∑n

j=1(X2,j − X2)2
(X2,j − X2)

}2

=
n∑

i=1

(Yi − Y )2 − {∑n
j=1(Yi − Y )(X2,j − X)}2∑n

j=1(X2,j − X2)2

=
n∑

i=1

(Yi − Y )2
[
1 − {∑n

j=1(Yi − Y )(X2,j − X2)}2∑n
i=1(Yi − Y )2

∑n
j=1(X2,j − X2)2

]

=
(
1 − r2

y,2·1
) n∑

i=1

(Yi − Y )2.

as desired. The last expression is proved in the same way:

n∑
i=1

ûy·1,2,iû3·1,2,i

=
n∑

i=1

{
(Yi − Y ) −

∑n
j=1(Yi − Y )(X2,j − X2)∑n

j=1(X2,j − X2)2
(X2,i − X2)

}

×
{

(X3,i − X3) −
∑n

j=1(X3,j − X3)(X2,j − X2)∑n
j=1(X2,j − X2)2

(X2,i − X2)

}

=
n∑

i=1

(Yi − Y )(X3,i − X3)

−{∑n
j=1(Yj − Y )(X2,j − X2)}{

∑n
j=1(X3,j − X3)(X2,j − X2)}∑n

j=1(X2,j − X2)2

= (ry,3·1 − ry,2·1r2,3·1)

{
n∑

i=1

(Yi − Y )2
n∑

i=1

(X3,i − X3)2
}1/2

.

Solution 7.8.
(a) The formula (7.4.1) gives:

R2 =
ESS

TSS
=
∑n

i=1(Ŷi − Y )2∑n
i=1(Yi − Y )2

.

Noting that δ̂1 = Y then apply (7.2.15) to the numerator, and note that the
denominator is the sum of squared residuals in a regression of Yi on a constant.
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Thus:

R2 =
δ̂2
2

∑n
i=1 X2

2·1,i + δ̂2
3

∑n
i=1 X2

3·1,2,i∑n
i=1 û2

y·1
.

(b) The same argument as in (a), but for a two-variable regression, where R2 equals
r2
y·2,1 So for the numerator apply (5.2.10) instead of (7.2.15).

(c) From the definition in §7.3.1 we have:

r2
y,2·1,2

n∑
i=1

û2
y·1,2,i =

(
∑n

i=1 ûy·1,2,iû3·2,1,i)
2∑n

i=1 û2
3·1,2,i

.

But;
∑n

i=1 ûy·1,2,iû3·2,1,i =
∑n

i=1 yiû3·2,1,i and û3·1,2,i = X3·1,2,i so:

r2
y,2·1,2

n∑
i=1

û2
y·1,2,i =

(
∑n

i=1 yiX3·2,1,i)
2∑n

i=1 X2
3·1,2,i

= δ̂2
3

n∑
i=1

X2
3·1,2,i,

which gives the desired formula.
(d) This is the formula (5.4.10).
(e) Use the results in the sequence (a), (b), (d), (c) to get:

1 − R2

= [ use (a) ] = 1 − δ̂2
2

∑n
i=1 X2

2·1,i∑n
i=1 û2

y·1
− δ̂2

3

∑n
i=1 X2

3·1,2,i∑n
i=1 û2

y·1

= [ use (b) ] = 1 − r2
y,2·1 −

δ̂2
3

∑n
i=1 X2

3·1,2,i∑n
i=1 û2

y·1

= [ extend fraction ] = 1 − r2
y,2·1 −

(
δ̂2
3

∑n
i=1 X2

3·1,2,i∑n
i=1 û2

y·1,2

)(∑n
i=1 û2

y·1,2∑n
i=1 û2

y·1

)

= [ use (d) ] =
(
1 − r2

y,2·1
)(

1 − δ̂2
3

∑n
i=1 X2

3·1,2,i∑n
i=1 û2

y·1,2

)
= [ use (c) ] =

(
1 − r2

y,2·1
) (

1 − r2
y,3·2,1.

)
Solution 7.10. From (7.6.2) with RSSR = TSS, m = 2, k = 3 it follows:

F =
(TSS − RSS) /2

RSS/(n − 3)
.

Exploiting the relation (7.4.4) that TSS = ESS + RSS then gives:

F =
ESS/2

(TSS − ESS) /(n − 3)
=

(ESS/TSS) /2
{1 − (ESS/TSS)} /(n − 3)

The desired expression then follows from (7.4.1).


