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Abstract

Excess demand pressures play a fundamental role in macroeconomic policy and analysis.

The output gap, as a proxy for excess demand, is widely used but is notoriously di¢ cult

to measure due to it being a latent variable. This thesis discusses the most prominent

measures of the output gap, analysing their advantages and drawbacks. The use of

arti�cially generated data enables explicit evaluation of the performance of univariate

�gap�measures, exposing the degree of disparity between measures. Analysis of the

production function approach suggests modelling output in a dynamic setting in order

to overcome the problems of systematic and substantial measurement errors in stock

variables. The empirical application of the paper assesses the importance of excess

demand in explaining in�ation. In�ation is modelled in a dynamic single equation

framework in which a general to speci�c modelling strategy is used, encompassing

all relevant theories. The output gap, based on a composite measure using principal

components analysis, is found to have a substantial impact upon in�ation. Furthermore,

the paper forecasts in�ation over the 1 and 4 quarter horizon using a broad variety of

forecasting models. The importance of an accurate, unbiased estimate of excess demand

at the forecast origin is emphasized. Inference regarding the business cycle is integral

to macroeconomics and this thesis aims to illustrate the importance of the output gap

from a variety of angles.
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1 Introduction

The output gap, measuring the di¤erence between actual output and the potential level

consistent with full employment of resources in the economy, is one of the most widely

used concepts in macroeconomic policy analysis. Excess demand is a signi�cant factor

driving in�ation and an understanding of the gap, which plays an important role in the

conduct of monetary policy, is essential if we are to promote macroeconomic stability. On

the �scal side, the amount of spare capacity in the economy provides an indicator of short

term transitory in�uences that can be used to isolate the impact of cyclical factors on the

budget, enabling policy-makers to sustain a stable �scal policy over the economic cycle.

Also, as potential output constitutes the best composite indicator of the supply side of the

economy, it plays a key role in long-term policy strategies. A high and stable growth rate

of potential output is a precondition for achieving a strong, sustainable non-in�ationary

growth path. However, whilst the concept of excess demand enjoys a prominence in the

literature, it is highly contentious due to it being a latent variable. As there is no clear

consensus on how to measure the gap, there is a pressing need for a deeper understanding

of the pressures of excess demand and the measurement problems associated with it.

Many users of potential output and the output gap do so blindly without considering

the properties of the method used to extract the latent variable. There are a wide variety

of methods employed to calculate the output gap, all of which have di¤erent properties

and many pitfalls. Often linear trends or Hodrick-Prescott �lters are used because of their

ease, particularly if the researcher is not interested in the output gap per se. Yet inference

regarding the gap is sensitive to the measure used. In the absence of prior beliefs based

upon economic or statistical reasoning concerning the most appropriate measures of the

1



cycle, conclusions regarding the current state of economic activity can di¤er widely. A

recognition of the limitations of these measures in proxying such a complex variable is

requisite. This thesis is designed to give an exposé of the various methods used and their

properties in order to provide some guidance as to which measures of excess demand are

appropriate. The paper also directly measures the impact of excess demand on in�ation by

modelling and forecasting UK in�ation within a single equation framework, using quarterly

data over the past 35 years.

The structure of the thesis is as follows. Chapter 2 provides a review of the most com-

mon univariate and multivariate methods of calculating the output gap, discussing their

advantages and drawbacks. The section also examines various issues including disaggre-

gation, the equivalence between moving averages and the seasonal adjustment literature,

real-time estimation, asymmetries and changes in potential output. Chapter 3 generates

real output data as the sum of potential output and the output gap. By generating the

DGP, various univariate detrending procedures can be assessed in relation to the known

output gap, enabling explicit analysis of the behaviour of these measures when structural

breaks occur. Chapter 4 calculates various measures of the output gap for UK data over

the period 1965q1-2002q2. Particular attention is given to the production function ap-

proach. Firstly, a standard growth accounting model is used and secondly, the production

function is estimated in a dynamic framework because of the substantial and systematic

measurement errors in stock variables. The section also forms a composite measure of

the gap using principal components analysis. The chapter concludes by providing a �rst

pass at a comparison of the methods in terms of the cycles�characteristics, correlations

and cointegrating relations between the measures. Chapter 5 of the thesis assesses the

impact of the output gap in an in�ation equation. Various measures of the output gap
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are considered in an attempt to quantify the importance of excess demand in determining

in�ation. Forecasts of in�ation for the period 1998q1-2002q2 are evaluated in chapter 6,

with the aim of appraising whether a good understanding of excess demand will lead to

improved in�ation forecasts. Chapter 7 concludes.

The thesis endeavours to assess the importance of excess demand from a variety of

angles. Whilst the paper does not o¤er a solution to the problem of estimating this

latent variable, it does expound the problems with current methods and highlights the

importance of excess demand, both in terms of its measurement and its transmission

mechanism as a major driving force of in�ation, thus providing the groundwork for future

research on measuring excess demand.
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2 Literature Review

There is no unanimous de�nition of potential output. From a purely statistical viewpoint,

potential output is thought to be trend output. From a theoretical perspective, potential

output is based on the supply side of the economy and is often de�ned as the production

level at normal utilization of factors of production at the current state of technology.

This re�ects the idea that potential output is akin to sustainable long-term growth, which

implies that the output gap (the transitory component of output) is a consequence of

demand shocks. Due to the presence of nominal rigidities, a demand shock will cause

output to di¤er from its supply side level, but as these begin to weaken and prices adjust,

the transitory shocks will dissipate and output will revert to its long-run potential. Hence,

potential output is the steady state level of output associated with the long-run aggregate

supply curve. The de�nition of potential output di¤ers depending upon the time horizon

being examined. In the short-run, physical capital is assumed to be �xed and the gap

is determined by how much demand can develop without inducing supply constraints

and subsequent in�ationary pressures. In the medium-term, investment is assumed to be

endogenous implying that a demand expansion may be accommodated. In the long-run,

full employment potential output is primarily determined by technological progress and

growth of potential labour.

Before proceeding, a note on the terminology used is required. Output in period t

is given as yt, potential output in period t is given as y�t and the output gap, y
gap
t ; is

calculated as (yt � y�t ) : It is assumed that we can use the terms �potential�and �trend�

output interchangeably but the de�nition will be clari�ed by the context in which they

are used. Statistical methods of calculating the gap deliver �trend�output, whereas the
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production function method produces an estimate of �potential�output. Also, by custom,

the term �cycle�is used to represent the gap even though it is not periodic.

2.1 Alternative Methods of Estimating the Output Gap

A large literature has developed addressing the question of how trends and cycles should be

extracted from data series but there is still no clear consensus. Di¤erent methods give rise

to variations in the cyclical component in terms of duration, amplitude, autocovariance

function, spectrum and whether the cycle is stationary or not.

There are two methods of statistically detrending output, �ltering and smoothing. Fil-

tering equates to one-sided estimation. This just relies on backward information and is

therefore used for policy-making, but is less accurate than smoothing (two-sided estima-

tion) which uses both backward and forward information. For policy-making, smoothing

requires forecast estimates. Note that estimates of the gap from one-sided �lters are larger

during accelerations because they are purely backward looking. Therefore, trend output

is estimated to be lower than it is when the future peak is incorporated. One-sided �lters

induce a phase shift, which can distort the timing of business cycles. However, �smoothers�

have the problem that future events determine the current path of the estimate, which

can lead to pre-recession booms (or vice versa) induced by the smoothing procedure. One

measure of robustness is to examine whether estimates of the gap are likely to change with

new observations by testing whether one-sided and two-sided estimates di¤er signi�cantly.

One of the �rst methods of estimating potential output, and one that is still commonly

used, is a linear trend. Potential output is simply a deterministic function of time and

the gap is calculated as the residual, implying that all shocks are demand shocks. The

trend and cycle will be uncorrelated. There is a voluminous literature on the question of
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deterministic versus stochastic trends, but the implication of a deterministic trend that

potential output is completely predictable with a constant growth rate is theoretically

unpalatable.1 Fitting a deterministic trend to a stochastic series will give erroneous con-

clusions. Nelson and Kang (1981) observe that assuming a process is trend stationary and

hence detrending by regressing on time, when in fact the process is di¤erence stationary,

will produce apparent evidence of periodicity in the residuals which is not a property of

the underlying process. Also, if used in forecasting, a linear trend has the implication that

the long-run forecast error variance converges to a �xed value. In practice, it should grow

as the forecast horizon increases.

A segmented linear trend is often used to account for di¤erences in the trend growth

rate over time. However, this relies on the ability to identify when breaks occur in the

underlying potential of the economy, which is nontrivial. Also, a break is likely to feed

through to the underlying potential level of output slowly and will not be accurately

captured by cutting the sample at speci�c dates. For example, a positive technology

shock will take time to �lter into potential output as research and development, learning,

training, time to build and habit formation occurs. Also the aggregation of technology

shocks to individual sectors will lead to a smooth di¤usion into potential output.

Di¤erence �lters are very simple methods of detrending output based on the assump-

tions that underlying potential output follows a random walk with no drift, the cycle is

stationary and E (y�t y
gap
t ) = 0. The stochastic trend is given as y�(�)t = yt�p; where p

is the order of the �lter.2 This is a simple and intuitive method, especially as annual

1See Chapter 3.1 for a review of the literature examining the question of output persistence. A
deterministic trend could be thought of as a limiting case of the general stochastic form, where the
variance of the error term is zero.

2Often a seasonal �lter is used, where p = 4.
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growth rates may be thought to proxy productive capacity pressures. However, the �lter

does not match conventional business cycle frequencies. Also, the �lter re-weights frequen-

cies by emphasizing higher frequencies and down-weighting lower frequencies, leading to

a volatile cyclical component. The �lter is not symmetric but introduces a phase shift,

given by �
2
� 2! for p = 4; where ! is the frequency measured in radians (�� � ! � �).

There is also a time shift, given by the phase shift divided by the frequency, and this

di¤ers for cycles of varying periodicity. The method can produce negative 4th-order serial

correlation in the trend.

Moving averages calculate the algebraic average of a given observation and a speci�ed

number of adjacent observations, which can either be one-sided or two-sided. The method

is very common as it is convenient and transparent, but it is a naive tool for detrending

output. De�ning the cyclical component of yt as:

ygapt = � (L) yt; (1)

where � (L) = ��jL
�j + :::+ ��1L

�1 + �0 + �1L+ :::+ �kL
k; implies that we can de�ne

the trend component of yt as:

y
�(MA)
t = [1� � (L)] yt = � (L) yt: (2)

The centered moving average for an even number of periods given by 2m is de�ned by

the �lter:3

�n =

� 1
2m
; n = 0;�1; :::;� (m� 1)

1
4m
; n = �m:

(3)

If �n contains the properties: i) �s = ��s;8s; ii) j = k and iii) � (1) = 1; � (1) =

3The centered MA �lter for an odd number of periods, 2m+ 1; is given as:

�n =
1

2m+ 1
; n = 0;�1; :::;�m:
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0, which implies symmetry, there will be no phase shift. The e¤ect of the �lter will

be captured in the �gain� function.4 The moving average �lter can generate spurious

cycles, particularly when yt is a unit root process, by the gain function exhibiting cyclical

behaviour.5 If a two-sided �lter is used the method is not timely as the smoothed series

is reduced by k observations. Forecasts are often used to extend the series but these

are subject to error. If a one-sided �lter is used the mean is treated incorrectly because

the series includes a trend. A common form of the 1-sided moving average �lter is the

exponential smoother. Note that there are direct parallels with the literature on seasonal

adjustment, which is discussed in Section 2.3.

One of the most prominent univariate methods of potential output estimation is the

Hodrick-Prescott (HP) �lter. This is a two-sided symmetric moving average �lter. Output

can be decomposed into a trend and cycle by optimizing:

y
�(HP )
t = argmin

y�t

TX
t=1

(yt � y�t )
2 + �

TX
t=3

�
�2y�t

�2
: (4)

This method obtains a trend that balances the �t to the original series against the

degree of smoothness (proxied by the second di¤erence). The level of smoothness depends

on the parameter �. A high � implies a higher penalization for �t to the original series,

yielding a smoother trend.6 E¤ectively, the �lter captures di¤erent priors on the ratio of

4This is readily observed in the frequency domain. Applying the Fourier transformation (which enables
a series to be represented as the sum of a �nite number of sinusoids).to the �lter � (L), we can de�ne the
frequency response function of � (L) as e� (!) where ! is the frequency measured in radians (�� � ! � �) :e� (!) =

Xk

n=�j
�n exp (�in!)

= je� (!)j exp [�iPh (!)] ;
where i =

p
�1. This is the polar form, where je� (!)j is the gain measuring the increase in amplitude of

the �ltered series over the original series and Ph (!) is the phase, which measures the time displacement
caused by the �lter. This representation completely characterizes � (L) yt:

5This problem of a moving average generating irregular oscillation, if none exists in the underlying
data, is widely documented. It is known as the Slutzky-Yule e¤ect. See Slutzky (1937).

6At the extremes, � = 1 results in a trend which is a linear function of time and � = 0 produces a
trend equal to the original series.
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demand to supply side shocks. For quarterly data �=1600 is used as a rule of thumb.

Prescott (1986) interprets the HP �lter as a high-pass �lter, in which low frequency move-

ments are dampened but high frequencies are untouched, providing an objective way of

determining �.7 Harvey and Jaeger (1993) argue that it is the solution to a signal extrac-

tion problem.8

It is important to recognize that whilst the literature terms the HP a �lter, it does

incorporate all available information (the summations extend to T as opposed to t). Hence,

the HP is actually a smoother. There is an end-sample bias stemming from the symmetric

property of the HP �lter, which requires the output gaps to sum to zero over the estimation

period. The trend estimate tends towards the actual estimate at the end of the sample,

biasing the gap towards zero. This renders the method of little use when making current

policy decisions. As potential output derived from the HP �lter is just a moving average

of actual output, sustained deviations from actual output, possibly due to substantial

nominal rigidities, are not possible. Cogley and Nason (1995) show that the HP �lter can

lead to spurious cyclical behaviour whereby the cycles are due to the �ltering procedure

rather than the economic properties of the data.9 However, the method is robust, easy to

use and popular.

The univariate HP �lter can be extended by conditioning on information variables, for

7For �=1600, the HP �lter can be rationalized as a high-pass �lter capturing �uctuations with a period
shorter than 32 quarters.

8The HP �lter is the optimal linear estimator of the trend, �t; in the structural time series model
given in equations (24), (25) and (26) below. The solution to the signal extraction problem is given by
� = �2"=�

2
� : However, this representation assumes that yt � I(2) and that the cyclical component is white

noise. It is generally thought that yt � I(1) and the cyclical component contains some persistence.
9If the series is trend stationary, the HP �lter e¤ectively linearly detrends the data and then smoothes

the deviations from trend in an equivalent manner to a high band pass �lter. However, if the series is
di¤erence stationary, the HP �lter is equivalent to a 2-step linear �lter that di¤erences the data and then
smoothes the di¤erenced data using an asymmetric moving average. This can amplify growth cycles at
business cycle frequencies and dampen long-run and short-run �uctuations, leading to spurious cycles.
See Nelson and Kang (1981) for a discussion of spurious cycles arising from detrending a RW, which is a
direct parallel to applying the HP �lter to an I(1) process.
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example:

y
�(MHP )
t = argmin

y�t

TX
t=1

(yt � y�t )
2+ �

TX
t=3

�
�2y�t

�2
+

TX
t=1

��;t"
2
�;t+

TX
t=1

�u;t"
2
u;t+

TX
t=1

�cu;t"
2
cu;t

�t = �et + A (L) (yt � y�t ) + "�;t (5)

ut = nairut �B (L) (yt � y�t ) + "u;t (6)

cut = cu�t + C (L) (yt � y�t ) + "cu;t (7)

De Brouwer (1998) estimates a multivariate HP �lter based on a Phillips curve, equation

(5), Okun�s Law, equation (6), and a partial indicator of capacity supply, equation (7).

Hence, the multivariate �lter conditions on structural relationships that contain informa-

tion about the output gap. This should result in a more precise estimate of the gap.

However, the method still holds all the caveats of the univariate �ltering method.

The Cubic Spline (CS) is a popular non-parametric method of detrending output that is

virtually identical to the HP �lter.10 A CS is a combination of piecewise cubic polynomials

that can be �tted to a series of data points. Given knots at xt (where the piecewise portions

join), a CS exactly interpolates the data points. The portions are de�ned so that at the

knots the function and its �rst two derivatives are continuous.

A CS with knots at xt; for t = 1; :::; T; is de�ned (letting x0 = �1; xT+1 =1) by:

f(x) = at + btx+ ctx
2 + dtx

3; (8)
10See Doornik and Hendry (1996) for an outline of why the natural CS and HP �lter result in very

similar decompositions.
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subject to the restrictions:

at�1 + bt�1xt + ct�1x
2
t + dt�1x

3
t = at + btxt + ctx

2
t + dtx

3
t

bt�1 + 2ct�1xt + 3dt�1x
2
t = bt + 2ctxt + 3dtx

2
t

2ct�1 + 6dt�1xt = 2ct + 6dtxt

c0 = d0 = cT = dT = 0:

(9)

The �rst three restrictions ensure the function and its �rst and second derivatives respec-

tively are continuous at the knots. The �nal restriction means that CS is a linear function

outside the range of the knots, thus avoiding the end-point bias problems of other such

smoothers. The CS also has a discontinuous third derivative:

f 000(x) = dtxt � x < xt+1: (10)

The CS is the interpolating function that minimizes the sum of squared deviations

from a function, f; subject to a roughness penalty given by the integrated squared second

di¤erence:
y
�(CS)
t = min

TX
t=1

[yt � f (xt)]
2 + �

Z
[f 00 (x)]

2
dx: (11)

� is the bandwidth, controlling the trade o¤ between minimizing the residual error and

minimizing local variation.11 The solution gives the natural CS with knots belonging to

fx1; :::; xTg: However, the method is highly dependent on the decision of the number of

knots to impose, k; or the smoothing parameter �.12

The Kernel Smoother (KS) is another non-parametric method of detrending output

11GiveWin o¤ers 3 ways of specifying the bandwidth. One is to specify an equivalent number of
parameters, ke (which is approximately equivalent to the number of regressors used in a linear regression).
A second is to use the default, which corresponds to � = 1600 for the HP �lter (quarterly data) and the
third is to choose the bandwidth by generalized cross validation, computed as:

GCV (�) = T

�
RSS

T � 1:25Ke + 0:5

�
:

Choosing the bandwidth on the basis of GCV tends to undersmooth. See Doornik and Hendry (1996) for
further details.
12See Green and Silverman (1994) for a more detailed discussion on splines.

11



based on approximating the probability density function of a random variable. The KS is

given as:

y
�(KS)
h =

"
TX
t=1

K

�
x�Xt

h

�#�1 " TX
t=1

K

�
x�Xt

h

�
yt

#
; (12)

where h is the bandwidth or smoothing parameter and K (:) is the kernal, determining

the shape of the weights. This is a continuous, bounded and symmetric real function that

integrates to one:
R1
�1K(u)du = 1: A variety of kernel functions are possible in general

but the most commonly used kernel function is of parabolic shape, usually termed the

Epanechnikov kernal:
K(u) =

�
3
4
(1� u2) , for juj � 1

0; for juj > 1: (13)

The optimal bandwidth is given by h = 0:75b�x=T 0:2:This kernal is optimal in the set ofdensity estimators. A drawback to the KS is that there are problems at the edges. For

example, if a variable is trending upwards, the initial values of the KS will be based on

a moving average of points that lead the series. These will be higher, causing the initial

values of the KS to be higher. As more lags in the data are included the KS adjusts,

arising in a classic �J�shape at the origin.

The Beveridge Nelson (BN) �lter is a model-based univariate approach that uses

ARIMA methodology to decompose a non-stationary time series into a permanent and

transitory component. The trend component is the long-run forecast of output and the

cyclical component is output growth in excess of growth in the current state of the econ-

omy. Representing �yt as:

�yt = �+
(1� �1L� :::� �qL

q)�
1� '1L� :::� 'pL

p
�"t; (14)

where � is the mean of the process, "t �NID(0; �2") and the roots of 'p (L) = 1 � '1L �

:::� 'pL
p lie outside the unit circle. We can de�ne:

 (L) =
�q (L)

'p (L)
=
1� �1L� :::� �qL

q

1� '1L� :::� 'pL
p
; (15)
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which implies that we can decompose�yt into a stationary and non-stationary component:

�yt = �+  (1) "t| {z }
�y�t

+ e (L) "t| {z }
�ygapt

; (16)

where e (L) =  (L) �  (1) : De�ning the trend as the value the series would take if it

were on the long-run time path in the current time period, the long-run forecast, adjusted

for the mean rate of change, is given as:

y
�(BN)
t = lim

h!1
(Etyt+h � �hj
t) ; (17)

where 
t = (y1; :::; yt) : This can alternatively be expressed as the weighted average of

current and past values of yt (see Miller, 1998):

y
�(BN)
t =

�q (1)

'p (1)

'p (L)

�q (L)
yt: (18)

Hence, future information will not modify the trend component, which di¤ers depend-

ing upon the stochastic properties of the series. By basing estimates of potential output on

forecasts, a priori assumptions on the structure of the economy can be avoided. One prob-

lem is that alternative ARIMA models are likely to have di¤erent long-run speci�cations,

resulting in di¤ering decompositions.

Two features of the BN �lter should be noted. Firstly, the method assumes the trend

and cycle components are driven by the same shock as the error terms are perfectly

correlated. Secondly, the trend component is modelled as a RW with drift. This implies

that the stochastic trend accounts for most of the variation in output and can, in fact, be

more volatile than the series itself.13 The cycle is stationary with weights summing to 0 and

it tends to be small and noisy. Whilst the BN decomposition is a 1-sided weighted average

13See Watson (1986) for a more detailed discussion regarding the RW trend of the BN decomposition.
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�lter, Prioretti and Harvey (2000) develop an algorithm for a two-sided BN smoother.

The BN �lter can be extended to the multivariate case, as in Evans and Reichlin (1994).

Additional information is used to forecast output growth in a VAR framework. The

authors �nd that the cycle component has a larger variance in the multivariate framework

compared to the univariate model, although the cycle is still sensitive to the lag length

used.

Band Pass (BP) �lters eliminate slow moving trend components and high frequency

irregular components, retaining the intermediate business cycle elements. The �lter passes

through components belonging to a prespeci�ed band of frequencies, removing those at

higher and lower frequencies. An Ideal Band Pass �lter will have a gain function (with

upper and lower cut-o¤ frequencies ! and !) given by:

F (!) =

8>>>>>><>>>>>>:
0 if j!j � !

1 if ! � j!j � !

0 if j!j > !

(19)

so that the frequencies belonging to the interval [!; !] pass through the �lter untouched.

Note that an Ideal BP �lter requires an in�nite order moving average representation. In

practice, an approximation to the ideal BP �lter is required.

Filtering can be implemented in the time or frequency domain. For �ltering in the

frequency domain see Hassler et al. (1994). The �ltering is implemented by initially

smoothing the series using a HP �lter (with very high �) and extending with zeros. Then

the spectral measure is derived using a Fast Fourier Transform, which is multiplied by the

14



transfer function (equation (19)) and inverted to extract the cyclical component:14

ygapt =
T�1X
j=0

S (!j)F (!j) e
it!j : (20)

The method has the drawback of detrending the series prior to the Fourier Transform.

Also, results are not invariant to changes in the sample.

For �ltering in the time domain, Baxter and King (1999) approximate the Ideal BP �l-

ter with a �nite order moving average. De�ning b (L) =
P1

j=0 bj, the �best�approximation

is obtained by solving the constrained optimization problem:

min
f�jg

Z �

��
j� (!)� �k (!)j2 d!; s.t. �k (0) = �; (21)

where � (!) denotes the gain function of the ideal BP �lter, �k (!) is the ideal BP function

of the approximating �lter and � is the gain of the �lter at zero frequency. The resulting

optimal solution is:
aj = bj + �; where � =

��
Pk

j=�k bj

2k + 1
; (22)

for j = 0; :::; k where k is the lag length of the symmetric MA representation. Having

obtained the weights, which are adjusted by �; the cycle is given as:

ygapt =
Xk

j=�k
ajL

jyt: (23)

Whilst the method of �ltering in the time domain is transparent there are severe end-

of-sample problems. Increasing k reduces the approximation error of the �nite-order MA

but k observations are lost at the end-point. In order to overcome this, Harvey and

Trimbur (2002) suggest using the di¤erence between two Butterworth (low-pass) �lters as

an approximation to the BP �lter. This is comparable to the Baxter and King (1999) cycle

but it provides end-point estimates. Finally, note that the speci�cation of the frequency

14A Fast Fourier Transform is a recursive algorithm used to compute the discrete Fourier Transform
e¢ ciently.
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interval [!; !] is subjective. A priori judgement is needed as to what constitutes a business

cycle.15

Harvey and Jaeger (1993) argue that Structural Time Series (STS) models are the

most informative framework in which to determine stylized facts regarding time series data.

This is because they are formulated in terms of components that have direct interpretation.

The Unobserved Components (UC) model requires i) speci�cation of the statistical model,

ii) estimation of the set of hyperparameters and iii) application of the signal extraction

algorithm. State Space Form (SSF) provides a framework for �nding exact maximum

likelihood estimates of a models parameters. Once the model is outlined in SSF, the

Kalman Filter can be applied, enabling signal extraction for both stationary and non-

stationary components.16 Both �ltering and smoothing can be applied in this framework.

Appendix 2 outlines the general multivariate SSF model and the Kalman Filter. The

univariate UC model is given as:

y
(UC)
t = �t +  t + "t (24)

�t = �t�1 + �t�1 + �t (25)

�t = �t�1 + �t (26)2664  t

 �t

3775 = �

2664 cos�c sin�c

� sin�c cos�c

3775
2664  t�1

 �t�1

3775+
2664 �t

��t

3775 (27)

where t = 1; :::; T: �c is the frequency in radians, 0 < �c < �; � is the dampening factor,

0 < � � 1; and "t �NID(0; �2") ; �t �NID
�
0; �2�

�
; �t �NID

�
0; �2�

�
; and �t; ��t �NID(0; �2�).

The disturbances of each of the components are assumed to be mutually uncorrelated.

15Following Burns and Mitchell (1946), Baxter and King (1999) consider cycles of between 6 and 32
quarters.
16The Kalman �lter is equivalent to the recursive least squares algorithm. A linear regression model

can be represented in SSF and standard OLS is equivalent to the KF for the last observation.
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The measurement equation (24) comprises the trend component, �t, the cyclical com-

ponent,  t, and an irregular component, "t.
17 The transition equations (25), (26) and (27)

de�ne the trend and cycle. The trigonometric speci�cation of the cycle is common, see

Harvey (1993). The trend component is an ARIMA(0,2,1) process but recedes to a random

walk with drift if �2� = 0 and is deterministic if �
2
� = 0.

18 Koopman et al. (1999) list the

sub-models contained in the general framework, which are obtained by placing restrictions

upon the model parameters. Con�dence intervals for the gap can be estimated giving a

measure of the uncertainty associated with potential output.

Common factor models generalize STS models to the multivariate case by broadening

the information set. If the variance matrices are of reduced rank, the model contains

�common�components. For example, Kuttner (1994) uses a bivariate UC model to derive

estimates of potential output from the joint behaviour of output and in�ation by adding

an Expectations Augmented Phillips Curve. Flaig and Plotscher (2001) use a business

assessment survey that is assumed to share the same cyclical component as output in

order to improve the identi�cation of the gap.

In contrast to the BN decomposition, the UC decomposition assumes that most of

the variation in output occurs in the cycle. This is because of the restriction that the

trend and cycle innovations are uncorrelated. Morley et al. (2002) �nd that if this restric-

tion is relaxed, the UC decomposition leads to an identical representation as that of the

17A seasonal component can be included in the general form of the model. Also, an AR(1) component
can be included, and is a limiting case of the stochastic cycle.
18The HP �lter is a restricted case of the unobserved components model. The restrictions are given by:

�2" = 0, � = 0; �2� = 0;

 t = �t � NID
�
0; �2�

�
; �2� = �2�=1600:

Hence, �2� is the only variance parameter to be estimated. See Appendix 3. The UC model is often
preferred to the HP �lter as it does not rely on any arbitrary calibration of the variance of the trend term.
Also the end-of-sample bias of the HP �lter is reduced in the UC framework because the cycle prevents
the trend from adjusting to accommodate the end-point problems.
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BN decomposition.19 They also �nd that the restriction of zero correlation between the

trend and cycle for US quarterly GDP (1947-1998) is rejected at the 5% signi�cance level.

This lends support to the importance of real shocks in the economy; as real shocks shift

the long-run path of the economy, short-term �uctuations lead to adjustments towards a

shifting trend. For example, if yt = y�t initially, a positive real shock will cause a negative

output gap, implying negative contemporaneous correlation between the trend and cycle.

However, a positive transitory shock will have no impact upon the trend.

Kim (1994) shows that Markov-switching models that take account of structural changes

in the dependent data can be represented in SSF, with switching in both the measurement

and transition equations. The model can be designed to allow for explicit identi�cation

and estimation of the trend and cycle components of the underlying series.

A structural VAR, proposed by Blanchard and Quah (1989), is a multivariate method

of decomposition based on economic theory. The VAR is given as:

yt = d+ � (L) �t (28)

where d is a vector of deterministic components and � is a vector of structural shocks. As

E (�t�s) = 0;8s 6= t; the variance-covariance matrix can be normalized to the identity ma-

trix. � (L) represents the transition mechanism for the shocks, given as � (L) =
P1

i=0 �iL
i.

Long-run restrictions on output are imposed in order to obtain identi�cation. Blanchard

and Quah (1989) take a traditional Keynesian view of �uctuations whereby disturbances

with permanent e¤ects are supply side shocks, shifting potential output whereas transitory

e¤ects are caused by demand side shocks. However, the distinction between demand and

supply shocks, and hence the permanent and transitory components, is nontrivial. Also,

19Appendix 2 outlines the equivalence of the BN and UC models.
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as the SVAR is a simultaneous equation system with instruments, the quality of the model

depends upon the quality of the instruments used.

An alternative multivariate method of estimating potential output is based on the

Permanent Income Hypothesis. Cochrane (1994) decomposes output into a trend and cycle

by observing consumption, which is a random walk under the PIH. As consumption and

income are cointegrated, any change in income must be transitory if consumption remains

unchanged, providing the consumption to income ratio is fairly stable. The method relies

on the controversial assumptions that PIH holds and that consumption is a RW, thereby

constraining potential output to also be a RW.

Another subset of models used to decompose output are the controversial Real Business

Cycle models. These are dynamic stochastic general equilibrium models where technology

shocks are the only source of disturbance in the economy.20 There has been an active

research programme looking at RBC models but the general consensus is that these models

are unable to account for the volatility and persistence of business cycle �uctuations.

Finally, the Production Function (PF) method is a prevalent method of estimating the

output gap, particularly within International Institutions and Central Banks. Based on a

simple growth accounting framework, the PF method essentially relates inputs to outputs.

Potential output is determined by the supply side of the economy; capital, labour and the

residual total factor productivity. These are in turn driven by microeconomic foundations

such as technology and preferences. The method provides a rigorous framework based in

economic theory and enables the impact of disturbances to the inputs to be traced through

to potential output, providing a better grounding for policy analysis.21 Whilst structure

20See King et al. (1988) who assume a deterministic trend and King et al. (1991) in which the model
is augmented to allow for a stochastic trend.
21For example, the impact of policy changes such as changes to unemployment bene�ts or laws regulating
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on the economy is imposed via ad hoc functional forms such as Cobb-Douglas or CES,

this enables calculation of the underlying total factor productivity, which is an essential

component of the long-run potential output of the economy. There are signi�cant data

requirements for the method. In particular, NAIRU (non-accelerating in�ation rate of

unemployment) estimates are uncertain and data such as that of capital stock are of poor

quality. Trend rates of inputs need to be calculated and are often derived using the HP

�lter and so the problems of univariate detrending methods are not fully avoided.

2.2 Disaggregation

In most applied work there is a problem of aggregation but the issue is rarely addressed

explicitly. Whilst there is no clear resolution to the problem, the fundamental issue is in

determining at what level of aggregation the analysis should be carried out. This is often

restricted by data limitations and conventions but there are strong arguments for working

at a disaggregated level.

Espasa, Senra and Albacete (2002) �nd that breaking down the aggregate price level

index into indexes corresponding to groups of markets vastly improves the forecasting

performance for European in�ation.22 This is because the component prices are not fully

cointegrated. The absence of full rank implies that the trends in the individual price

indexes are generated by more than one common factor. Hence, innovations in the ag-

gregate price level will have di¤erent long-run e¤ects depending on which common trend

they primarily stem from and there will not be full convergence between the indexes.

hours worked can be traced though to their e¤ect on potential output.
22Espasa et al. (2002) examine the harmonised consumer price index for Europe. They disaggregate the

data, both in terms of price indexes corresponding to big groups of markets and countries. The sectoral
split is given by non-processed foods, energy, other goods and other services. The country splits examine
France, Germany, Italy and Spain. They conclude that forecasts derived from aggregating the forecasts of
the individual components outperform forecasts that are calculated by aggregating the components �rst.
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In terms of policy, the feed through e¤ects from a shock to a particular price index

will di¤er depending upon the size and type of innovation and the transmission mecha-

nism. Espasa et al. (2002) distinguish between core and residual in�ation on the basis

of which price indices are more volatile. It is entirely plausible that policy-makers will

react di¤erently to in�ationary pressures arising from core in�ation as opposed to residual

in�ation. One example of the di¤erences in in�ationary e¤ects is insurance premia. Poor

performance by companies drives up premia because of the need to rebuild margins, in-

creasing services price in�ation. This di¤ers markedly from goods price in�ation. Also, if

the manufacturing sector has been less subject to �new economy�e¤ects than the service

sector, the way a production sector output gap will feed into in�ation will be more stable

than a service sector gap.

There is a trade-o¤ when determining the level of aggregation that should be used.

Consumption patterns change over time. If a commodity price index is used as the mea-

sure of in�ation, an average consumption bundle will be more representative than the

disaggregated data because the index uses shares in expenditure as weights. The analysis

in this paper examines aggregate in�ation due to data limitations, but with the advent

of the �new economy�and the divergence of the goods and services markets, the issue of

disaggregation must come to the forefront in applied work.

2.3 Methods of Seasonal Adjustment

The goal of the above �ltering and smoothing procedures is to remove unwanted features if

the data series, leaving the component that is of interest to the researcher. Macroeconomic

data not only contains trends and cycles but also seasonal components. This is often

ignored as seasonally adjusted data is used but it is important to recognize that the
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process of seasonal adjustment will distort the underlying properties of the data.

Seasonality can be described as regular and recurring patterns of variability across

years. There are many approaches to modelling seasonality, including dummy variables

that parametrically adjust for seasonality, endogenous dynamics such as annual di¤er-

ences, evolving patterns of expenditure and �lters that remove components at seasonal

frequencies. The last is the most common method of adjusting for seasonality and much

of the data published by the ONS is seasonally adjusted using these �lters.23 The problem

of seasonal adjustment (SA) is to �lter out the seasonal factor without seriously distorting

the other elements generating the observed data. Following Hendry (1995a), we shall an-

alyze an approximation to the X-11 procedure which is a linear two-sided �lter, see Wallis

(1974).24 Letting fxat g be a seasonally adjusted series and f (L) be the two-sided linear

�lter we can can de�ne the SA series as:

xat = f (L)xt; where f (L) =
mX

i=�m
fiL

i: (29)

The �xed, �nite weights are given by fi.25 We express f (L) as:

f (L) = f (1) + f � (L)� = f (1) + f � (1)� + f �� (L)�2::: (30)

where the recursion can be repeated to any order. f � (L) and f �� (L) are �nite-order, �xed

weight, two-sided linear �lters with coe¢ cients ff �i g and ff ��i g respectively. The sum of

the coe¢ cients in the successive lag polynomials can be obtained from:

f � (1) = �@f (L)
@L

cL=1 and f �� (1) = �
@f � (L)

@L
cL=1; (31)

which implies f � (1) = �
Pm

i=�m ifi and f
�� (1) = �

Pm�1
i=�m if

�
i : The properties of the

23See Hylleberg (1992) for a discussion of the properties of this and other SA methods.
24We ignore features such as graduation of extreme values, constraints on calendar year totals, correc-

tions at the end of sample and multiplicative models of SA.
25If some fi were set to zero, f (L) could be a one-sided �lter.
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seasonal �lter include:

1. Normalization: f (1) = 1: Therefore, f (L) = 1+ f � (L)�: This ensures that xat and

xt are in the same units, implying the long-run properties of the series will not be

a¤ected.

2. Symmetry: f (L) = f (L�1). Therefore, fi = f�i; i = 1; :::;m: This is su¢ cient for

f � (1) = 0; which implies f (L) = 1 + f �� (L)�2:

3. Irrelevance of seasonal dummies: Representing a �xed seasonal pattern by d (L) s1;t

where d (L) is a (p� 1)th-order polynomial (p=periodicity of seasonality) and si;t is

the centred dummy for the ith season, we can de�ne the two-sided linear �lter as:

f (L) = f� (L)� (L) ; where � (L) = p�1
p�1X
i=0

Li: (32)

As � (L) s1;t = 0:

f (L) d (L) s1;t = f� (L)� (L) d (L) s1;t = f� (L) d (L)� (L) s1;t = 0; (33)

removing the seasonal dummies.26

This analysis exposes the links between SA smoothers and the centred MA used to

detrend output. The centred MA is equivalent to applying a seasonal adjustment onto

SA data, imposing more structure. Seasonal adjustment will invariably a¤ect the cyclical

properties of the data, distorting business cycle measurement. This is because the dy-

namic speci�cation will be di¤erent. By imposing structured seasonal patterns, constancy

26Also note that cointegration should be invariant to seasonal �ltering. If xt and xat form a vector
of n I(1) time series which satisfy (29) and � is an n � r cointegrating matrix for xt; then � is also a
cointegrating matrix for xat : This implies that SA will only a¤ect the short-run dynamics of the process,
providing the properties outlined are satis�ed. xt and xat have the same number of cointegrating vectors.
Using the property of symmetry and pre-multiplying by �0:

�0xat = �0xt + �
0f�� (L)�2xt;

which implies that � is the cointegrating matrix for both xt and xat :
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assumptions will be embodied in the �lters. If seasonal behaviour is endogenous this can

lead to serious errors in the data. Thus, caution is essential when analyzing univariate

detrending methods on SA data.

2.4 Real-Time Estimation of the Output Gap

Timely and accurate estimates of the gap are required for policy-making. Estimated

reaction functions indicate that Central Banks do respond to the gap and optimal control

exercises suggest that it is optimal to do so. However, conventional measures of the

gap su¤er from errors attributable to end-point problems and revisions to the underlying

data. In an attempt to overcome these problems, the gap has been estimated in real-time.

Orphanides and van-Norden (1999) show that ex post revisions of the output gap are of

the same order of magnitude as the output gap itself, with the bulk of errors attributable

to the unreliability of end-of-sample estimates of trend output. The biases are most acute

at business cycle turning points, where the costs of policy errors are at their greatest.

High frequency estimation of the output gap may partially reduce the end-point prob-

lems associated with estimation of the gap and bring forecasts of the gap closer to those of

the real-time estimates. As there is a trade-o¤ between the advantages of high frequency

data and the disadvantages of noisy data, estimation across a range of frequencies may

provide fruitful results. Data limitations currently prevent estimation of the gap at higher

frequencies than quarterly estimation but more timely survey data provides an avenue of

research that is likely to be productive.
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2.5 Asymmetric In�ation E¤ects

The question of whether the relationship between in�ation and excess demand is non-linear

or asymmetric has attracted some attention in recent years. If a given amount of unem-

ployment below the NAIRU is more in�ationary than an equivalent excess unemployment

is de�ationary, parametric trend estimation methods will be biased.27 If positive output

gaps have a stronger e¤ect on in�ation than negative gaps, average actual output may well

be below potential output and estimation methods would tend to overestimate potential

output. By rearranging a simple Phillips curve:

�t = �t�1 + � (yt � y�t ) (34)

TX
t=1

(yt � y�t ) = ��1 (�T � �0) ; (35)

we can see that if �0 = �T ; the sum of the gaps will equal 0 and any demand management

policies implemented to reduce the impact of negative gaps will be at the expense of

positive gaps. The asymmetry hypothesis emphasizes reducing positive gaps in order

to avoid the disproportionately greater recessionary costs that will be realized when the

cycle moves into a downturn. If there are substantial asymmetry e¤ects, policy must be

designed carefully in order to avoid overshooting when closing the gap as this can be very

costly. Demand management policies that are e¤ective in preventing booms could result

in a higher average level of output. The literature provides a general conclusion that there

is some evidence of asymmetry but the empirical evidence is somewhat inconclusive due

to the problems of measuring potential output, the forms of non-linearity and di¤erent

speci�cations of the hypothesis. Clements and Sensier (1999) do �nd the Phillips curve

27See Chadha, Masson and Meredith (1992), Laxton Meredith and Rose (1995), and Clark Laxton and
Rose (1996).
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to be asymmetric for the UK, with only positive gaps a¤ecting in�ation. However, in a

broader dynamic mark-up model of in�ation their �nding of asymmetry characterizing the

output gap is not reinforced.

Turner (1995) discusses speed limit e¤ects, which are described as a rise in in�ation

that is attributable to a reduction in the output gap, despite output not rising above

its potential level. This asymmetry is based on a Keynesian supply curve that is almost

vertical beyond the level of potential output. However, there is limited evidence for such

e¤ects. If they do exist, their impact is thought to be minimal.

2.6 The Theoretical Literature

The output gap is essentially a proxy for excess demand in the economy. A positive

demand (supply) side shock will impact on the transitory (permanent) component of

output, causing excess demand (supply). The initial empirical study of excess demand in

relation to in�ation was encapsulated in the Phillips curve (1958), which assumed there

was a permanent trade-o¤ between unemployment and in�ation. When this relationship

failed in the early 1970s, the Natural Rate Theory, proposed by Friedman (1968), came to

prominence. This theory argues that there is an equilibrating pressure in the long-run and

deviations from potential output, which is analogous to the natural rate of unemployment,

cannot be permanently sustained.

The Lucas Island Model (1973) aimed to include expectations explicitly in the model.

A long-run trade-o¤ between in�ation and output would only be sustained if expectations

were backward looking and in�ation was low and stable, otherwise the economy would

always be at the natural rate. New Keynesian Models were developed in an attempt to

explain why there may be permanent excess demand e¤ects. These use menu cost models
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or staggered price models to allow for output persistence. The presence of real and nominal

rigidities prevents the immediate price adjustment to return to equilibrium, implying that

output can be sustained above potential for long periods.

It is generally accepted that excess demand pressures feed though to in�ation in the

short-run only. If there is price homogeneity and the output gap has a zero mean, the

long-run impact of the gap will be zero. In Chapter 5, a model of in�ation based upon a

mark-up model is derived, whereby the long-run price level is determined by the supply

side but excess demand pressures impact upon in�ation in the short-run.

2.7 Changes in Potential Output

The past half century has seen many �uctuations in potential output, but as a latent

variable it is di¢ cult to determine exactly when these shifts occurred. There was a decline

in potential output in the 1970s from strong growth in the 1960s. Growth recovered in the

1980s but did not reach the rapid growth of the 1960s and the second half of the 1990s

has seen an upsurge in output growth but it is still relatively modest.

The causes of a change in potential output stem from numerous sources. These include

changes in the rates of capital accumulation, the growth rate of labour inputs and the pace

of technological advancement. For example, the slowdown in the 1970s was driven by a fall

in total factor productivity (TFP) due to changes in the sectoral share of output, reduced

scope for economies of scale, growth in public expenditure, changes in market shares and

reduced catch-up e¤ects with the US after the rapid growth of the 1950s and 1960s. Added

to lower TFP was a reduction in labour input as average working hours declined without

a corresponding increase in employment and increased capital obsolescence following the

oil shocks, all of which contributed to lower potential output growth.
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The �new economy�debate has led to a renewed interest in the issue of the sustain-

able level of output growth.28 The acceleration of productivity growth over the 1990s,

particularly in the US, is largely attributable to the ICT sector.29 Growth in total labour

productivity due to the ICT sector is traced to the production of information technology

capital at rapidly falling prices encouraging capital deepening and to the direct contri-

bution of technical progress in information capital to TFP. There is a debate as to TFP

growth outside the ICT sector. Oliner and Sichel (2000) �nd that there is evidence of

growth whereas Gordon (2000) attributes any growth outside of this sector to cyclical

gains.30

These type of policy issues emphasize the need for a method of calculating the growth

of the underlying inputs of GDP. Univariate methods are useful in providing estimates

of the gap per se but they do not provide any information as to the causes of a change

in the gap. This is the reason why the production function method of estimating the

gap is so popular with policy-makers. Despite its obvious shortcomings, the production

function approach does enable the growth rate of potential output to be dissected into

capital inputs, labour and population growth and technical progress.

28Coen and Hickman (2002) provide an empirical analysis of the late 1990s productivity growth and
projections for the future performance of the US economy using an annual growth model. Cecchetti (2002)
assess the implications of the �new economy�for policy-makers, emphasizing the di¢ culties associated with
estimating potential output when the productivity trend is shifting.
29This includes computer hardware, software and communications equipment.
30Oliner and Sichel (2000) estimate that one third of the increase in growth in the second half of the

1990s is due to gains outside of the ICT sector, whereas Gordon (2000) claims that once the cyclical
component is extracted from the trend, there is no revival of productivity growth outside of the ICT
sector.
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3 Assessment of Univariate Methods of Estimating

the Output Gap

A fundamental criterion for a �good�output gap measure is that it can accurately identify

the �true�gap under a variety of di¤erent circumstances. As the gap is a latent variable,

there is no way to determine whether a method is correctly picking up changes in potential

output as opposed to the output gap. Instead, we can use arti�cially generated data to

compare methods. This chapter applies univariate detrending procedures to a prespeci�ed

data-generation process (DGP). A variety of circumstances shall be examined including i)

a change in the growth rate of potential output, ii) an intercept shift in potential output

and iii) a large negative output gap.31 The US productivity increase in the 1990s brought

about an increase in the rate of growth of potential output. This should be re�ected

by an increasing trend as opposed to assuming a larger positive output gap. The Great

Depression saw a substantial and prolonged period of negative excess demand. Most

univariate estimates of the Great Depression systematically underestimate the magnitude

and length of the recession. This is because they attribute a greater proportion of the

decline in output to a fall in potential output that, with hindsight, is not warranted.

A shift in the gap will be caused by temporary shocks. These may be characterized

as demand side shocks but could include temporary supply side shocks, such as some oil

price shocks or exchange rate shocks. A break in potential output will be attributable

to a permanent supply side shock such as a change in productivity or the growth rate of

the population, although a shift could also be caused by changes in trade union militancy,

31Within this analysis, we need to de�ne precisely what is assumed to be a structural break. A vector
of parameters, � 2 � where � = f�;8 admissible �g, comprises the structure of a system if invariant
and directly characterizes the relations of the economy under analysis. The parameters are invariant to a
change in the DGP if they remain constant despite intervention. Thus, we can de�ne a structural change
to occur when an element or elements of � change.
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sustained changes to import prices or other long-term e¤ects. Supply side shocks are

thought to di¤use slowly into the economy, resulting in a smooth potential output series.

Any detrending method would ideally be able to distinguish between these cases in order

to accurately estimate the output gap. If using a production function approach, one

could make the distinction between permanent and transitory shocks by assuming that

transitory shocks are re�ected in changes to inventories and utilization rates whereas

permanent shocks are incorporated in shifts in employment and the capital stock. This

will be dependent on the degree of �exibility in the markets for labour and capital. If

there are high adjustment costs this assumption is plausible but in industries with low

adjustment costs for both capital and labour, temporary shocks may well be re�ected

in changes to employment and the capital stock. It is clear that subjective analysis is

required to distinguish between shifts in actual and potential output.

3.1 Characterization of UK GDP

This section describes UK real GDP for the period 1965q1-2002q2, and considers its basic

properties. Figure 1, panel a, records the log of UK GDP, y, along with the annual growth

rate, �4y; in panel b, the quarterly growth rate, �y; in panel c and the di¤erence of the

quarterly growth rate, �2y; in panel d.32 The sharp increase in output growth in 1973q1 to

an unprecedented 10.5%pa was caused by a �scal expansion package and was immediately

followed by the oil crisis which brought about negative growth rates. The second oil

crisis was followed by the Thatcher period in which there was a permanent intercept shift

downwards in output as well as a reduction in volatility. The regime shift takes place over

32Graph panels are lettered a, b, c and d, row by row, i.e.
�
a b
c d

�
. The di¤erence operator is de�ned

as (1 � L) where L represents the lag operator. For example, the lag of variable x at time t is given as
Lxt = xt�1. Hence, �xt = xt � xt�1 and in general �ji = (1� Li)jxt.
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Figure 1: UK GDP, levels and growth rates.

a period but we shall date the break as occurring in the quarter following the imposition

of the medium term �nancial strategy in March 1980. Another break occurs in the early

1990s where there is a period of slowing growth. This is a more prolonged change and it

is di¢ cult to determine whether it is a deep recession, re�ected in a large negative output

gap, or whether this represents a shift in the underlying potential of the economy. There

is a decline in the volatility of the growth rate in the latter part of the 1990s, probably

driven by the shift towards in�ation targeting after exiting the ERM.

The sample ACF and PACF for yt and �yt suggests a unit root in the level of UK

GDP.33 A unit root implies that shocks will have a permanent e¤ect on the dependent vari-

able. There has been a profusion of literature looking at the question of output persistence.

33The sample autocorrelation function (ACF) records the correlations between yt and successive yt�j for
j = 1; :::; J: If the sample autocovariance is equal to bcj = 1

T

PT
t=j+1 (yt � y) (yt�j � y) for j = 0; :::; T � 1;

the ACF is given as: brj = bcjbc0 ; for j = 0; :::; T � 1:

The partial autocorrelation function (PACF) corrects the autocorrelation function for the e¤ects of pre-
vious lags.
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Traditionally, aggregate output was thought to be trend stationary. Thus, potential output

was given by a deterministic trend and the gap comprised temporary shocks to output.

Nelson and Plosser�s (1982) seminal paper disagreed with this viewpoint (using annual

US real GNP data). They could not reject the hypothesis that output is non-stationary,

implying that �uctuations have a permanent component. Campbell and Mankiw (1987)

support these �ndings, although Cochrane (1991) argues that the evidence on unit roots

is empirically ambiguous. Perron (1989) includes a structural break in the analysis, in the

form of a change in slope at the time of the �rst oil shock in 1973, and concludes that

output may well be trend stationary with a structural break.34

Table 1 reports the Dickey-Fuller (DF) test statistics for yt:35 The table records the

estimated coe¢ cient on the lagged dependent variable, b
; the ADF(k) statistic, b� , and the
number of lags (determined by the last highest signi�cant lag). The results indicate that

y does contain a unit root. One problem is that of near observational equivalence where,

when the alternative is close to 1, the power is low and a false non-rejection of the null can

be a frequent outcome. It is often very di¢ cult to distinguish stable from unit roots.36

34If output is di¤erence stationary but is treated as trend stationary there is a problem of underdif-
ferencing. Likewise, if the process is trend stationary but is di¤erenced as it is thought to be di¤erence
stationary there is a case of overdi¤erencing. Plosser and Schwert (1978) argue that the problems of over
versus under-di¤erencing are not the primary concern. The key is in correctly modelling the error term.
By accounting for serial correlation in the errors, the problem of underdi¤erencing is vastly reduced.
35For a variable x, the Augmented Dickey-Fuller (1981) test is outlined as:

�xt = �+ �t+ 
xt�1 +
Xk

j=1
�j�xt�j + "t;

where k is the number of lags on the dependent variable, which are included to eliminate autocorrelation.
If there are too few LDVs the size of the test will be adversely a¤ected leading to an over-rejection of
the null, whereas too many LDVs will reduce the power of the test. A time trend is included so that
the alternative hypothesis is that of trend stationarity. The null hypothesis of a random walk is given by
H0 : 
 = 0 and the test statistic is: b� t = b


ese (b
) � DF�

Critical Values are �3:441 at 5% signi�cance and �4:023 at 1% signi�cance. Asterisks � and �� denote
rejection at the 5% and 1% critical values. The null hypotheses of I(2) and I(3) are tested using the same
regression where �xt and �2xt replace xt respectively.
36Numerous tests have been developed to detect one or more unit roots. These include Pantula,
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Null order b
 b� lag
I(1) -0.08 -2.82 3
I(2) -0.75 -5.30�� 2
I(3) -3.59 -9.26�� 4

Table 1: Dickey-Fuller tests for integration.

Null order b
 b� lags �
I(1) -0.12 -3.11 3 89

150

I(2) -0.78 -5.54� 2 89
150

Table 2: Perron test for I(1) with structural break.

It may arise that the �nding of non-stationarity is spurious because no account has

been taken of possible structural breaks. The Perron (1989) test for a break in the intercept

(at a known point in time) is given as:

�xt = �+ �t+ 
xt�1 +
kX
j=1

�j�xt�j + �1DV TBt + �2DV Ut + "t (36)

DV TBt =

8>><>>:
1; if t = TB + 1

0; otherwise

DV Ut =

8>><>>:
1; if t � TB + 1

0; otherwise

TB is the time when the break occurs and � = TB
T
: The dummy variables, DV TBt and

DV Ut; represent the temporary and permanent shift in the intercept respectively. The

null hypothesis is I(1) with break and the alternative is trend stationarity with break.37

The results, given for a break in 1980Q2, are reported in table 2.

Again, we cannot reject the null hypothesis of output containing a unit root with break

in 1980Q2 and we shall cautiously conclude that the log of real GDP does contain a unit

root.38 Section 3.2 will model output as the sum of a stochastic but smooth trend and a

Gonzalez-Farias and Fuller (1994) who improve on the power of the DF test using alternative test sta-
tistics and Phillips (1987) who allows for serial correlation in the error term. Other tests such as that
developed by Kwiatkowski, Phillips, Schmidt and Shin (1992) test for a null of trend stationarity against
an alternative of non-stationarity.
37The asymptotic critical values are �3:76 at the 5% signi�cance level and �3:47 at the 10% signi�cance

level. Asterisk � denotes rejection at the 5% critical value.
38Zivot and Andrews (1992) argue that the Perron test biases the results in favour of a rejection of the

unit root hypothesis because the break point is treated as known, and develop a testing procedure where
there is an unknown break point. Perron (1997) then developed a selection criterion for choosing the
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stationary cycle. The trend will be unpredictable but with systematic variation.

3.2 Arti�cially Generated Data: the DGP

In order to capture the characteristics of the UK business cycle, a few stylized facts based

upon a variety of detrending methods applied to actual output over the period 1965q1-

2002q2 are listed here. They are assessed in more detail in Chapter 4.4. Output growth

over the period is approximately 0.55-0.6% per quarter, resulting in an annual growth rate

of 2-2.5%, although this does generalize a period in which growth rates have �uctuated

substantially.39 Estimating a stochastic potential output based on the HP �lter (� = 1600)

results in a trend that �uctuates between a maximum range of �4% against a deterministic

trend. The univariate detrending methods vary with regard to their smoothness. The

smoother trends have DF statistics that suggest they are close being I(2) processes.

The gap over this period has a mean of approximately zero due to the symmetry

properties of the �lters applied. However, if we assume that the gap is a measure of

short-run demand side pressures, we would expect the mean to be zero if the end-points

coincided with full cycles. The output gap has a standard deviation of between 0.015-0.025

and a range of about �4% of output. The cycle durations are quite long, with a peak to

trough of approximately 14 quarters and a trough to peak of approximately 20 quarters

over the entire sample period.40 Whilst these �gures suggest that there is some asymmetry

break point where the t-statistic on the parameter associated with the change shows the greatest evidence
of change. However, the Perron test with a known structural break is more powerful than tests where an
unknown break point must be estimated.
39The maximum quarterly range is almost 8% of output, where the quarterly growth rate reached +4.7%

in 1973q1, followed by negative growth of -2.6% in 1974q1. In the last 2 decades growth has been more
stable but still has a wide range of approximately 3.5% of output.
40Expansions (contractions) are de�ned as the phase from trough (peak) to peak (trough). A nave

dating rule is used, given by the algorithm: a peak (trough) is identi�ed as the highest point during which
output is above (below) trend, given that output is above (below) trend for 3 quarters or more. Chapter
4.4 elucidates on this analysis, undertaking a discussion on the algorithms used to identify turning points.
The �gures quoted in this section are intended only to provide a brief overview of what the gap may look
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in the gap, we shall abstract from these issues when generating data. With these general

but crude statistics in mind we can generate output data to see which detrending methods

perform best.

Assuming that output is persistent, actual GDP is well characterized by a random

walk (RW) with drift. Figure 2, panel a records the log of actual GDP, yt; against the

generated data, ey(RW )
t given by:

ey(RW )
t = 0:006 + eyt�1 + ut = 0:006t+

t�1X
i=0

ut�i; (37)

where the assumptions of ut �N(0; 0:001) and y0 = 0 are made and the sample size = 150.

(ey denotes generated as opposed to actual output data).
Whilst the RW representation is plausible, we �nd a more informative representation

of output is obtained by decomposing output into the sum of a cycle and trend in the style

of the UC methodology; eyt = ey�t + eygapt . In this framework potential output is known with

certainty, providing the �true�benchmark against which to compare di¤erent detrending

procedures. The trend component is formulated as a UC model augmented by a small

deterministic component in the level, given as:

ey�t = ey�t�1 + �t�1 + 0:0001t+ �t

�t = 0:85�t�1 + �t; (38)

where ey�t is the potential output level and �t is is the slope. We make the assumptions that
�t �N(0; 0) and �t �N(0; 0:001) resulting in a smooth trend with stochastic slope.41 The

small deterministic trend, giving an exogenous growth rate of 0.01%, is included in order

like.
41The initial values were set to 0.1 and a sample size of 200 was used, with the �rst 50 observations

being discarded because of the arbitrary initial values.
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to better represent the characteristics of trend output. Various coe¢ cients on �t�1 were

tried in order to derive a smooth trend which is borderline I(2) and has similar properties

to the stylized facts. A higher coe¢ cient than 0.85 led to a process that was too close

to I(2), whereas a smaller coe¢ cient resulted in a trend that was quite volatile. Treating

the generated data as being in logs, the data are scaled in order to compare with the

deterministic trend, and are recorded in �gure 2, panel b, along with the deterministic

trend fey�t (DT )g calculated as ey�t = 0:006t: The maximum deviation of the stochastic trend
from the deterministic trend is �4:0% and +3:3%; which accords with our stylized facts.

The output gap is characterized by a stationary ARMA(1,1) process with zero mean:

eygapt = 0:8eygapt�1 + "t + 0:6"t�1: (39)

The MA component is included to produce a series that is more representative of the

actual output gap, with the assumption that "t �N(0; 0:01).42 The data are scaled to give

a maximum positive gap of 4% of output, a maximum negative gap of 3% and a standard

deviation of 0.015. eygapt is recorded in �gure 2, panel c. Summing the trend and cycle

leads to the generated output series given in �gure 2, panel d, which is plotted against

actual output for comparison.

3.3 Univariate Detrending Procedures Applied to the DGP

A direct assessment of various univariate methods can be undertaken given the generated

data. A range of descriptive statistics are reported, including the mean, range, standard

deviation and correlation between the �true�and estimated gaps. Durations and amplitudes

of the cycles are given, but note that a simple dating rule is applied. The last two columns

42A sample size of 200 was used, discarding the �rst 50 observations and the sample mean was set to 0.
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Figure 2: Generating output data.

report the mean absolute error (MAE) and mean squared error (MSE) of the estimated

gap measures (reported as percentages). The MSE is given as:

MSE =
1

T

TX
t=1

�eygapt � beygapt �2
(40)

This statistic combines both bias and e¢ ciency criteria. The statistical measures that were

applied include a linear trend (LIN); linear trend with break (LINXX); �4; HP; CS;

KS; centred moving average with a lead and lag of 16 (MA(16; 16)); �ltered MA with a

lag of 32 (MA(32)) and a UC model based on equations (24), (25), (26) and (27) with the

assumption that �t �N(0; 0). All methods apart from �4 and MA(32) are �smoothers�,

which incorporate all available information over the sample period.43 Figure 3 records the

generated output gap, eygapt ; against the gaps derived from the applying the detrending

methods to the DGP, with LIN and �4 in panel a, HP , CS and KS in panel b, theMAs

in panel c and the UC in panel d: Table 3 reports the summary statistics.

43Note that a �ltered UC gap can also be estimated.

37



0 50 100 150

-0.05

0.00

0.05

~ygap
t~ygap
t ∆4

~ygap
t (LIN)

0 50 100 150

-0.025

0.000

0.025

~ygap
t~ygap
t (CS)

~ygap
t (HP )

~ygap
t (KS)

0 50 100 150

0.00

0.05

0.10

0.15
~ygap

t~ygap
t (MA (32))

~ygap
t (MA (16,16))

0 50 100 150

-0.025

0.000

0.025

~ygap
t

~ygap
t (UC)

Figure 3: Estimated output gaps from the generated data.

Most methods do pick up the turning points in the generated data, with the notable

exception of �4. As LIN attributes all �uctuations in output to the gap as opposed to the

trend, it systematically overestimates the magnitude of the gap and the strength of both

accelerations and decelerations.44 The HP , CS and KS perform well in estimating the

gap, with MSEs of 0.006%, 0.006% and 0.005% respectively. The conventional � = 1600

was found to perform best out of a range of parameters, as would be expected if the

generated data accurately re�ected true output. A bandwidth of 12 was used for the CS

andKS, which is preferred to using GCV as this tends to undersmooth the data. This does

suggest that priors regarding the smoothness parameter are important when modelling

latent variables. The end-point behaviour of the methods is poor. The magnitude of the

generated gap is +0.2% in period 150, but the HP , CS and KS estimate a gap of -1.3%,

-1.2% and +1.2% respectively. Hence, the use of such smoothers is highly questionable for

44For example, LIN estimates the recession during periods 57-73 to reach a maximum magnitude of
4.7% of output, compared to a true negative gap of 2.4%. This was then followed by a trough to peak
range of 9.7% estimated by LIN , whereas the true range was only 5.3%.
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Mean St. Dev Range Corr. Dur:
PtoT TtoP

Amp:
PtoT TtoP MAE MSEeygap 0.00 0.014 0.073 1.00 10.2 10.6 0.043 0.042 0 0

LIN 0.00 0.027 0.107 0.72 15.8 21.0 0.070 0.071 1.728 0.038
�4 0.03 0.020 0.113 0.38 9.0 9.0 0.064 0.063 2.661 0.097
HP 0.00 0.013 0.066 0.84 8.4 9.9 0.040 0.039 0.564 0.006
CS 0.00 0.011 0.056 0.83 8.5 9.5 0.037 0.037 0.623 0.006
KS 0.00 0.011 0.055 0.85 7.4 9.6 0.033 0.038 0.552 0.005
MA(16; 16) 0.00 0.019 0.083 0.86 17.7 15.0 0.066 0.061 0.634 0.007
MA(32) 0.10 0.032 0.123 0.58 24.0 25.5 0.107 0.111 7.792 0.825
UC 0.00 0.011 0.051 0.81 9.4 8.8 0.036 0.035 0.672 0.007

Table 3: Summary statistics for the output gap derived from detrending the DGP.

timely policy analysis that requires accurate end-point estimation.

The centredMA captures the gap characteristics well, with a MSE of 0.007%, although

the cycle durations are much longer than the true cycles. In order to prevent observations

being lost at the end-point the data would need to be extended with forecasts of output

but this increases the uncertainty associated with the gap measure. The duration and

amplitude of the cycles for the �ltered MA are substantially larger than those of the

generated cycle. A MSE of 0.8% exposes the bias and ine¢ ciency of the estimate. Caution

should be applied when usingMA derived gaps as they can generate spurious cycles. The

UC method provides a reasonable approximation to the gap with a MSE of 0.007%, but

it tends to underestimate the gap�s magnitude.

None of the methods are wholly accurate. The large negative gap in the recession

period 122-132 is not picked up at all. Over this period, trend output rose with an average

growth rate of 0.9% compared to 0.6% over the sample. At the same time there was a

negative output gap of a maximum magnitude of 2.1% of output. This caused actual

output to remain on trend and so the detrending procedures do not pick up either the

increase in trend or the negative gap. Whilst a quarterly growth rate of 0.9% is substantial

and output is unlikely to grow at 3.6%pa for a prolonged period, the senario is entirely
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Mean St. Dev Range Corr. Dur:
PtoT TtoP

Amp:
PtoT TtoP MAE MSEeygap�g 0.00 0.014 0.073 1.00 10.2 10.6 0.043 0.042 0 0

LIN 0.00 0.043 0.163 0.45 45.0 28.5 0.124 0.128 3.411 0.147
LIN75 0.00 0.026 0.122 0.66 28.5 23.3 0.060 0.054 1.689 0.041
�4 0.03 0.022 0.113 0.37 9.0 9.0 0.064 0.064 3.027 0.125
HP 0.00 0.013 0.067 0.83 8.8 9.5 0.041 0.040 0.567 0.006
CS 0.00 0.011 0.056 0.81 8.8 9.5 0.037 0.037 0.625 0.006
KS 0.00 0.012 0.056 0.83 7.4 9.6 0.034 0.039 0.572 0.006
MA(16; 16) 0.00 0.019 0.085 0.83 17.7 15.0 0.068 0.063 0.716 0.009
MA(32) 0.12 0.040 0.140 0.48 24.0 25.5 0.104 0.129 9.266 1.190
UC 0.00 0.011 0.050 0.79 8.3 8.8 0.032 0.035 0.687 0.007

Table 4: Summary statistics for the output gap given an increase in the growth rate of
potential output.

plausible. If output is initially on trend, a rise in potential output will result in a negative

gap if there is negative contemporaneous correlation between the trend and cycle.45 Thus,

the DGP highlights a very real problem with output gap estimation. The ability to

distinguish between shocks to potential output or the output gap depends crucially on the

degree of correlation between trend and cycle innovations, as exposed by the divergence

between BN and UC models.

The latter part of the 1990s has seen an increase in potential output, particularly in

the US, due to a marked acceleration of productivity growth. We examine the impact of

an increase in the growth rate of potential output to see whether gap measures pick up

a change in trend. The break is de�ned by shifting the average growth rate from 0.6%

to 0.8% per quarter in period 75.46 The generated data, fey�g;tg is recorded in �gure
4, panel a, along with the stochastic trend with the break in growth rate,

�ey��g;t	 and
the stochastic trend without the break in growth rate for comparison, fey�t g. Summary
statistics are recorded in table 4.

45As discussed in Chapter 2.1, Morley et al. (2002) do �nd evidence of negative contemporaneous
correlation between the trend and cycle for US GDP.
46The data was obtained by scaling ey� to a deterministic trend as we did in the initial model.
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Figure 4: Generated data with an increase in the trend growth rate, an intercept shift in
potential output and a deep recession.

The cycle is identical to the initial DGP. LIN performs badly as it does not pick

up the increase in trend growth at all. As the method smoothes over the entire sample

period, a growth rate above trend is estimated prior to the break and a lower trend is

estimated after the break. One would have thought LIN75 would perform well as the

sample is cut at the known break point and so there is a bias in favour of this method,

but a MSE of 0.04% is still large in comparison to other methods. In general, all other

measures perform relatively similar to the initial case, with little change in the MSEs. The

correlation coe¢ cient falls by 0.02 on average. MA(32) has a very high MSE of 1.2%. The

method is not adaptable as it takes 32 quarters following the break to fully capture the

change in growth rate.

The second case we examine is an intercept shift in the trend, captured by a 4% increase

in output in period 75. This is modelled as a one-o¤ shock with the growth rate remaining

at a constant rate of approximately 0.6%. Figure 4, panel b, records the generated output
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data fey�int;tg along with the stochastic trend �ey��int;t	 and the trend without the intercept
shift, fey�t g. Summary statistics are recorded in table 5.
The cycle is again identical to the DGP. LIN performs poorly, both before and after

the break point. LIN75 is comparable to the linear trend in the initial case as expected,

although the method actually estimates an upward shift in the trend of 8.5% of output,

which is more than double the actual break. The method could not be used in policy

applications as the break would not be known at the break origin. There is a fall in the

correlation coe¢ cient of 0.04 on average due to the break and the MSEs rise marginally.

Regarding the adaptability of the measures to the shift in trend, we can measure the length

of time it takes for the estimated trend to equal the actual trend following the break. For

the intermittent period the gap will be biased upwards. KS is the most adaptive method,

taking 5 quarters for the deviation to be eliminated following the shock. The CS and

UC trends also adjust quite quickly, taking 6 quarters for the estimated trend to rise to

the actual trend. The HP �lter takes 10 quarters, but the least adaptive are the moving

averages. The MA(16; 16) takes 15 quarters for the estimated trend to equal the actual

trend. The mean adjusted MA(32) takes 20 quarters. Also note that the smoothers will

estimate a negative gap prior to the break as the trend will incorporate the future intercept

rise into their current estimates.47

The �nal case we examine is a deep recession with no change in trend growth. The

cycle is augmented by a recession of magnitude 5.9% of output at its maximum, lasting

for 20 periods (5 years) dated from period 57-76. Figure 4, panels c and d, record the

47This is not as clearly observed in the output gap measures because there is a negative output gap
prior to period 75 in the DGP. However, the estimates of this gap are larger than the generated gap
by approximately 1% on average in the 2-3 periods prior to the break. Thus, biases resulting from the
smoothing properties of the potential output measures do impact substantially on the gap measurement.
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Mean St. Dev Range Corr. Dur:
PtoT TtoP

Amp:
PtoT TtoP MAE MSEeygap�int 0.00 0.014 0.073 1.00 10.2 10.6 0.043 0.042 0 0

LIN 0.00 0.032 0.133 0.70 24.0 26.3 0.115 0.091 2.041 0.058
LIN75 0.00 0.023 0.114 0.71 28.5 26.3 0.056 0.048 1.415 0.028
�4 0.03 0.023 0.143 0.36 8.4 6.7 0.058 0.058 2.768 0.111
HP 0.00 0.015 0.068 0.81 8.8 9.5 0.042 0.041 0.645 0.008
CS 0.00 0.012 0.056 0.79 8.5 9.5 0.038 0.038 0.667 0.007
KS 0.00 0.012 0.056 0.84 7.5 9.6 0.034 0.039 0.565 0.006
MA(16; 16) 0.00 0.022 0.090 0.82 17.7 15.0 0.072 0.065 0.804 0.013
MA(32) 0.10 0.038 0.152 0.60 22.8 24.3 0.122 0.126 8.219 0.936
UC 0.00 0.012 0.052 0.78 9.4 8.8 0.037 0.036 0.694 0.007

Table 5: Summary statistics for the output gap given an intercept shift in potential output.

output gap
�eygaprec;t

	
and the generated data feyrec;tg respectively. The motivation behind

this case is the Great Depression. Hendry (2000b) �nds that �tting a single linear trend

from 1860 predicts the Great Depression to last until 1960, whereas a split linear trend

estimates that there was no Great Depression at all. Alternatively, the Cubic Spline

produces a trend output that declines too rapidly over the recession. Also, as the CS

smoothes data, there is a pre-depression boom induced by the early downturn of trend

output. Many detrending procedures attribute too much of the fall in output to a decline

in the trend, underestimating the magnitude of the gap and predicting the depression to

end well before it actually did. The implications of such inferences could be severe. If a

government thought the economy was out of a recession when it was actually still trying to

recover, inappropriate policy may well be implemented. Summary statistics are reported

in table 6.

The split linear trend has break points in periods 62 and 81, which lags the beginning

and end of the recession by a year. This is intended to capture the e¤ect of the decline

in output being ascribed to a shift in the trend as opposed to a recession, which is only

picked up with a delay. The measure performs poorly as it is capturing the wrong e¤ect,
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Mean St. Dev Range Corr. Dur:
PtoT TtoP

Amp:
PtoT TtoP MAE MSEeygaprec -0.003 0.017 0.093 1.00 10.0 9.2 0.049 0.047 0 0

LIN 0.000 0.030 0.126 0.78 28 23.7 0.114 0.094 1.777 0.039
LIN(62; 81) 0.000 0.023 0.108 0.64 19 19.8 0.083 0.078 1.480 0.032
�4 0.025 0.021 0.127 0.26 8.6 9.4 0.054 0.065 2.917 0.128
HP 0.000 0.014 0.067 0.81 7.9 9.0 0.035 0.038 0.796 0.011
CS 0.000 0.012 0.056 0.76 8.3 8.6 0.033 0.034 0.855 0.013
KS 0.000 0.012 0.056 0.79 8.3 8.8 0.031 0.036 0.768 0.013
MA(16; 16) 0.000 0.021 0.092 0.85 15.7 16.5 0.069 0.063 0.699 0.010
MA(32) 0.099 0.035 0.135 0.60 24 25.5 0.113 0.117 8.048 0.883
UC 0.000 0.012 0.055 0.77 8.2 8.4 0.032 0.036 0.850 0.013

Table 6: Summary statistics for the output gap given a deep recession.

emphasizing the importance of recognizing whether shocks are attributable to short-run

demand side shocks or long-term potential output shocks. The HP , CS; KS and UC

trends all drop too rapidly over the recession. The estimated trend is approximately 2%

below the actual trend, reducing the estimated magnitude of the negative gap by 2% of

output. MSEs double from the baseline case. Only MA(16; 16) estimates a comparable

sized gap, but it also tends to overpredict the size of the gap when the gaps are not

large. Trend output estimated by HP , CS; KS and UC all fall below the actual trend

4-5 quarters prior to the beginning of the recession, inducing an upward bias in the gap.

This is a systematic problem with all smoothers.

In conclusion, none of the univariate detrending procedures have accurately estimated

the unobserved trend and cycle based on the above DGP given a variety of di¤erent sce-

narios. Admittedly the summary statistics are raw but an ocular judgement is often very

informative in comparing the results. However, whilst the gap estimates at any particular

point in time are imprecise, the broad pro�le of the gap is similar across the range of

methods examined. The notable exceptions were the two �lters, �4 and MA(32): The

preference between measures depends upon the trade-o¤ between smoothness and adapt-

ablilty to breaks. Priors regarding the di¤usion of shocks and the degree of correlation
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between the trend and cycle will drive the choice as to which methods are most appropri-

ate.

In the initial case, the MSE for the average of all gap measures excluding the �lters

(�4 andMA(32)) is 0.004%, which represents an improvement on all of the gap measures.

If each method measures the true gap with error, then an average would extract the

signal relative to the errors. The results suggest that a composite measure of the various

gaps may be bene�cial (see Chapter 4.3). Also, given the unsatisfactory nature of the

univariate decompositions, a multivariate analysis of excess demand pressures using a

broader information set is likely to improve the estimation results of these latent variables.

The caveat applies that the results are dependent upon the nature of the DGP. If the

DGP does not accurately re�ect actual output, the above results are not informative in

determining which methods �best�detrend output.
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4 Current Measures of the Output Gap

This chapter estimates the UK output gap for the period 1965q1-2002q2 using a broad

variety of methods, with the aim of comparing methods based on simple and transparent

statistical tests. The estimation of both a static and dynamic production function is

outlined initially. A composite measure of the gap, based on principal components analysis,

is obtained and �nally the various measures are assessed according to a broad range of

summary statistics. The methods applied include:

� Linear Trend with break in 1980, [LIN80]
� Fourth Di¤erence Filter, [�4]

� Hodrick-Prescott Filter, [HP ]
� Cubic Spline, [CS]
� Kernal Smoother, [KS]
� Moving Average with a lag of 32, [MA(32)]

� Centred Moving Average with lag and lead of 16, [MA(16; 16)]

� Unobserved Components Model with smooth trend,48 [UC]
� Excess demand for goods and services (Hendry, 2001),49 [xd(goods)]
� Production Function approach, [PF (Stat)]
� Dynamic Production Function approach, [PF (Dyn)]
� Principal Components, [PC]

48See Appendix 3 for estimates of various Unobserved Components models. The smooth trend model
with a �xed level and stochastic slope was chosen on the basis of this analysis.
49Hendry (2001) estimates excess demand for goods and services as:

capt = �0 + �1t+ � (kpet) ;

ygapt = ypet � capt;

where kpe = capital per worker and ype = output per worker. Under competitive market conditions and
constant returns to scale, the factor shares measure their marginal productivities. Note, however, that
with imperfectly competitive market conditions, the capital share will include monopoly rents and will
thus overstate the marginal productivity of capital services.
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4.1 The Production Function Approach

The production function (PF) method is one of the most popular methods of measuring

the output gap and is used by the IMF, OECD and most Central Banks.50 If we assume

a Cobb-Douglas technology with constant returns to scale, an elasticity of substitution

equal to unity and Hicks-neutral productivity, the PF is given as:

yt = AtN
�
t K

1��
t ; (41)

where Nt is labour input, Kt is capital input, At is total factor productivity (TFP), or the

e¢ ciency with which both capital and labour are used to produce output, and � is the

elasticity of output with respect to labour (0 < � < 1).51

Nt comprises employment, Lt; and the number of paid hours worked per employee, Ht:

The normal number of working weeks in a year should be incorporated into the labour

input equation but we can assume this has remained relatively constant over the period

in question. Employment is broken down into three determinants (lower case represents

logs):
lt = wpopt + prt + ert; (42)

where wpopt is the population of working age, prt is the participation rate and ert is the

employment rate.52 Labour input should be adjusted for labour quality, which is often

proxied by educational attainment. Excluding this will imply that changes to labour

quality will be picked up in the residual. lt is recorded in �gure 5, panel a, along with

trend employment. Ht would be approximated by the di¤erence between average overtime

hours and average undertime hours, but as the impact of short-time is negligible hours

50It is the recommended approach by the Economic Policy Committee of the EU (2001) and, for the
OECD, Giorno et al. (1995) conclude that "the production function approach for estimating potential
output provides the best method for estimating output gaps" (p.2).
51Under certain conditions, � is the capital and labour participation in income. Appendix 4 provides

details as to the calculation of �:
52The participation rate is given by: No.employed + No.unemployed

Population of working age :
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can be calculated as:
ht � ln

�
H t (1 +OHt)

�
; (43)

where H t is the normal number of hours worked per week, recorded in �gure 5, panel b

and OHt is the number of overtime hours worked per week. Muellbauer (1984) �nds that

data on average hours provides a good approximation to labour utilization.53 H t declined

from 39 hours in 1965 to 32 hours in 2002. The implied fall in output is o¤set by an

increase in e¢ ciency that will be captured in At. Average hours are adjusted for a zero

mean.

Capital input, Kt; is measured by the net capital stock excluding the dwellings sector,

Jt.54 This is a wealth measure of capital, which weights di¤erent types of capital by

their asset prices. The ideal measure would be capital services, which measures the �ow

of productive input from capital. In order to move from this theoretical concept to the

available data, an assumption that capital services are proportional to the asset value

measure of capital stock must be made.55 This may well have implications for the order

53Muellbauer (1984) proposes a measure of labour utilization based average weekly overtime hours. High
utilization rates will arise during periods of high overtime but the corresponding undertime hours will not
be observed. Hence, the mean of the truncated upper tail of the distribution of utilization across �rms
is observed. Given a constant spread, the mean utilization rate can be determined from this truncated
upper tail. There is also the problem of an increase in systematic overtime which has accompanied the
fall in normal hours. Instead of constructing this series, hours can be approximated by equation (43).
Note that short-time is typically less than 10% of overtime.
54There is a substantial literature on the treatment of depreciation. The commonly used perpetual

inventory method has many problems, see Miller (1983). Perpetual inventory capital stock estimates
have serious limitations as measures of capital input because they do not contain any measure of the
retirement of capital or transfers to other industries, other than estimates based on historical lengths of
life. For example, a capital saving innovation that increases investment and retirements increases the
measured capital stock as it does not include the induced retirements. This can lead to serious errors
in the measurement of TFP. The capital stock data used in this analysis is obtained from the Bank of
England, see Oulton and Srinivasan (2003).
55The �new economy�has had a dramatic impact on the evolution of capital, see Oulton (2001) for a

detailed discussion on the impact of ICT growth on output and productivity. The assumption of capital
services being proportional to the asset value measure of capital stock may not be feasible if the average
life of the stock is changing. This is the case with ICT, which has a much shorter lifespan than traditional
capital stock. The substantial ICT capital deepening over the 1990s has led to a divergence in the e¤ects
of ICT capital and traditional capital on growth. One way to overcome this problem would be to split
the two types of capital in the production function. The IMF are currently looking at this approach.
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of integration of capital inputs as we are essentially trying to capture a �ow concept by a

stock variable. There is some debate as to whether Jt should be adjusted for the degree

of capacity utilization, Uc;t; but we �nd the utilization variable substantially reduces the

procyclicality of the residual:56
kt = jt + Uc;t: (44)

Jt and Uc;t are recorded in �gure 5, panels c and d respectively. The CBI produce

survey data on the number of respondents reporting that they are operating below normal

capacity levels. A capacity utilization variable is constructed on the basis of this survey

using the method outlined in Muellbauer (1984), see Appendix 5. Full capacity is assumed

to use approximately 91% of the total capital stock available. It should be emphasized that

the data applies to manufacturing output. As services have increased dramatically over

the period of estimation and the relationship between utilization rates for manufacturing

and services is ambiguous, the utilization measure may be a poor approximation. A

shortage of data on capacity utilization levels in the service sector prevents a more rigorous,

disaggregated measure being derived. It is imperative that the inputs are corrected for

utilization of labour and capital. Their exclusion from the PF analysis will result in the

residual, representing technological change, picking up many procyclical movements in

utilization. The �rst RBC proponents who admitted this were Burnside, Eichenbaum

and Rebelo (1993) who found that the procyclical nature of TFP is vastly reduced when

accounting for labour hoarding via an �e¤ort�variable.

In order to calculate potential output, we need estimates of the latent variables, po-

tential capital, labour and TFP (denoted by superscript �). For capital input, we assume

56If capital is thought of as simply being an overhead, a capacity utilization variable may not add much
information. However, if respondents to the survey are referring to a much broader measure of capacity
than labour inputs alone, a separate capacity measure should be included. Muellbauer (1984) �nds that
a separate capacity utilization index is dominated by an overtime hours based concept of utilization.
However, we �nd enough variation between the two measures to recommend using both adjustments in
the production function approach.
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Figure 5: Employment, average hours, capital stock and utilisation of capital.

that capital is always operating at full capacity, hence Uc;t = 0 and k� = j. As capital

stock can be thought of as an indicator of overall capacity, there is no need to smooth the

series. Even though net investment per annum is very volatile it is such a small fraction

of net capital stock as to have a very limited impact on the stock of capital.

The working population is assumed to be at trend. Most movements in the working

population could be thought of as being long-run or permanent changes caused by, for

example, a change in pensions provisions, changes in the age of retirement or an increase

in the number of women who work. There may be a small cyclical component to the

working population, e.g., in the climate of a recession some members may choose to remove

themselves from the working population pool by retiring early or choosing not to search

for a job, but we shall assume that this e¤ect is negligible. The trend employment rate is

derived from the trend unemployment rate, which is used as a proxy for the NAIRU.57 This

57The NAIRU is another latent variable that is notoriously di¢ cult to measure. Staiger, Stock and
Watson (1996) investigate the precision of NAIRU estimates based on a variety of models. They conclude
that the natural rate is imprecisely measured. For example, for a typical value of the US NAIRU in 1990
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is calculated using the UC method of decomposition based on a stochastic level and cycle.

This di¤ers from a more structural approach, such as a time varying structural NAIRU

which embodies a shifting composition of the labour force as in Coen and Hickman (2002)

or a Phillips curve type approach.58 To estimate the trend participation rate, the total

number in employment is smoothed using a HP �lter and the level of unemployment is

derived from the trend unemployment rate based on a UC decomposition. These are then

divided by the actual working population to result in the potential participation rate.

Hence, the PF is not immune to the problems of univariate statistical detrending. H is

assumed to pick up long-run trends only. Any cyclical �uctuations will not be captured in

H due to labour hoarding. Also, overtime hours are assumed to be 0, therefore h�t = ht:

The calculation of trend at depends on the assumptions made regarding the nature of

TFP growth. Theories of technological progress (TP) range from standard neoclassical

growth models that regard TP as exogenous to endogenous growth models which assume

TP is the result of investment activities. The decision as to which methods are appropriate

for detrending at depends crucially on whether technical innovations are thought to be

random shocks due to a burst of new ideas or whether ideas di¤use gradually as learning

is slowly accumulated. This is more of a theoretical question as TFP is a latent variable

of 6.2%, the 95% con�dence bands extend from 5.1% to 7.7%.
58The method used by the OECD, outlined in Elmeskov (1993) is highly questionable and they are

currently looking at methods of improving their estimates for the PF calculations. The method assumes
that the change in wage in�ation is proportional to the gap between actual unemployment and the
NAWRU:

�2wt = �� (Ut �NAWRUt) ;

where w = ln(wages) and U = unemployment. Also, � is determined by assuming that the NAWRU is
constant between two time periods. Hence we can derive the NAWRU as:

NAWRUt = Ut �
�2wt
�� ; � = ��

3wt
�Ut

The NAWRU is highly volatile, as a result of dividing by third di¤erences. The authors then smooth the
NAWRU using a HP �lter, and so little is gained from using this method. On annual data, the NAWRU
is heavily driven by outliers.
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but one may expect productivity shocks to take their time feeding through as the learning

process, along with R&D, occurs. Also, shocks that are speci�c to sectors are likely to only

impact gradually in the aggregate.59 Hence, a plausible trend may be quite smooth but

will also allow for random productivity shocks. at will also pick up e¢ ciency gains in the

quality of capital and labour. We use a UC model to detrend at based on a smooth trend.

This analysis does not address the determinants of TFP growth, which is a �ourishing

literature in itself.

The resulting output gap is given in �gure 6, panel a. The positive mean gap of

0.0002 is negligible. The 1980s recession is estimated to be a lot deeper than the 1990s

recession, reaching a magnitude of 3.6% compared to 2.0% of output in the early 1990s.

This may be due to the sharp drop in normal hours at the beginning of the 1990s that

is unlikely to be o¤set by increasing productivity due to e¢ ciency gains, causing lower

potential output and reducing the size of the negative gap. Panel b records annual actual

and trend output growth. There is some divergence at the end of sample. The rise in

potential output and the corresponding fall in the gap after 2000 may be driven by the

rise in normal hours, which is reversing the previous trend, although the use of the HP

�lter in detrending prt will bias the gap towards 0 at the end-point. Panel c records at

and the smoothed estimate based on a UC model with �xed level and stochastic slope

fa�t (UC)g. The lack of cyclicality in TFP shows that the utilization rates have accounted

for business cycle �uctuations. Panel d records the estimated gap against the HP gap

measure. Whilst there is some consensus between the two measures, there are periods in

which the estimates diverge signi�cantly. Chapter 4.4 compares the gap measures in more

59See Caporale (1997), who undertakes a disaggregated analysis of RBC models in order to examine
the impact of sector speci�c versus aggregate shocks.
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Figure 6: The static production function output gap, output growth and TFP.

detail.

A brief discussion on the order of integration of the inputs is warranted. Output is I(1).

As Y comprises C; I; G; X andM , one would expect these components to be I(1) variables

as well but if net investment is an I(1) variable, K would be I(2) as it is the cumulation

if investment. As the PF models Y as a function of K and N , this would imply Y would

also be I(2). The cyclical argument can be followed, suggesting I �I(2) and K �I(3) etc.

If instead, K were I(1), I would be I(0). This raises the question of whether a consistent

accounting solution is obtainable. Assuming K �I(2), we would require human capital to

be I(2) as well in order to give a cointegrating relation for Y �I(1). The population is I(2)

so this argument is plausible. Hence, capital per person will be I(1) as it is calculated as

the division of an I(2) variable by and I(2) variable but output per person will be an I(1)

variable divided by an I(2) variable. The explanation to this dilemma lies in K and N

both containing I(2) components, but to di¤ering extents. Table 7 provides Dickey-Fuller
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Null y k wpop l k � l y � l a
I(1) �2:813

(0:92)
�3:287
(0:99)

�3:413
(0:98)

�2:502
(0:97)

�3:391
(0:98)

�3:110
(0:89)

�2:848
(0:89)

I(2) �5:295
(0:25)

�� �2:295
(0:94)

�3:212
(0:87)

�5:424
(0:65)

�� �5:043
(0:69)

�� �5:966
(0:05)

�� �5:891
(�0:47)

��

I(3) �9:259
(�2:59)

�� �4:347
(0:15)

�� �11:84
(�0:00)

�� �11:57
(�0:53)

�� �11:80
(�0:57)

�� �9:625
(�2:90)

�10:58
(�3:81)

��

Table 7: Dickey-Fuller tests for integration.

statistics for the production function variables.60

The production function is a static and cointegrating concept. Hence, the standard

growth accounting framework should be su¢ cient. However, the presence of substantial

measurement errors in K, N and A imply that a stable relationship may be di¢ cult to

identify. Haavelmo (1944) highlights the problem of measurement errors by distinguishing

between the latent variables identi�ed in economic theory, their correctly measured em-

pirical counterparts and the actual data available which contains substantial measurement

error. For example, in the case of capital, theory tells us that we need a measure of the

�ow of capital services in the economy, whereas our data is a measure of the capital stock

which contains errors due to the assumptions made about depreciation, scrapping, aggre-

gation etc. Some method of allowance for measurement error is required. To do this we

analyze the PF in a log-linear dynamic setting, which enables us to �nd a stable solution

for potential output. This approach has the added advantage of setting the PF in the

long-run context. Firms do not produce to the PF constraint on a short-run basis. The

magnitude and volatility of inventories highlights this fact. In the short-run, �rms tend to

produce to inventory or order and then sell from these. However, in the long-run the PF

constraints will bite, so a dynamic model that allows for adjustments over the short and

60The ADF statistic is reported where the number of lags was determined by the highest signi�cant
lag. The estimated coe¢ cient on the LDV is reported in parentheses. Note that � is reported (as given
in PcGive) which corresponds to 
 = � � 1 in footnote 33. Critical Values are �3:441 at 5% signi�cance
and �4:023 at 1% signi�cance. Asterisks � and �� denote rejection at the 5% and 1% critical values.
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medium term is appropriate.

Measurement errors can be understood in the errors in variables framework. Ac-

tual capital stock
n
kFt

o
is de�ned as a stochastic process with a joint sequential density

DkF

�
kFt j
t�1; �

�
for the population parameter, �p 2 Rl; given by:

kFt j
t�1 � N
�
�kFt�1;�

�
; (45)

where 
t�1 =
�
kF1 ; :::; k

F
t�1

�
: Empirically, � � 0:99 on quarterly data. Equation (45) can

be given as:
kFt = �kFt�1 + �t; (46)

where �t �NID(0; �2�) ; E
h
kFt j
t�1

i
= �kFt�1 and E

h
kFt�1�t

i
= 0: The observed capital

stock fktg is contaminated by measurement error, futg:

kt = kFt + ut; (47)

where ut �NID(0; �2u) : For simplicity we can initially assume that the measurement error

futg is serially independent and E
h
kFt ut

i
= 0;8t; which implies that E [�tut] = 0. The

measurement error is systematic and can be represented as an MA(1) process. In practice,

� � 0:9 and �2e � �2� :
ut = �ut�1 + et; (48)

where et �NID(0; �2e). Therefore:

Yt = AN�KF1��
t exp (et) : (49)

Thus, the PF is static and cointegrating but the presence of systematic and substantial

measurement errors requires a dynamic framework. A natural extension to this analysis

would be to examine Monte Carlo evidence in order to quantify the impact of the mea-

surement error, see Hendry (1995a).
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4.2 A Dynamic Production Function

The dynamic PF model is set in the single equation dynamic framework with a time

varying regression intercept that captures unobserved TFP and is augmented by I(0)

cyclical factors. The long-run solution, proxying potential output, will be based on the

static PF model:
y�t = 	t + 
1kt + 
2nt; (50)

where 	t is a local level with drift intercept term capturing at: We assume that a single

equation analysis of �yt is valid. This requires that nt; and kt are weakly exogenous for

yt: Given an ADL(1,1) model:

yt =  at + �1yt�1 + �2kt + �3kt�1 + �4nt +

�5nt�1 + �
0 (cyclical factors) + "t; (51)

we can estimate the model in ECM form:

�yt =  at + �2�kt + �4�nt + (�1 � 1) [yt�1 � �1kt�1 � �2nt�1]

+�1�oht�i + �2�Uc;t�i + �3�inventt�i + "t; (52)

where �1 =
�2+�3
1��1

; �2 =
�4+�5
1��1

; and "t �NID(0; �2") : The cyclical factors include the

change in overtime hours, �oh; change in capacity utilization, �Uc; and change in inven-

tories, �invent: The time varying intercept evolves according to the transition equation:

at = at�1 + �+ �t; (53)

where �t �NID(0; �2�): The assumption that �2" and �2� are independently distributed is

made. The model is written in SSF and estimated using the Kalman Filter. Equation

(52) is generalized to allow for a broader dynamic structure, which is identi�ed using a

general to speci�c modelling strategy.

The use of the time varying trend, modelled as a RW with drift, allows for perma-
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nent shifts in TFP. This will robustify the coe¢ cient estimates against the e¤ects of any

structural change. The time varying trend will proxy advances in human capital, includ-

ing knowledge accumulation, experience and educational improvements. Human capital

is captured by the process of cohort arrival and departure in the labour force. Those de-

parting from the workforce tend to be due to retirements and have a lot of experience but

were educated a long time ago whereas new arrivals have a recent education but a lack of

experience. Aggregating across all individuals, given that workers are at di¤erent stages

in their lifecycles, implies a smooth growth in the e¤ective labour force. Also, the e¤ect of

human capital using physical capital stock which embodies TP will be well captured by a

RW with positive drift.61

The resulting model is given in equation (54), (t-ratios are given in parentheses).

�yt = 1:103
(0:58)

at + 0:002
(1:47)

�� 0:413
(�6:90)

yt�1 + 0:098
(1:99)

kt�1 + 0:302
(2:70)

nt�1

+0:555
(2:21)

�nt + 0:031
(4:59)

�inventt + 0:156
(3:38)

�Uc;t

+0:027
(4:31)

ID68q1 + 0:035
(5:43)

ID73q1 + 0:027
(2:66)

BD79q2

LL = 695:054; b� = 0:664%; �2DH (2) = 1:347; QBL (11; 10) = 12:088: (54)

The model represents a good �t given the simplicity of the model, with an equation

standard error, b�; of 0.66%. The goodness of �t, R2d; is 0.776 and the model passes

all diagnostics. �2DH (2) is a test of normality on the residuals based on the Bowman-

Shenton statistic with a correction of Doornik and Hansen (1994). The Box-Ljung statistic,

61Note that the estimated at from the static PF cannot be used. If there is a unit coe¢ cient on TFP
in the dynamic model (which would correspond to the static model), the long-run solution will not be
identi�ed. As at is calculated as yt � f (kt; nt), yt will cancel out. If TFP was estimated via a regression
model, such as yt = �0+�1kt+�2nt+at; there would be a problem of generated residuals. Pagan (1989)
discusses this issue in which a 2-step procedure that uses the estimated residuals from the 1st step in
the second stage will cause the estimated standard errors to be incorrect. The model would need to be
augmented by the derivative of the residual with respect to the parameters of the 1st stage model for the
standard errors to be asymptotically correct.
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Figure 7: Actual and �tted output growth and the model diagnostics.

QBL (11; 10), tests the hypothesis that the residuals are uncorrelated up to the 11th order.

It is distributed as a �2 (10) under the null. Tests for heteroskedasticity, serial correlation

at the 1st and 11th lag and the Durbin-Watson test are also satisfactory. Figure 7 records

the actual and �tted values along with the diagnostics.

The model has an adjustment coe¢ cient of 0.41, implying that two �fths of the dise-

quilibrium at t�1 is removed in the following quarter. The current dated adjustment in k

was insigni�cant (up to 6 lags of �k were included in the GUM) and so all adjustment to

capital takes place in the error correction term. The adjustment term on �nt is large. In

period t, �rms will not only consider whether they were in equilibrium last period but also

whether there is a change in labour input in the current period and so current decisions

have a direct impact on �y: Overtime hours are not signi�cant. A convex investment

adjustment cost was also included,
�
a
2
I2t =Kt

�
, but was found to be insigni�cant. As the

adjustment to equilibrium for k should be captured in the ECM this is not surprising.

Other factors that may impact upon output growth in the short-run such as real interest
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rates and real exchange rates were included in the GUM but these were also found to be

insigni�cant.

BD79q2 is a blip dummy (i.e. 79q2=1,79q3=-1) and hence integrates to an impulse

dummy which does not enter into the long-run solution. With regard to the impulse

dummies, ID68q1 and ID73q1; whilst they are highly signi�cant, their coe¢ cients are

reasonably small. A simple plot of output shows the impulses not to be persistent and

we conclude that the dummies are capturing one-o¤ shocks or outliers and should not

enter the long-run solution as level shifts. They are not included as blip dummies because

the counteracting residuals do not occur in the immediate quarter following the positive

shock but over the following year and summing the negative residuals over the following

4 quarters removes the majority of the shock. The time varying trend will capture the

persistent shocks to output.

Equation (54) suggests that we can impose a restriction of constant returns to scale.

Reparameterising the model results in equation (55).

�(y � n)t = 0:975
(1:75)

at + 0:001
(2:59)

�� 0:375
(�6:11)

(y � n)t�1 + 0:112
(2:29)

(k � n)t�1 +

+0:027
(3:64)

�inventt + 0:137
(2:59)

�Uc;t + 0:025
(3:44)

ID68q1

+0:030
(4:11)

ID73q1 + 0:027
(5:57)

BD79q2

LL = 682:332; b� = 0:70%; �2DH (2) = 4:016; QBL (11; 10) = 5:095: (55)

The model passes all diagnostics and the equation standard error is only marginally

increased to 0.7%. By estimating the model in terms of output and capital per capita, the

estimated coe¢ cients on nt�1 and �nt become insigni�cant. The parameters are relatively

stable when imposing the restriction and the drift of 0.1% is now signi�cant. Figure 8,

panel a records the estimated local level, proxying TFP. It clearly shows the productivity
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Figure 8: TFP, trend output and the output gap estimated by the dynamic model with
time varying intercept.

slowdown in the 1970s, the increase in the second half of the 1980s and the �new economy�

productivity increases of the late 1990s, although this does tail o¤ considerably from 2000.

TFP enters the short-run dynamic model with a near unit coe¢ cient resulting in growth

of approximately 20% over the period of estimation. Note that the long-run solution

determines the total growth in TFP over the period. The q-ratio, determined as the

ratio of the variance of the unobserved component to the variance of the model residuals,

is 0.14. Panel b records at against at estimated by equation (54) (denoted at(Dyn1)).

Whilst both models pick up a similar trend, the drift in the unrestricted model is slightly

larger, with TFP growing by approximately 26% over the period if the constant returns

to scale assumption in not imposed.

The long-run solution is given as:

y�t = 0:3kt + 0:7nt + 2:6at: (56)

Figure 8, panel c records the long-run solution, which proxies potential output, against
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actual output. The trend tracks actual output quite closely resulting in a small output

gap, recorded in panel d. Whilst the gaps in the 1970s match those of the static PF

gap, the late 1980s boom and early 1990s recession are estimated to be much smaller in

the dynamic setting. The shocks in the 1970s are quite clearly attributable to short-run

shocks and so are not picked up in the long-run trend, whereas the local level component

estimates a slowdown in productivity between 1988 and 1992 that is not picked up in the

residual based estimation of TFP to the same extent. The static residual based estimation

of TFP estimates growth of approximately 50% over the period. With a coe¢ cient of 2.6

in the long-run solution, TFP growth is approximately 53% in the dynamic model, which

is comparable. Output growth between 1965 and 2002 is approximately 130% and so TFP

growth accounts for about two �fths of output growth over the period.62 This is di¢ cult

to compare with capital and labour as the growth rates depend on how much technical

progress is captured by capital and labour. 40% does seem very plausible though, given

that there have been large increases in labour participation over the period of estimation.

4.3 Principal Components Analysis

Principal Component (PC) methods are statistical techniques used for data reduction and

originated in Hotelling (1933). The method enables the reduction of data by �nding linear

combinations of the variables that contain most information. Hence, we can compile a

measure of the output gap by assembling all measures of the gap into a vector and taking

a linear combination with weights determined by maximizing the canonical correlations

between variates. The �rst PC could be de�ned as a composite measure of excess demand.

62Note that taking log changes as percentage growth rates is incorrect when the changes are far from
zero. Using this approximation would estimate that output growth was only 85% over the estimation
period.
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The reasoning behind this analysis is based on the classic signal extraction problem. For

each method, the estimated output gap is a combination of the true gap plus some error:

bygapi;t = ygapt + ei;t; ei;t � N(0; �2ei): (57)

The principal component, which is essentially a weighted average of the individual mea-

sures, should extract the signal relative to the errors. The signal to noise ratio will be given

by �2byi/�2ei : On a note of caution, the interpretation of the PC is very di¢ cult, limiting the
method�s use in practice.

Principal Component methods are concerned fundamentally with the eigenvalue and

eigenvector structure of covariance matrices. A criticism of the method is that it is not

invariant under linear transformations of the variables because such a transformation will

change the eigenstructure of the covariance matrix. Hence, the units of measurement are

very important. If the units di¤er the correlation matrix should be used as opposed to the

covariance matrix, but problems of inference are exacerbated when using this.

The population PCs shall be derived, based on Muirhead (1982) and Anderson (1984).

Assume a random m� 1 vector X has a normal distribution, N(�;�), and let �1;� �2 �

� � � � �m (> 0) be the latent roots of �: The m �m orthogonal matrix of eigenvectors,

H = [h1:::hm] ; implies: H 0�H = � = diag (�1; :::; �m) : (58)

U is de�ned as:

U = H 0X = (U1; :::; Um)
0 ; (59)

where cov (U) = �; and hence, U1; :::; Um are uncorrelated and V ar (Ui) = �i; i = 1; :::;m:

The components U1; :::; Um of U are the PCs of X, and the �rst PC is given as U1 = h01X

with variance �1: This is the normalized linear combination of the components of X with

the largest possible variance. The second PC will then account for the maximum of the
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remaining variance and all the components are derived in this manor. The method serves

to combine all variables into a composite variable which re�ects the maximum possible

proportion of the total variation in the set.

The PCs are determined under the condition that they are orthogonal. If we de�ne

an arbitrary linear function as �0X with V ar (�0X) = �0��, the condition that �0X is

uncorrelated with the ith PC, Ui; is:

0 = Cov (�0X;h0iX) = �
0�hi = �i�

0hi; (60)

as �hi = �ihi, so � must be orthogonal to hi: Two measures that explain the variability

in X are tr � and det� where:

tr � = trH 0�H = tr� =
mX
i=1

�i; (61)

det� = detH 0�H = det� =
mQ
i=1

�i: (62)

For the sample PCs, suppose X1; :::;XN is a random sample of size N = n + 1 on X.

We can de�ne the sample covariance matrix, S, by:

A = nS =
NX
i=1

�
Xi �X

� �
Xi �X

�0
: (63)

The latent roots of S (labelled l1; :::; lm) are estimates of the latent roots �1;� � � � � �m

of �: De�ning the matrix of normalized eigenvectors, Q = [q1:::qm] such that:

Q0SQ = L = diag (l1; :::; lm) ; (64)

we can estimate the eigenvector hi by the sample. The sample PCs are given as bU1; :::; bUm
of bU = Q0X:63

63In order to test whether the reduction to the PCs is valid, we can test the null that the latent roots
of � are equal. Accepting the null implies that all the PCs have the same variance, and so there is no
reduction in dimension by deriving the PCs. If the m � 1 smallest roots are equal and small compared
with the largest root, the �rst PC is explaining much of the variability in the sample and there is a valid

63



Eigenvalues Cumulative %
PC1 6:828 68:28
PC2 1:366 81:94
PC3 0:612 88:06
PC4 0:422 92:28
PC5 0:304 95:32

Table 8: Estimated eigenvalues for the �rst �ve principal components of the output gap.

Whilst the decision as to how many factors to extract is arbitrary (because of the lack

of interpretation that can be given to the factors) two methods often used include the

Scree test and the Kaiser criterion. The Kaiser (1960) criterion suggests retaining factors

with eigenvalues greater than 1 as the factor is only then extracting at least as much

information as the original variable. The Scree test (Cattell, 1966) suggests plotting the

eigenvalues and seeing when the plot smoothes out horizontally.

10 gap measures were included in the analysis: LIN80, �4; HP , CS, KS, MA(32)�;

UC, xd(goods), PF (Stat) and PF (Dyn): Both BN and MA(16; 16) were excluded from

the analysis. The Beveridge Nelson smoother is highly volatile and does not estimate a

plausible output gap and the centred MA is not timely. Forecasts were not used to extend

the series as this increases the uncertainty of the gap measure. Also note that MA(32)�

was adjusted for a zero mean in order to prevent the PC from being biased upwards. Of the

10 components, 5 were required to achieve the 95% level of signi�cance. Table 8 records

reduction in dimension. Sequentially testing the null hypothesis:

Hk : �k+1 = ::: = �m;

for k = 0; 1; :::;m� 2; is based on a likelihood ratio test whereby only the subset of latent roots appear in
the statistic. The test statistic is given by:

�k = V
N=2
k ; where Vk =

Qm
i=k+1 li�

1
m�k

Pm
i=k+1 li

�m�k ;
which is asymptotically distributed under the null as �2(q+2)(q�1)=2; where q is the number of subvectors

that X is partitioned into. For proof see Muirhead (1982).
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PC1 PC2 PC3 PC4 PC5
LIN80 15.585 7.258 7.669 24.203 -10.528
�4 11.601 -26.622 11.865 -22.805 8.455
HP 24.032 -0.758 -15.081 12.951 12.050
CS 19.034 6.024 -1.448 9.503 3.083
KS 18.626 8.078 -14.975 -8.752 0.044
(MA32)� 10.015 6.204 15.984 -10.875 0.850
UC 11.473 8.967 0.408 -10.900 -23.039
xd(goods) 11.288 -31.569 15.261 21.302 -11.220
PF (Stat) 20.978 13.376 5.324 4.524 40.616
PF (Dyn) 25.126 -29.948 -58.991 -12.114 -5.463

Table 9: Factor loadings for the �rst �ve principal components of the output gap.

the estimated eigenvalues. The �rst PC is taken as our composite measure of the gap

as this accounts for 68% of the variation, but the Kaiser criterion would keep the second

PC as well. The factor loadings for the PCs are given in table 9. The �rst component is

recorded in �gure 9, panel d. PC1 does appear to produce a reasonable estimate of the

output gap, as can be seen in the summary statistics.

4.4 Summary Statistics

This section aims to provide a simple �rst pass at a comparison of the methods. Issues of

interest when comparing measures of the gap include what the cycles look like in terms

of duration and amplitude, whether the cycles are periodic, whether they are asymmetric

and whether the measures co-move. To detect turning points, a simple algorithm was

applied. A peak (trough) is identi�ed as the highest point during which output is above

(below) trend, given that output is above (below) trend for 3 quarters or more in order to

avoid innovations around the trend. This is a very naive dating rule.64 Whilst it is argued

that a policy-maker would not adhere to such a simple rule in practice, the approach does

provide a straightforward method for comparing many cycles. Scott (2000a) advocates the

64See Harding and Pagan (2000) for details of various business cycle dating rules.
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use of simple dating rules, arguing that more complex rules are susceptible to the critique

that the stylized facts had been �dialled in�. Note that this algorithm had to be adjusted

for the measures of the gap with a mean that was not close to zero.65

Harding and Pagan (2000) argue that turning points should not be determined upon

the basis of detrended series, but rather methods should be used that identify peaks and

troughs without involving the creation of arti�cial trend and cycle components. The

�classical� cycle is de�ned as the period between two turning points in the original se-

ries whereas we are examining �growth�cycles, which are derived by deducting the trend

component. They note that inference made on the basis of growth cycles is fraught with

perils, emphasizing the degree of disparity in the variety of detrending methods used in

the literature.

Plots of the estimated gaps are given in �gure 9. Panel a records LIN80, HP

(� = 1600), CS (� = 8), and KS (h = 8), panel b records the MA gaps, panel c records

xd(goods) and �nally panel d records the Principal Component of the gap measures.66

Whilst the broad pro�le of the gap is similar across measures, there are di¤erences in the

magnitude of the gap and the timing of booms and recessions. Most divergence occurs

at the end-point, highlighting the considerable policy implications. The KS estimates of

the gap to have risen substantially between 2000 and 2002, compared to a sharp drop in

the gap estimated by xd(goods). The range of estimates in 2002q2 extends from 3.3%

to -3.6% of output and 4 measures estimate a positive gap compared to 6 estimating a

negative gap.

65The turning points for these measures were estimated by correcting for the mean. This was done by
setting the gap approximately equal to zero in 1986Q1, when the Treasury estimates the economy to be
on trend. Whilst this is an ad hoc method, it does enable the turning points to be estimated and simple
ocular judgements suggest that this algorithm does pick up the main turning points.
66Note that �gure 6 in Chapter 4.1 records PF (Stat); �gure 8 in Chapter 4.2 records PF (Dyn) and
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Figure 9: Estimates of the output gap for the UK.

Table 10 reports a variety of summary statistics for the measures.67 Expansions (con-

tractions) are de�ned as the phase from trough (peak) to peak (trough). There are a wide

range of averages for both duration and amplitude between the gap estimates. However,

the duration averages tend to cluster around 3 to 4 years for a contraction and approx-

imately 5 years for an expansion. There is more of a divergence in average amplitudes

but most methods tend to produce cycles of approximately 7 percentage points for both

contractions and expansions.68 There is some evidence of asymmetry in cycles, with the

duration of expansions approximately a year and a half longer than contractions. This

supports the view that the economy gradually builds up pressure throughout an expansion

�gure 16, panel c in Appendix 3 records UC.
67All statistics reported are multiplied by 100, i.e. percentage of output. Note that Amp/Q = amplitude

per quarter.
68One could also test for duration dependence to assess whether the cycles are periodic. The Brain-

Shapiro (1983) test of duration dependence aims to test whether the longer a series remains in an expan-
sionary (contractionary) phase, the more likely it is to switch to a contractionary (expansionary) phase.
However, due to our conclusion of asymmetry there is unlikely to be a periodic cycle and hence the test
is not applied. The changing economic environment, from the in�ationary 1970s, to the monetarism of
the 1980s, commitment to the ERM and a move to in�ation targeting in the 1990s, implies that we are
unlikely to �nd evidence of periodic cycles.
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Mean St.Dev. Contraction Expansion
Dur. Amp. Amp/Q Dur. Amp. Amp/Q

LIN80 0.00 2.14 12.33 8.66 0.70 23.75 7.19 0.30
�4 2.29 2.10 7.67 10.24 1.34 21.00 8.57 0.41
HP 0.00 1.49 15.25 6.42 0.42 14.75 6.13 0.42
CS 0.02 1.94 15.75 7.34 0.47 19.25 6.95 0.36
KS 0.24 1.91 17.00 6.57 0.39 16.33 7.66 0.47
MA(32) 9.59 3.20 24.50 12.60 0.51 29.00 10.59 0.37
MA(16; 16) 0.03 2.14 10.67 8.81 0.83 17.67 8.27 0.47
UC 0.05 2.83 12.33 8.74 0.71 24.50 7.73 0.32
xd(goods) 0.00 1.94 13.00 7.26 0.56 18.25 6.73 0.37
PF (Stat) 0.02 1.58 8.80 4.07 0.46 15.80 4.97 0.31
PF (Dyn) -0.06 1.11 8.40 3.86 0.46 15.50 3.89 0.25
PC 0.00 1.56 11.75 4.28 0.36 17.60 4.50 0.26
Average 1.02 1.99 13.12 7.41 0.60 19.45 6.93 0.36

Table 10: Summary statistics for the output gap measures.

LIN �4 HP CS KS MA MA UC XD PF PF PC
LIN80 1
�4 0.37 1
HP 0.79 0.55 1
CS 0.86 0.49 0.95 1
KS 0.78 0.47 0.91 0.91 1
MA (32) 0.74 0.50 0.68 0.79 0.74 1
MA (16; 16) 0.84 0.49 0.97 0.99 1.00 0.79 1
UC 0.75 0.37 0.72 0.82 0.84 0.80 0.85 1
xd(goods) 0.47 0.75 0.50 0.48 0.32 0.34 0.50 0.28 1
PF (Stat) 0.77 0.40 0.78 0.86 0.80 0.79 0.83 0.70 0.32 1
PF (Dyn) 0.49 0.61 0.71 0.62 0.70 0.36 0.65 0.52 0.56 0.52 1
PC 0.87 0.63 0.94 0.96 0.93 0.83 0.96 0.85 0.57 0.86 0.73 1

Table 11: Correlation matrix of output gap measures.

and then, as this bursts and we move into a contraction, the release of pressure is much

more rapid. This has serious implications for policy-makers, as addressed in Chapter 2.5.

Another question of interest is whether the measures of the gap co-move with each

other. Correlation analysis should tell us whether the di¤erent measures give the same

signals regarding the economy�s position in the cycle. Table 11 reports the correlation

matrix for the measures.69

69Note that the shortened column labels correspond as the transpose of the row labels.
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All of the correlations are signi�cant at the 1 percent signi�cance level, implying that

the measures almost always co-move.70 One may naively presume that any measure of the

gap may be used as they will all be capturing the same information. However, McDermott

and Scott (1999) show that as correlation assesses both amplitude and duration elements,

if the amplitude of a swing that is common to both series is large (such as the 1980s boom

and recession), this may well dominate the covariance, implying a larger correlation than

if duration was assessed alone.71

The HP , CS and KS are all highly correlated and pick up similar trends. As these

measures are dependent on ad hoc parameter judgements, the high correlation is in a sense

�programmed in�by the choice of parameter. As the PC has a high correlation coe¢ cient

with these 3 measures, it is important to ensure that the correlation coe¢ cient for the PC

is not biased due to the high correlations between HP , CS and KS: Calculating the PC

excluding these measures resulted in correlation coe¢ cients of 0.92, 0.93 and 0.90 between

PC and HP , CS and KS respectively, suggesting that these measures are not driving

the principal component. This conclusion is supported by the factor loadings, where the

weights are fairly well spread.

Whilst the correlation matrix highlights interesting facts regarding the individual mea-

70The 1 and 5 percent signi�cance levels are given by 2:58
�
1=
p
T
�
and 1:96

�
1=
p
T
�
respectively.

71McDermott and Scott (1999) suggest using a concordance statistic as opposed to a correlation statistic,
which tests whether di¤erent measures signal that the economy is in the same state at the same point in
time. The concordance statistic is given as:

Cij = T�1
hX

(Si;tSj;t) + (1� Si;t) (1� Sj;t)
i

where Si(j);t =

�
1; if yt is in expansion
0; if yt is in contraction

As this approach is non-parametric, the dating will be almost independent of the sample used. In order
to infer signi�cance levels, McDermott and Scott undertook Monte Carlo simulations and computed the
response surfaces. Whilst there is some evidence of sensitivity to non-normal innovations, the test has
reasonable power properties when the correlation between innovations is high and the power increases
dramatically as T is increased.
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sures, canonical correlations enable us to examine the correlations between various sets

of measures of the gap. Canonical correlation analysis was developed by Hotelling (1936)

and is a technique for analyzing the relationship between a linear combination of two sets

of variables, each of which can contain several variables such that the correlation between

them is maximized. There are direct parallels between Principal Components analysis

and canonical correlations. When the variables are regarded as belonging to a single set

of variables, PC analysis tends to be used whereas if the variables naturally fall into two

sets, canonical correlation analysis can be insightful. The aim is to reduce the correlation

structure between two sets of variables A and B to a simple form by applying linear trans-

formations to the sets. Following Muirhead (1982), partitioning the (p+ q) � 1 random

vector, X; into subvectors A and B; which are p� 1 and q� 1 respectively, the covariance

matrix can be de�ned as:

Cov

�
A

B

�
= � =

2664�11 �12

�21 �22

3775 ; (65)

where �11 is p � p and �22 is q � q: Assume p � q without loss of generality and let

k = rank (�12) ; then there exists a p � p orthogonal matrix H and a q � q orthogonal

matrix Q such that:
�
�1=2
11 �12�

�1=2
22 = H0 ePQ; (66)

where:

eP =

266666666664

�1 � � � 0 0

...
. . .

...
...

0 � � � �k
...

0 � � � � � � 0

377777777775
;

and �1; :::; �k are the positive square roots of �
2
1; :::; �

2
k (6= 0); which are the latent roots of
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��111 �12�
�1
22 �21:

72 If we de�ne:

L1 = H�
�1=2
11 ; L2 = Q�

�1=2
22 ;

then L1�11L01 = Ip; L2�22L
0
2 = Iq and L1�12L

0
2 =

eP : (67)

Let the �rst canonical variables be U1 and V1; which are linear functions U1 = �01A;

V1 = �
0
1B: These have the maximum correlation subject to the condition that V ar (U1) =

V ar (V1) = 1: Then if U = L1A and V = L2B:

�
U

V

�
=

2664L1 0

0 L2

3775�AB
�
= L

�
A

B

�
; (68)

Cov

�
U

V

�
= L�L0 =

2664Ip eP
eP 0 Iq

3775 ; (69)

where L = diag (L1; L2). Thus, we can reduce the covariance matrix, �; to a form that only

involves the ��s: Equation (69) is the canonical form of equation (65). If U0 = (U1; :::; Up)

and V0 = (V1; :::; Vq) ; Ui and Vi are the ith canonical variables.73

The gap measures naturally divide into 2 subsets; univariate statistical methods and

multivariate methods.

Set A: LIN(80), �4, HP , CS, KS, MA(32), UC:

Set B: xd(goods); PF (Stat), PF (Dyn).

Table 12 reports the linear combinations for the canonical correlations. The t-tests

of signi�cance are based on conditional standard errors. All apart from KS; MA(32)

and PF (Dyn) are signi�cant. The eigenvalues for the resulting canonical correlations are

given in table 13. The likelihood ratio (LR) is reported, along with the corresponding

72For proof see Theorem A9.10, Muirhead (1982).
73See Anderson (1984) for a discussion of the properties of canonical correlations.
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Canon Variable Coe¤. S.E t-stat (p-val)
U LIN80 12.125 3.284 3.69 (0.00)

�4 19.015 2.245 8.47 (0.00)
HP -26.634 12.164 -2.19 (0.03)
CS 60.147 10.241 5.87 (0.00)
KS -4.914 5.721 -0.86 (0.38)
MA(32) 1.177 2.294 0.51 (0.61)
UC -9.643 2.986 -3.23 (0.00)

V xd(goods) 25.367 2.102 12.07 (0.00)
PF (Stat) 44.892 2.501 17.95 (0.00)
PF (Dyn) 2.023 4.060 0.50 (0.62)

Table 12: Canonical correlation estimates.

Can Corr. Eigenvalue Cumulative %. LR F-test
0:926 5:997 0:632 0:019 F(21;403) = 56:844
0:816 1:991 0:842 0:134 F(12;282) = 40:708
0:774 1:496 1 0:401 F(5;142) = 42:482

Table 13: Estimated eigenvalues for the canonical correlations, and the likelihood ratio
tests of signi�cance.

F-statistic.

The canonical correlations are given as (0:926; 0:816; 0:774)0 : We can use the T 2 sta-

tistic proposed by Hotelling (1931) to test for the signi�cance of mean di¤erences in the

multivariate case. The generalized T 2 statistic is the multivariate analogue of the square

of t and is given as:
T 2 = N (x� �)0 S�1 (x� �) ; (70)

where x is the mean vector of a sample of size N and S is the sample covariance matrix.74

The Hotelling-Lawley Trace statistic can be converted to the T 2 coe¢ cient by multiply-

ing the trace coe¢ cient by (N � L), where L is the number of groups. Both have the

same degrees of freedom and signi�cance level. The Hotelling-Lawley Trace coe¢ cient is

9.484. This gives an F-test coe¢ cient of 62.623, which is compared to a critical value of

F(21;416) � 2:38 at the 1% signi�cance level. Therefore, we can reject the null of signi�cant

74If the sample distribution is N
�
�; �2

�
; then t =

p
N x��

s has a t-distribution with N � 1 degrees of
freedom, where N is the number of observations in the sample.
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mean di¤erences and conclude that the two sets of variables are not independent.75 Uni-

variate statistical detrending methods are picking up common information to multivariate

methods that include more information.

4.5 Cointegration of Potential Output Measures

Whilst canonical correlation analysis provides a multivariate framework in which to ana-

lyze measures of the gap, it is essentially a static concept. To examine how the measures

move over time a cointegrating framework is required. If measures of potential output

are pairwise cointegrated with unit coe¢ cients, we can conclude that they have the same

common trend and the gaps should be capturing the same information. Thus, a test of

whether various gap measures are equivalent can be performed by examining whether the

cointegrating vector has full rank. If the potential output measures do not mutually coin-

tegrate, they cannot be cointegrated with the same determinants and the gap measures

will be measuring di¤erent entities.

We shall use a system cointegration test based on Johansen (1995). De�ning a general

unrestricted VAR with no exogenous variables as:

y�t =
Xk

j=1
�jy

�
t�j +�qt + vt; vt � IN [0;
] ; (71)

where y�t is a (p� 1) vector of potential output measures for t = 1; :::; T and qt holds the

deterministic variables including a constant and trend: In our analysis we use a VAR(4) so

75There are other tests that can be used to test the signi�cance of the canonical correlations. These
include Wilks�Lambda, Pillai�s Trace and Roy�s Greatest Root:

Wilks0 � = 0:019; F(21;403) = 56:844

Pillai�s Trace = 2:122; F(21;426) = 49:034

Roy�s Greatest Root = 5:997; F(7;142) = 121:649

All are signi�cant, supporting the results of the Hotelling-Lawley Trace test. See Muirhead (1982) for a
discussion on testing independence been sets of variables.
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k = 4: We examine �ve measures of potential output. These include HP , KS; MA(32);

PF (Stat) and PF (Dyn), hence p = 5.76 The model includes an unrestricted constant and

a restricted trend. Equation (71) can be rewritten as:

�y�t = � (�0�1)
0
�
y�t�1
t

�
+
X3

j=1
�j�y

�
t�j + �0 + vt: (72)

where, under the null, � (�0�1)
0 = � =

P
�j � I: � and � are (p� r) matrices. The test

of cointegration is based the rank, r; of �:

H (r) : rank (�) � r: (73)

The rank of � determines how many linear combinations are I(0). For 0 < r < p there

will be r cointegrating relations, �0y�t ; which are I(0). Testing the null is done sequentially

using nested hypotheses:

(rank� � 0)| {z }
H(0)

� ::: � (rank� � r)| {z }
H(r)

� ::: � (rank� � p)| {z }
H(p)

(74)

Doornik and Hendry (2001) outline cointegration analysis and the estimation procedure

for the cointegrating rank.

The results of the multivariate cointegration test are given in table 14, which reports the

log-likelihoods (l), the Johansen eigenvalues (�) and the trace tests Tr(r) for the hypothesis

H(r) of r cointegrating relations.77 Table 15 reports the estimated cointegrating vector

(b�) and the feedback coe¢ cients, b� (standard errors are given in parentheses for the case
where two cointegrating vectors are imposed).

The results imply that there are two cointegrating vectors between the �ve estimates

of potential output. However, the b� matrix strongly suggests that some of the variables
76Note that the variables excluded include CS because the trend is very similar to that of the HP �lter,

MA(16; 16) as it is not timely and UC as it is very close to being a deterministic trend.
77� and �� denote signi�cance at the 5% and 1% signi�cance levels respectively.
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r 0 1 2 3 4 5
l 5098.373 5150.871 5173.572 5182.855 5188.329 5190.544
� � 0.51525 0.26883 0.12018 0.072716 0.030101
H(r) r = 0 r � 1 r � 2 r � 3 r � 4
Tr(r) 184.34�� 79.346�� 33.944 15.379 4.4317

Table 14: Cointegration analysis of potential output measures.

b�1 b�2 b�3 b�4 b�5
HP 1.000 -0.936 -3.009 2.414 -11.148
KS -0.012 1.000 2.217 -3.000 10.261
MA(32) -0.345 -1.776 1.000 -1.816 3.374
PF (Stat) -0.301 0.587 -1.519 1.000 -0.906
PF (Dyn) -0.251 0.647 2.448 2.246 1.000
trend -0.0006 0.0028 -0.0062 -0.0044 -0.016b�1 b�2 b�3 b�4 b�5
HP �0:0007

(0:00007)
0:00007
(0:00003)

-0.00001 0.00001 -0.000006

KS �0:002
(0:001)

0:002
(0:001)

-0.0002 -0.001 0.0001

MA(32) 0:034
(0:008)

0:019
(0:003)

0.002 0.003 -0.0002

PF (Stat) 0:217
(0:061)

0:013
(0:027)

0.030 -0.031 -0.008

PF (Dyn) 0:252
(0:057)

0:021
(0:025)

-0.029 -0.024 -0.007

Table 15: Unrestricted estimates of the cointegrating vectors and adjustment coe¢ cients.

are I(2). Given the smoothness of some of the measures this is very plausible and a plot

of the roots of the companion matrix suggests that there are two roots that lie outside of

the unit circle. DF tests indicate that HP and KS are I(2) processes, and MA(32) may

also be I(2). The production function estimates of potential output are estimated to be

I(1) processes. A plot of the cointegrating vectors given by the b�0y�t linear combinations
is given in �gure 10, panels a-e. The cointegrating vectors do not look stationary. The

non-normalized coe¢ cients are recorded against the normalized variables in panels f-j.

The �rst �tted and actual components track each other fairly closely, but there is some

deviation in the next four. This analysis does suggest a lack of cointegration for I(1)

relations.
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Figure 10: Time series of cointegration vectors.

Tests for I(2) combine the rank test of � based on equation (72) with an additional

reduced rank restriction on the � matrix. The second reduced rank condition is given as:

�0?��? = �
0�; (75)

where � and � are (p� r)� s matrices. s is the number of I(1) relations and p� r � s is

the number of I(2) relations. Again, testing is done sequentially using nested hypotheses.

Qr : H (rank (�) � rjrank (�) � p)

Sr;s : H (rank (�) � r and � p� r � s I(2) componentsjrank (�) � p) (76)

The I(2) analysis suggests that there are two I(2) relations and one I(1) relation. The test

statistic is given as S2;1 = 55:438 with a p-value of 0.42.

The conclusion that we can draw from this analysis is that a lack of full cointegration

between di¤erent measures of potential output implies the existence of more than one
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common trend. Given that di¤erent measures vary in terms of the order of integration in

the series, we would not expect to �nd that they are related by common trends. Hence, the

measures of potential output do not co-move and the resulting output gaps will contain

di¤ering properties.
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5 In�ationary Pressures

Excess demand is a signi�cant factor driving in�ation in the short-run. As the output gap

is a proxy for excess demand, a natural extension from the above discussion is to examine

the impact of the gap measures on in�ation. However, judging the measures of the gap on

the basis of in�ation alone is problematic as an �internal�judgement is potentially circular

if the gap is de�ned in terms of in�ation. If the gap is just a construct in relation to

goods market in�ation, the correct measure of the gap would be obtained by �backing

out�an estimate from an in�ation model. To then estimate an in�ation model based on

this type of gap measure would lead to identi�cation problems. If, instead, the gap is a

well de�ned entity determined by the economy�s long-run potential growth prospects this

problem will not arise. However, the gap is inextricably linked to in�ation via the amount

of non-in�ationary long-term growth that can be sustained. We �nd that excess demand

has a substantial impact upon in�ation, strengthening the need for accurate and timely

estimates of the gap.

Hendry (2001) argues that there is no single-cause explanation of in�ation. Therefore,

the model we use is designed to encompass all relevant theories. By adopting a general

to speci�c modelling strategy using PcGets, we can test the relevance of the output gap

against all other possible causes of in�ation. The use of the single equation framework

requires weak exogeneity in the regressors. If this is not the case a VEqCM framework

should be used where all variables are modelled explicitly, capturing the variety of channels

through which correction to the long-run equilibrium takes place. However, the single

equation framework tends to be more robust, particularly for forecasting purposes and so

we concentrate on this methodology.
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The model of in�ation is based on a mark-up model, with excess demand pressures caus-

ing short-run cyclical movements in in�ation whilst the long-run price level is determined

by sectoral price levels including producer prices (ppi) ; import prices (import), housing

rent (rent) ; wholesale prices (wpi), unit labour costs scaled for the decline in average

hours (c�) ; oil prices (oil) ; and national debt (nd). The short-run pressures are captured

by the output gap (xd(pc)) ; excess demand for unemployment (xd(u)), the growth rate of

broad money, (�m4), the short-long real interest rate spread (rrs� rrl), the real e¤ec-

tive exchange rate (reer) and asset prices (assets).78 Some terms are excluded to avoid

perfect collinearity and some isomorphic transformations are implemented to limit the

parameter space. Also, all t-dated terms in the equilibrium correction model are excluded

in an attempt to reduce the possibility of reverse causation bias in the results. If some

of the variables were not predetermined a shock may cause a contemporaneous e¤ect on

quarterly in�ation and other t-dated variables, e.g. an exchange rate shock may impact

upon import prices and in�ation simultaneously, biasing the results.

78Lower case represents logs. See Appendix 1 for a description of the data used.
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The GUM, estimated in ECM form, is given as:

�pt = �0 +
XJ�1

j=1
�1;j�pt�j +

XJ�1

j=1
�2;j�importt�j + ��2 (importt�J � pt�J)

+
XJ�1

j=1
�3;j�ppit�j + ��3 (ppit�J � pt�J) +

XJ�1

j=1
�4;j�rentt�j

+��4 (rentt�J � pt�J) +
XJ�1

j=1
�5;j�wpit�j + ��5 (wpit�J � pt�J)

+
XJ�1

j=1
�6;j�c

�
t�j + ��6

�
c�t�J � pt�J

�
+
XJ�1

j=1
�7;j�oilt�j + ��7 (oilt�J � pt�J)

+
XJ�1

j=1
�8;j�ndt�j + ��8 (ndt�J � pt�J) + f(XD) + �D + ut

f(XD) =
XK

k=1

1;kxd(pc)t�k +

XK

k=1

2;kxd(u)t�k +

XK

k=1

3;kreert�k

+
XK

k=1

4;k(rrs� rrl)t�k +

XK

k=1

5;k�m4t�k +

XK

k=1

8;kassetst�k

ut � NID
�
0; �2u

�
(77)

5.1 The Data

The order of integration of price level data has been discussed extensively in the literature.

Hendry (2001) concludes that the price level is I(1) but contains deterministic shifts which

give the impression that the series is I(2). DF tests are rarely conclusive due to their low

power and results di¤er across countries and time periods. However, the DF test statistics

for the implicit GDP de�ator suggest that the price level is I(2) and the in�ation rate is

I(1).79 This implies that we have two forms of cointegration. Firstly, the price measures

cointegrate to I(1) and secondly, the I(1) cointegrating price measures drive �uctuations in

the in�ation rate, yielding a polynomially cointegrating relation. This will give a long-run

solution for the price level and a long-run solution for the in�ation rate based on relative

prices. Whilst the model is estimated in I(1) space, I(0) demand side variables drive the

short-run �uctuations. Note that many studies examine the consumer price de�ator or

79ADF test results with constant and trend: H0 = I(1) : ADF � = �0:906; H0 = I(2) : ADF
� = �2:884; H0 = I(3) : ADF � = �13:82��:
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Figure 11: Quarterly growth rates of the producer price index, the wholesale price index,
import prices and scaled unit labour costs.

the net national income de�ator as opposed to the GDP de�ator. Hendry (2001) �nds

that these series do not mutually cointegrate and so empirical models are speci�c to the

price measure used.

Figure 11 records the quarterly growth rates of ppi, wpi, import and c� in panels a

to d respectively. �ppi follows price in�ation fairly closely, but both �import and �wpi

are much more volatile than in�ation. Unit labour costs for the whole economy, c; are

scaled for the gradual decline in the average number of hours worked per week. If a

more disaggregated approach were undertaken, ct should also control for the e¤ects of self-

employment and for the slower evolvement of wage-price linkages in the public sector.80

�rent is recorded in �gure 12, panel a. Housing market volatility has increased sub-

stantially since the late 1980s boom and subsequent recession. The extent of the oil price

shocks can be captured by (oil � p) in panel b (scaled for zero mean). Real unit labour

80See Batini, Jackson and Nickell (2000).
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Figure 12: The growth rate of housing rent, oil minus the price level, unit labour costs
minus the price level and the markup.

costs (c� � p) are recorded in panel c and the mark-up, ��; derived in equation (82) below,

is given in panel d.

(rrs� rrl) is included in the GUM as opposed to the interest rates entering indepen-

dently. The short rate can be thought of as the control variable and the long rate as a

proxy for the cost of capital. Hence, the spread captures the in�ationary pressures arising

from an increase in the cost of capital relative to the borrowing rate. As the interest rates

are annual measures they are scaled to represent quarterly interest rates and are adjusted

for a sample mean spread of -0.002, recorded in �gure ??, panel a.

Theories of in�ation based on purchasing power parity argue that in the long-run

exchange rates should adjust to eliminate arbitrage opportunities and hence in�ation will

be imported via pass-through e¤ects. The reer is derived (setting the sample mean to

zero) as:
reert = pt � wpt + 0:02 (78)

where wpt are world prices in sterling. Figure ??, panel b records reer. There are sub-
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stantial and persistent deviations from PPP over the period, with a range extending from

+20% to -30%. Whilst the reert is judged to be I(0) over very long data sets, the ADF

statistics for the period 1965q1-2002q2 �nd reer to be I(1).81

Monetary theories of in�ation stem from Friedman�s (1956) seminal work on the �quan-

tity theory�in which money is treated as exogenous, enabling the money demand equation

to be inverted in order to solve for the price level. There is a vast literature looking at

money causing in�ation, but Hendry (2000a) �nds no support for this theory.82 The growth

rate of broad money is included in equation (77), but we do not include an excess demand

for money variable. Figure ?? records the velocity of broad money, vt = pt + yt � m4t;

in panel c and �m4 along with �p in panel d. The velocity declines sharply over the

1980s when monetarism was operated in the UK via the Medium Term Financial Strat-

egy. The growth rate of broad money tends to exceed price in�ation over the 1980s as

people transferred their holdings from narrow money to broad money due to the tightening

operated.

There is a substantial literature examining the importance of labour market pressures

on in�ation.83 We use a measure of excess demand for unemployment based on Hendry

(2001). In this model, unemployment rises when the real interest rate exceeds the real

growth rate and vice versa. As the unemployment rate, Urt; is recorded as in annual

units, we derive excess demand for unemployment based on an annual measure of the

real interest rate and growth rate and then scale for a quarterly measure.84 The resulting

81Hendry (2001) �nds reert to be close to its 1872 value in 1991. Also see Rogo¤ et al. (2001) who
examine PPP over 700 years. They �nd the law of one price holds over the very long-term but that there
are substantial and sustained deviations.
82See Hendry and Ericsson (1991) and Ericsson et al. (1998) for models of the demand for narrow and

broad money respectively in the UK.
83See Phillips (1958), Sargan (1980), Nickell (1990) and Layard, Nickell and Jackman (1991) for models

of in�ation based on the labour market.
84A quarterly measure is also derived based upon Urqt and Rl

q
t . Whilst this measure follows the same
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model is given as:

�Urt = 0:001
(2:58)

+ 0:019
(3:30)

�(Rlt ��4pt ��4yt)� 0:013
(�2:84)

Urt�1 + 0:872
(23:0)

�Urt�1

0:010
(2:41)

(Rlt�1 ��4pt�1 ��4yt�1)� 0:006
(�4:16)

D71q1 + 0:007
(4:93)

D71q2

R2 = 0:800 b� = 0:132% SC = �6:775 FAR((5; 117) = 2:453
�

�2N(2) = 0:757 FARCH(4; 114) = 1:515 FRESET (1; 142) = 0:852

FH(10; 132) = 1:524 FCHOW (18; 125) = 0:466 T = 1965q1� 2002q2: (79)

The model provides a reasonable �t and passes all diagnostics apart from the AR test

at the 5 percent signi�cance.85 The dummies for the �rst two periods of 1971 cancel each

other out and therefore do not enter into the long-run solution. The long-run solution

yields an excess demand for unemployment measure given by:

xd(u)t = Urt � 0:05� 0:55 (Rlt ��4pt ��4yt) : (80)

Figure ?? records excess demand for unemployment in panel b and the annual NAIRU

derived in Chapter 4.1 in panel c for comparison. Both measures were tested in the GUM.

As a proxy for excess demand for �nal goods, the Principal Component of the output

gap computed in Chapter 4.3 is used, recorded in panel d (note that this is labelled

xd (pc)). Other measures of the gap are examined in the dominant in�ation model derived

in Section 5.2.

movements as xd(u); the series is much more volatile. This does not accord with the slow moving nature
of unemployment and hence the scaled annual measure is preferred.
85t-statistics are given in parentheses. R2 is the squared multiple correlation, b� is the residual standard

error and SC is the Schwarz Criterion. The diagnostic tests are of the form Fj (k; T � l) ; denoting an F
test against an alternative hypothesis given by j. These include kth order serial correlation, FAR; kth order
conditional heteroscedasticity, FARCH ; heteroscedasticity, FH , functional form, FRESET ; and parameter
constancy over k periods, FCHOW : See Hendry and Doornik (2001) for details of the tests. Normality is
tested using the Doornik and Hansen (1994) test and is distributed as a �2N (2) :
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5.2 The Model

The GUM contains 3 lags of all variables excluding t-dated terms. The model is then

reduced to equation (81) by eliminating variables with insigni�cant t-values. This was

conducted in PcGets using a liberal strategy. The liberal strategy minimizes the chances of

omitting relevant variables and is therefore less �tight�than the conservative strategy which

minimizes the chances of retaining irrelevant variables.86 Both strategies are consistent;

as T !1 the signi�cance level tends to 0.

�pt = 0:007
(4:84)

+ 0:185
(2:98)

�pt�2 + 0:092
(4:58)

�
c�t�1 � pt�1

�
+ 0:082

(2:34)
�m4t�7

+0:010
(6:82)

(oilt�1 � pt�1) + 0:118
(4:27)

�rentt�4 + 0:117
(3:07)

�c�t�3 +

+0:318
(7:94)

xd(pc)t�1 � 0:182
(�5:41)

xd(u)t�2 � 0:169
(�1:91)

(rrsq � rrlq + 0:002)t�2

�0:016
(�2:28)

(reer + 0:02)t�1 � 0:044
(�6:29)

D73q2 + 0:025
(3:79)

D79q3

R2 = 0:835 b� = 0:625% SC = �9:795 FAR(5; 126) = 0:664

�2N(2) = 0:010 FARCH(4; 123) = 1:028 FRESET (1; 130) = 1:174

FH(22; 108) = 1:216 FCHOW (18; 113) = 0:824 T = 1966q3� 2002q2: (81)

The model contains elements of most theories of in�ation and passes all diagnostics.

We can undertake yet another model simpli�cation, following Hendry (2001), by forming

a mark-up variable, ��t : This is determined by combining c
�, oil and reer in an attempt to

capture the mark-up of prices over costs.87 We make the assumptions of long-run linear

86See Hendry and Krolzig (2001) for more details on the strategies of PcGets.
87Pro�t should actually be a function of capital and labour costs, as in the Cobb-Douglas technology

used in Chapter 4.1, with weights summing to 1. However, data on capital costs are limited. The long
bond rate was tried as a proxy for the cost of capital but the e¤ect is already being captured in the
short-long spread. Hence the weight on c�t exceeds the Cobb-Douglas weighting of approximately 0.7,
because capital costs are not fully captured.
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price homogeneity and the adjustment speeds are the same in response to c�; oil and reer:

��t = 0:016reert � 0:092 (c� � p)t � 0:010 (oil � p)t

= pt � 0:14wpt � 0:78c�t � 0:08oilt: (82)

Unit labour costs feed through to the GDP de�ator with a coe¢ cient of 0.78, which is

very similar to Nielsen and Bowdler (2003) who �nd a coe¢ cient of 0.79 when import prices

and unit labour costs enter the long-run solution. Bardsen, Fisher and Nymoen (1998)

�nd a larger coe¢ cient of 0.89 but they exclude import prices and the real exchange rate,

which will bias the unit labour cost coe¢ cient upwards. Unit labour costs are dominant in

determining the price level and this is consistent with Batini, Jackson and Nickell (2000),

who �nd that the labour share (represented by c) is an important leading indicator of UK

in�ation. The mark-up is adjusted for a zero mean.88

Imposing this restriction yielded FReduct (2; 131) = 4:35� which is marginally signi�cant.

However, the restriction does not impact upon the coe¢ cients substantially as they do not

change by more than 1 standard error, apart from xd(u) which does not change by more

than 2 standard errors, and so the restriction is imposed and the �nal model is given as:

�pt = 0:006
(4:16)

+ 0:223
(3:65)

�pt�2 + 0:124
(4:39)

�rentt�4 + 0:111
(2:94)

�c�t�3 +

+0:313
(8:43)

xd(pc)t�1 � 0:128
(�4:91)

xd(u)t�2 � 0:141
(�6:52)

��t�1 + 0:103
(3:02)

�m4t�7

�0:256
(�2:46)

(rrsq � rrlq + 0:002)t�2 � 0:045
(�6:42)

D73q2 + 0:029
(4:31)

D79q3

R2 = 0:824 b� = 0:641% SC = �9:800 FAR(5; 128) = 0:566

�2N(2) = 0:001 FARCH(4; 125) = 0:904 FRESET (1; 132) = 3:416

FH(18; 114) = 1:257 FCHOW (118; 115) = 0:780 T = 1966q3� 2002q2: (83)

88As the prices are indices there is no natural metric for measuring ��t .
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The model represents a reasonable �t with a standard error of 0.64%, which is low in

view of the turbulence in in�ation over the period in question and it passes all diagnostic

and constancy tests. The actual and �tted values are recorded in �gure 13, along with

the scaled residuals, their correlogram and the residual density. Figure ?? records the

recursive coe¢ cient estimates and the 1-step residuals with �2 standard errors, as well

as the 1-step, break-point and forecast Chow tests.89 The recursive graphics exhibit some

evidence of parameter instability, most notably in the spread and �m4. As there have

been a variety of monetary policy regimes over the period this is not surprising. The

1-step residuals mostly lie within the �2SE bands, although there does appear to be a

slight downward bias over the period. There is some evidence of reduced forecast accuracy

post 2000, which can probably be pinpointed as being due to the oil price variable. The

large increase in oil prices over 1998 and 1999 have caused an overestimation of quarterly

in�ation. This is addressed in Chapter 6. There is also a large outlier in 1979 in the 1-step

Chow test, again probably due to the oil price shock as this is not re�ected in an increase

in b�t: As the model is relatively stable over time despite many regime changes we can
conclude that the implications of the Lucas critique are limited.

The �nal model contains variables that represent most theories of in�ation. The re-

sults for quarterly post-war in�ation are essentially very close to those obtained by Hendry

(2001) for annual in�ation over the period 1875-1991, suggesting that the modelling ap-

89A 1-step Chow test is given by (RSSt�RSSt�1)(t�k�1)
RSSt�1

�H0 F (1; t� k � 1) where the null is given for
constant parameters over t =M; :::; T: The model is �tted to the sampleM�1 and the resulting equation
is �tted to M;M + 1; :::; T observations. Note that normality of �pt is needed for this statistic to be
distributed as an F distribution.
Break-point Chow tests are sequences of Chow tests as the forecast goes from N = T �M + 1 to 1.

The statistic is given as (RSST�RSSt�1)(t�k�1)
RSSt�1(T�t+1) �H0 F (T � t+ 1; t� k � 1) :

The forecast Chow test is a test for constancy over the period 1 to M � 1 against an alternative which
allows for any change over M to T . The test statistic can be given as (RSSt�RSSM�1)(M�k�1)

RSSM�1(t�M+1) �H0
F (t�M + 1;M � k � 1) for t =M; :::; T .
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Figure 13: Fitted and actual values of quarterly in�ation, the residuals, correlogram and
density.

proach used does explain in�ation well. There is a small amount of in�ation persistence

entering through the second lag of quarterly in�ation (including the �rst lag which is

positive but insigni�cant gives an inertia of 25%). The limited evidence for in�ation per-

sistence refutes much of the literature, which has suggested that coe¢ cients of the lagged

dependent variable are statistically insigni�cant from 1.90 Observed in�ation persistence

in these models may well be due to second round e¤ects in explanatory variables which

are not modelled. There is a small but signi�cant constant, suggesting that there is some

autonomous in�ation of 0.6%.

The short-long spread has a signi�cant impact upon in�ation, which is consistent with

the long rate being interpreted as a proxy for the cost of capital. �m4 enters signi�cantly

but with a long lag which is surprising. As a nominal variable it would be expected to feed

though to in�ation relatively quickly. However, as broad money includes not only assets

90See the Fuhrer-Moore (1995) model of in�ation stickiness based on relative price rigidities.
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used as a medium of exchange but also those used as a temporary store of value, wealth

e¤ects may take up to two years to feed through to in�ation via potential purchasing

power, which would be consistent with a 7 quarter lag.

�rent has a substantial impact of 12%. Rental payment is used as a proxy for the

theoretical �ow concept of the unit cost of housing. Whilst rents will not control for income

e¤ects that arise from the housing market, these will be captured in other demand side

variables. The impact occurs with a four quarter lag due to indirect e¤ects. For example,

an increase in the cost of housing may reduce labour mobility, increasing wage and price

in�ation over a longer time horizon. Unit labour costs enter signi�cantly via the mark-up

and the growth rate. The mark-up variable is highly signi�cant, with an e¤ect of 14%.

Hence, c� and reer are important determinants of in�ation, as well as oil which is highly

signi�cant although it has a small coe¢ cient.

Excess demand for unemployment has a signi�cant e¤ect of 13%. Another measure of

labour market pressures is the NAIRU. Intuitively, the gap between the level of actual em-

ployment and the NAIRU should capture in�ationary pressures in the economy. However,

replacing xd(u) with nairu led to a signi�cant but smaller impact upon in�ation of 6%

(t = �2:24) dated t� 2. As with potential output, the NAIRU is a latent variable that is

notoriously di¢ cult to measure and hence caution should be applied to these estimates.

The two impulse dummies are highly signi�cant but with relatively small coe¢ cients.

As the impulses are not persistent but are instead capturing one-o¤ shocks or outliers,

they should not enter the long-run solution as level shifts. The negative residual in 1973q2

is a one-o¤ outlier due to the negative in�ation rate recorded in this quarter. The 1979q3

dummy is capturing the increase in VAT after the Thatcher election. This is unlikely to

be a step increase as the impact will gradually �lter through to in�ation. Also, as we are
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modelling the GDP de�ator as opposed to the expenditure de�ator, we can assume that

the dummy does not impact in the long-run via a level shift.

The output gap has a substantial e¤ect upon in�ation of over 30%. Replacing the gap

measure by i) a linear trend with break in 1980, ii) a HP �lter, iii) a UC measure and

iv) excess demand for �nal goods and services based on Hendry (2001), yields on impact

of between 22% and 34%. Capacity utilization only yields an impact of 12%, suggesting

that survey based measures of capacity utilization do not accurately re�ect the size of the

gap. All measures enter signi�cantly with 1 lag, indicating that whilst the timing of the

transmission of a shock from the gap onto in�ation is captured consistently throughout

all measures, the magnitude of the impact is highly dependent upon the measure used.

We can test the impact of various measures of the gap more formally by undertaking

model comparisons based on encompassing tests.91 Encompassing tests based on the F-

test assess whether each model from the path search parsimoniously encompasses the

union. The test is invariant to the choice of common regressors in models. De�ning the

�rst model (M1) to contain k1 + k2 regressors, (x1;t;x2;t); and the second model (M2)

to have k2 + k3 regressors, (x2;t;x3;t); where x2;t are the common regressors, the union

model (MU) comprises the k = k1+ k2 + k3 non-redundant set, (x1;t;x2;t;x3;t): Let RSS1;

RSS2, RSSU and RSSG denote the residual sums of squares from M1, M2, MU and the

GUM respectively. Then, the encompassing test of M1"M2 is equivalent to parsimonious

encompassing, M1"pMU, where the more simple model is nested within the union model.

The PcGets F-test is given as:

� =
(RSS1 �RSSU) =k3
RSSU= (T � k)

�H0 F (T � k; k3) :

91See Hendry and Richard (1982) for a discussion on encompassing.
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M1nM2 LIN(80) �4 HP CS KS MA(32) UC XD(gs) PF(S) PF(D) PC

LIN(80) - 0.82 2.66 0.04 1.17 5.06� 6.19� 37.30�� 0.65 1.83 0.07

�4 11.77�� - 9.63�� 5.62� 1.01 0.05 0.12 56.02�� 0.40 3.10 6.46�

HP 4.02� 0.17 - 0.36 8.13�� 0.28 1.66 38.82�� 0.55 0.06 0.05

CS 5.86� 0.75 4.82� - 2.45 2.32 4.90� 49.15�� 1.28 1.42 1.51

KS 15.24�� 3.85 21.38�� 10.37�� - 0.19 0.05 59.33�� 0.55 2.82 16.25��

MA(32) 23.73�� 6.62� 16.79�� 14.18�� 3.85 - 0.34 78.03�� 1.55 7.62�� 19.63��

UC 25.39�� 7.01�� 18.70�� 17.33�� 4.03� 0.64 - 74.12�� 2.09 6.32� 26.23��

xd(good) 0.54 3.98 0.39 3.82 3.47 12.70�� 9.68�� - 5.63� 0.20 5.71�

PF(Stat) 17.26�� 5.63� 15.66�� 11.64�� 2.91 0.25 0.49 65.83�� - 6.05� 15.15��

PF(Dyn) 14.14�� 4.29� 10.76�� 7.54�� 1.16 2.18 0.62 52.40�� 1.97 - 8.02��

PC 4.36� 0.07 2.97 0.02 6.44� 5.78�� 11.44�� 49.62�� 3.02 0.39 -

Table 16: Encompassing tests for various measures of the output gap in the dominant,
congruent in�ation model.

Initially, the gap measures were tested one by one, with the results of the encompassing

tests reported in table 16. For brevity, only the F-test is reported but the encompassing

tests based on Cox (1961), Ericsson (1983) and Sargan (1959) are also checked.92

The results suggest that the in�ation model using the Principal Component of excess

demand does not encompass the models that use MA(32); UC; or xd(goods): It does

remain undominated against models that use �4; HP; CS; and the production function

estimates. It is di¢ cult to draw conclusions from table 16 regarding the �best�measure of

the output gap to use in an in�ation equation because the tests only apply to a comparison

between two individual measures. Instead, we can use the general to speci�c methodology

of PcGets to determine whether a particular measure dominates all other measures of the

output gap. We do this by inserting all of the gap measures into equation (83) and testing

downwards. Obviously a full test would require us to commence the tests with the GUM,

equation (77), but we can assume that we have derived the dominant, congruent in-sample

92The table reports the F-tests in the format:24 M1nM2 A B
A � MA"MB

B MB"MA �

35 :
� and �� denote signi�cance at the 5% and 1% levels respectively.
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model. Given the use of the composite measure in the initial model, which incorporates

all other measures, we would not expect the models to di¤er signi�cantly depending upon

the measure of excess demand used. Two lags of each gap measure were included in order

to check the dynamics.

The speci�c model does �nd a dominant measure of the gap in explaining in�ation.

The xd(goods) measure based on Hendry (2001) was selected, with an impact of 0.343%

on in�ation (s.e.=0.039). This enters signi�cantly with 1 lag. The equation standard error

is 0.632%, which is slightly lower than the model containing the Principal Component gap

measure. All other coe¢ cients are stable, with none changing by more than 1 standard

error. Note that the HP and KS entered with opposing signs (dated t� 2), exactly can-

celling each other out. This analysis exposes the errors in assuming the measures of excess

demand are all measuring the same latent variable and are therefore �substitutes�. The

primary concern with the di¤erent gap measures is in the varying size of the impact upon

in�ation. However, in general we can conclude that the impact of the gap is substantial

and highly signi�cant.

5.3 A �Business Cycle�Factor

Using the principal component techniques outlined in Chapter 4.3, we can estimate a

composite measure of the business cycle. As in�ationary pressures arise via many di¤erent

channels which can be captured in terms of �gaps�measuring excess demand or supply in

di¤erent markets, numerous data series give information regarding the business cycle. If

in�ation is thought to be driven by a general business cycle factor it may be possible

to explain in�ation by a linear combination of these gaps which should capture all the

business cycle characteristics of the data. If, on the other hand, di¤erent gap measures
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have di¤ering impacts on in�ation, information may well be lost by looking at a general

business cycle explanation of in�ation.

On a note of caution, the maximum variance component need not be a good measure

of the business cycle and there is no underlying theory outlining why the leading PCs

accurately measure the business cycle. Hence, interpretation of PCs is di¢ cult. One

potential product of research into gaps is to construct a dating of cycles similar to that of

the National Bureau of Economic Research. The PCs may be informative in dating cycles

if they have explanatory power.

The theoretical underpinnings of the principal components analysis lie in the decision

as to which variables should be included. Stock and Watson (1998) adopt a very general

approach whereby they include 216 variables in the analysis. As the main aim of our

analysis is to detect a general structure in the combined variables, a much smaller subset

of data is used in order to avoid cluttering with irrelevant variables that may pick up

spurious correlations.

Table 17 reports the estimated eigenvalues for the �rst 7 PCs based on the variables:

ppi; wpi; c�; oil; rent; nd; import; ur; Rs; Rl; m4; reer; assets; xd(u) and xd(pc): Both

levels and �rst di¤erences were included in order to detect trend and cycle components.93

The variables included were scaled in order to avoid the series with the greatest amplitude

in cycle exerting too much pressure on the PC. The normalized variable is given as x�i =

(xi��xi)
�xi

: 14 out of the 29 PCs are required to obtain a 95% level of signi�cance. By the

Kaiser criterion 7 would be retained and the Scree test suggests that 6 or 7 components

should be retained. The factor loadings for the �rst 7 components are reported in Appendix

93The �rst di¤erence of both housing rent and national debt were excluded from the principal component
analysis. As the levels of these variables are so smooth, the di¤erences are very small and this adversely
biases the components. Also, pt�1 and �pt�1 are excluded to avoid biasing the results.
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Eigenvalues Cumulative %
PC1 8.994 32.12
PC2 4.250 47.30
PC3 2.877 57.58
PC4 2.647 67.03
PC5 1.718 73.16
PC6 1.374 78.07
PC7 1.216 82.42

Table 17: Estimated eigenvalues for the �rst seven principal components for in�ation.
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Figure 14: Leading 4 principal components for quarterly in�ation.

6.

Figure 14 records the �rst 4 PCs, scaled by the price level for PC1 and quarterly

in�ation for PC2, PC3 and PC4. The �rst component is picking up the trend in the

price level, although it is much more volatile. The second component matches in�ation

reasonably well (correlation = 0.67). The third and fourth components tend to be picking

up innovations in the data.

We can estimate a model of in�ation based on these PCs. A general to speci�c mod-

elling strategy was used by including the �rst 7 PCs with 4 lags of each, along with lags
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of the dependent variable. The model was the tested down using PcGets to determine

the speci�c model, excluding insigni�cant variables and imposing the restriction that the

�rst component enters in di¤erences as opposed to levels. The resulting model is given in

equation (84).

�pt = 0:009
(8:12)

+ 0:322
(5:59)

�pt�2 + 2:489
(21:0)

�PC1;t + 2:583
(7:37)

�PC1;t�1

+1:385
(11:3)

PC2;t � 1:236
(�9:14)

PC2;t�1 + 0:184
(4:21)

PC3;t � 0:361
(�5:05)

PC4;t

+0:234
(3:32)

PC4;t�1 + 0:343
(4:91)

PC4;t�2 � 0:278
(�3:77)

PC5;t + 0:432
(6:62)

PC5;t�2

�0:353
(�4:78)

PC6;t + 0:219
(3:30)

PC6;t�1 � 0:031
(�4:45)

D73q2

R2 = 0:828 b� = 0:642% SC = �9:694 FAR(5; 125) = 1:703

�2N(2) = 8:672� FARCH(4; 122) = 0:411 FRESET (1; 129) = 1:496

FH(27; 102) = 1:151 FCHOW (18; 112) = 0:709 T = 1966q2� 2002q2: (84)

The model provides a good �t with a residual standard error of 0.642%, which is

comparable to equation (83). The model does fail normality at the 5% signi�cance level,

even when the 1973q2 impulse dummy is included. Further restrictions could not be

imposed. The model diagnostics are recorded in �gure ?? and the recursive coe¢ cients

are stable.94 Whilst the composite measures do explain in�ation well, the inability to

interpret the model implies that the model is of limited value to policy-makers. Stock and

Watson (1999a) argue that the model�s use lies in forecasting.

We can examine the impact of the PCs by adding them into the congruent in�ation

model, equation (83), to see if they explain in�ation by negating the exogenous variables.

94Graphs of the recursive coe¢ cients are available upon request. The model passed all constancy tests.
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The model is given as:

�pt = 0:011
(12:2)

+ 0:071
(2:76)

�rentt�4 + 0:145
(4:50)

�c�t�3 + 0:236
(5:59)

xd(pc)t�1

�0:159
(�6:17)

xd(u)t�2 � 0:100
(�4:64)

��t�1 � 0:381
(�4:53)

(rrsq � rrlq + 0:002)t�2

�0:034
(�5:63)

D73q2 + 0:019
(3:12)

D79q3 + 0:462
(2:33)

�PC1;t + 0:619
(4:98)

PC2;t

�0:358
(�3:27)

PC2;t�1 + 0:179
(5:16)

PC3;t + 0:111
(2:46)

PC5;t�1

R2 = 0:878 b� = 0:540% SC = �10:063 FAR(5; 125) = 0:686

�2N(2) = 0:244 FARCH(4; 122) = 0:192 FRESET (1; 129) = 1:382

FH(24; 105) = 0:789 FCHOW (18; 113) = 0:843 T = 1966q3� 2002q2: (85)

The model passes all diagnostics and represents an improvement in �t from equation

(83), with a residual standard error of 0.54% as opposed to 0.64%. Thus, the PCs are

capturing important information, but not to the extent that they can represent in�ation

alone. The lagged dependent variable is insigni�cant, suggesting that there is no in�ation

persistence but that any observed persistence is actually proxying the long-run determi-

nants of in�ation captured by the mark-up and the PCs, which contain many input price

levels. Also, the growth rate of broad money is negligible once the PCs enter the model.

Their presence does impact upon the coe¢ cients, although whilst most do not change by

more than 2 standard errors the constant increases by 4 standard errors to 0.011. The im-

pact of excess demand for goods is reduced but the PCs are probably also capturing these

pressures. It is very di¢ cult to interpret any of the coe¢ cients because of the lack of inter-

pretability of the components, which are likely to be picking up e¤ects from many causes

of in�ation. The PCs do not negate the dummies, suggesting that these are modelling

e¤ects that are not captured by the economic variables included.

Again, the model should be tested down from the GUM by including all variables
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and the PCs to derive the congruent in�ation model. This is because the relationships

between variables may change when the PCs enter the model. To ensure equation (85) is

the dominant model, the selection was checked by PcGets and the same model was chosen

using 1% signi�cance levels. The evidence does suggest that whilst this data reduction

method does capture useful information, it cannot substitute well speci�ed reduced form

equations which attempt to model all signi�cant theories of in�ation. The single-cause

explanation of in�ation, in this case represented by what we term general �business cycle

characteristics�, is again refuted. The problems of a lack of interpretability and non-

robustness to changes in the information set considerably hinder the use of principal

component methods.
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6 Forecasting In�ation

The move towards an in�ation targeting regime in the UK has put pressure on in�ation

forecasting models to deliver timely, unbiased and e¢ cient forecasts of future in�ation.

Many current forecasting models fall short of meeting such criteria. The recent in�ation

forecasts by the Bank of England have contained an upward bias over the last two years,

with wide error margins that increase quickly over the forecast horizon.95 This chapter as-

sesses a variety of forecasting models over the 1998-2002 horizon in an attempt to improve

upon current forecasts and to explain why the current forecasts have performed badly.

The role of the output gap is vital in in�ation models and its presence in the forecasting

models highlights the need for accurate current-dated estimates of the gap. The previous

analysis exposes the failure of many gap measures at the end-point and this exacerbates

forecast uncertainty. Robust measures of excess demand that are not subject to substantial

ex post revisions are essential in models used to forecast in�ation.

In a non-stationary and evolving climate, simple naive forecasting devices often out-

perform causal models. The random walk model has been seen to win forecasting com-

petitions, even when pitted against dominant congruent in-sample models. Clements and

Hendry (1999) develop a theory of forecasting that exposes the fundamental source of

forecast failure as being location shifts and this provides the reasoning as to why naive

devices which track the actual series perform well. In contrast to this theory, Stock and

Watson (1999a) develop an entirely disparate approach in the form of factor analysis.

They argue that thousands of economic time series contain information regarding future

95See Balakrishnan and Lopez-Salido (2002) for a critique of current forecasting models. For an empirical
summary, Canova (2001) reports forecasting results for a variety of models designed to forecast 4 quarter
ahead in�ation for the UK.
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in�ation. By reducing this entire information set into a small number of estimated factors

used to forecast in�ation, the forecast estimates should improve.

The forecasting models examined include:

1. Random Walk [RW]

2. Univariate Unobserved Components model [UC]

3. EqCM based on a mark-up model of in�ation [Model A]

4. EqCM excluding volatile variables [Model B]

5. Di¤erenced EqCM [Model C]

6. Phillips Curve model [Phillips]

7. Principal Components model [PC]

8. The average forecast [Average]

9. The average forecast excluding the UC model [Ave ex.(UC)]96

The forecasting theory of the models used is outlined in Section 6.1, followed by fore-

casts based on models 1-9 along with the corresponding equations in Section 6.2.

6.1 Forecasting Methods

Estimating a model over t = 1; :::; T , with a forecast horizon of t = T + 1; :::; T +H; the

forecast in T + h is given in equation (86), where IT is the information set at time T , �T

is the set of estimated model parameters at time T and the forecast is a function h steps

ahead,  h. The resulting forecast error in period T + h is given in equation (87).

byT+hjT =  h

�
IT ;b�T� (86)

eT+hjt = yT+hjT � byT+hjT (87)

If yt = � (xt) ; where xT is a vector of variables de�ned in the GUM, we can write the

linear model as yt = x0t�+ut: The one step estimator is de�ned by:

b� = argmin
�

XT

t=1
(yt � x0t�) (yt � x0t�)

0
; (88)

96As there is no iterated 1-step forecast for the UC model, the results of the full average are biased in
favour of the direct 4-step forecasts. Hence, the average excluding the UC forecast is a more appropriate
comparison for the 4-step forecasts.
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Equation (89) shows that the forecasts are conditionally unbiased, and the variance of the

forecast error is given in equation (90).

E [eT+hjyT ] = E
h
x0T+h� + uT+h � x0T+hb�i = x0T+h �� � b��+ uT+h = 0; (89)

V [eT+hjyT ] = E
�
(eT+hjyT )2

�
= E

��
x0T+h

�
� � b���2 + u2T+h

�
= �2ux

0
T+h (X

0X)
�1
xT+h + �2u: (90)

In order to compare the accuracy of forecasts we shall examine the bias and e¢ ciency

(captured by the mean absolute error) of the forecasts derived from each model. Combining

these criteria leads to the mean square forecast error (MSFE), which is reported in table

18 as its root (RMSE).

MAE = E
���eT+hjT ��� : (91)

MSFE � E
�
eT+hjT e

0
T+hjT

�
= V

�
eT+hjT

�
+ E

�
eT+hjT

�
E
�
eT+hjT

�
: (92)

As forecast accuracy rankings can change as the forecast horizon changes (based on

MSFE), multi-step forecasts are also examined. Whilst multi-step forecasts will not be

immune from structural breaks, they may capture long memory e¤ects not contained in

the 1-step forecasts. In order to forecast more then one step ahead in a single equation

framework either an �iterated�1-step estimator or a direct h-step estimator can be used.

The iterated 1-step forecast is most common, de�ned as:byT+h = x0T �̂
h
; (93)

E [(yT+h � byT+h) jyT ] = �
�h � E

h
�̂
h
i�
yT : (94)

Equation (94) gives the average conditional error. It is assumed that the estimators

and the latest observations are approximately independent.

The direct h-step estimator is non-recursive in that all information needed to derive

a h-step forecast is available at time T . The forecast is obtained by regressing yT on the
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regressors lagged h periods. The estimator is given as:

e�h = argmin
�h

XT

t=h

�
yt � x0t�h�h

� �
yt � x0t�h�h

�0
: (95)

Hence, in comparison to equations (93) and (94) the forecasts and average conditional

errors are given as: eyT+h = x0T
e�h; (96)

E [(yT+h � eyT+h) jyT ] = �
�h � E

he�hi� yT : (97)

The relative forecast accuracy of the two multi-step forecasts depends upon the accu-

racy of the estimators, b�h and e�h: Chevillon (2002) �nds that the iterated 1-step forecasts
are preferable when the model is well speci�ed for both stationary and I(1) processes.

However, in the case of a mis-speci�ed model for a non-stationary DGP, or if negative

residual serial correlation or deterministic shocks are unaccounted for, direct multi-step

estimation may lead to more accurate forecasts. The key factor is the size of the drift. As

this gets bigger, the bene�ts of the direct multi-step forecasts outweigh the iterated 1-step

procedure.

Hendry and Clements (1999) show that congruent causal models that perform well in-

sample often forecast poorly due to their adaptability to structural breaks. The success of

the double di¤erenced forecast is understood in this context.97 As di¤erencing lowers the

97For example, examining a mean shift from 0 to 1 at time � in a simple model:

yt = �1 (1� 1�T ) + �21�T + ut;

where 1�� is an indicator variable de�ned as 1
�
�+j = 1 for t 2 [� ; � + j] and 0 otherwise. Taking �rst

di¤erences:

�yt = �1�(1� 1�T ) + �2�1�T +�ut
= (�2 � �1) 1�T +�ut:

Thus, by di¤erencing, the expected level of y shifts from �1 to �2 but there is only a non-zero blip of
(�2 � �1) at time � .
We can see that the forecasts are robust to the shifts by looking at the 1-step forecasts, byt+1jt =c�yt+1jt + bytjt; but bytjt � yt: Therefore, for t � � , E

�byt+1jt� = �2 = E
�
yt+1jt

�
as E

hc�yt+1jti = 0: Hence,
the forecast is unbiased.
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Figure 15: Location shifts and broken trends.

degree of the polynomial in time we can eliminate shifts in trend and location shifts, re-

ducing them to impulses and blips. If we think of 3 degrees of break, from an impulse error

to a location shift and then to a break in trend, �gure 15 shows the impact of di¤erencing

immediately. An impulse error will become a blip when di¤erenced once, a location shift

will become an impulse and a trend break will become a level shift. Di¤erencing again

will reduce the location shift to a blip and the trend break to an impulse. The process of

second di¤erencing e¤ectively removes two unit roots, intercepts and linear trends and so

the double di¤erenced model is robust to all of these breaks. After 1 period the forecast

will be back on track.

Other methods of robustifying the forecasts include intercept corrections, di¤erencing

the equilibrium correction mechanism and the use of composite leading indicators.98 In-

tercept corrections are adjustments made at the forecast origin, primarily in an attempt

98Emerson and Hendry (1996) �nd that composite leading indicators do not forecast well in comparison
to robust forecasting devices. Also see Camba-Mendez et al. (2001).
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to o¤set structural breaks. If there is deterministic shift prior to the forecast origin, an

intercept correction can reduce the bias of the forecasts. However, there is a trade-o¤ in

terms of increased forecast error variance and so their application in a stable, unchanged

process may lead to a reduction in accuracy as measured by the MSFE. The forecast error

variance will depend upon what type of intercept correction strategy is used. There is no

evidence of a large structural break in the run up to the forecast horizon 1998q1-2002q2

and hence intercept corrections were not applied.99

Another adaptive device that may be used is di¤erencing the EqCM. The reasoning

behind the method is that shifts in the mean are the most problematic for forecasting.

If there occurs a shift in the equilibrium mean that is unaccounted for, forecasts will be

adjusting to the old mean and will therefore be o¤ target for the entire adjustment period.

De�ning a VAR(1) as yt = � +�yt�1 + �t; which implies the VEqCM in deviations from

means is given as:
(�yt � 
) = � (�0yt�1 � �) + �t; (98)

where the unconditional growth rate of y is E [�yt] = 
 and the long-run solution is

E [�0yt] = �: Di¤erencing equation (98) leads to:

�yt = �yt�1 +��
0�yt�1 +��t = (I+��

0)�yt�1 + �t; (99)

which is the 1st di¤erence of the initial VAR with the rank restrictions from cointegration

imposed. Alternatively, writing equation (99) as:

�2yt = ��
0�yt�1 + �t (100)

shows that the double di¤erenced VAR can be augmented by ��0�yt�1. As the forecast

99We do apply intercept corrections to models A, B, C and the PC model but no substantial gain is
obtained in MSFE. However, the increase in uncertainty does not adversely a¤ect the intercept corrected
forecasts noticeably either. This is because the corrections imposed are small due to the stability of the
period.
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di¤erences the mean, a shift in � will imply the forecast will fail in the next period but

will then correct as �� = 0 in the following period. Hence, as in the case of the RW, a

di¤erenced EqCM will robustify forecasts to deterministic shifts. On a note of caution,

unnecessary di¤erencing will lead to increased uncertainty which may increase the MSFE.

In order to apply this procedure to the iterated 1-step forecast, we can de�ne the

VAR(1) for the 4-step forecast as:

yt =

3X
i=0

�i� +�4yt�1 + ut

=
3X
i=0

(I+��0)
i
(
 ���) + (I+��0)4 yt�1 + ut

= 4
 �
h
I+ (I+��0) + (I+��0)

2
+ (I+��0)

3
i
��+ (I+��0)

4
yt�1 + ut

= 4
 ��
h
4I+ 6�0�+ 4 (�0�)

2
+ (�0�)

3
i
�

+�
h
4I+ 6 (�0�) + 4 (�0�)

2
+ (�0�)

3
i
�0yt�4 + yt�4 + ut

= 4
 +�
h
4I+ 6 (�0�) + 4 (�0�)

2
+ (�0�)

3
i
(�0yt�4 � �) + yt�4 + ut; (101)

as:
h
I+ (I+��0) + (I+��0)

2
+ (I+��0)

3
i
�

= �
h
4I+ 6�0�+ 4 (�0�)

2
+ (�0�)

3
i

If we de�ne �0� = � as the r � r matrix of �roots�, which should be negative and

relatively small, causing powers to vanish and squares to o¤set levels, we can derive the

multi-step equation for the VEqCM, which is equivalent to equation (98) as:

�4yt = 4
 +�
�
4I+ 6�+ 4�2 +�3

�
(�0yt�4 � �) + ut

= 4
 +�� (�0yt�4 � �) + ut: (102)

Taking di¤erences of equation (102) gives:

�4yt = (I+�
��0)�4yt�4 +�4ut; (103)
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which is equivalent to equation (99). Hence, the multi-step di¤erenced EqCM forecasts

will also be robust to deterministic shifts.

An alternative to theory based forecasting models or causal models are data-driven

models. Stock and Watson (1999a) �nd that Principal Components models can often

improve on the forecasting performance of benchmark models such as Phillips curve models

or VARs. Bernanke and Boivin (2001) argue that factor models have the advantage of

o¤ering a framework for analyzing data that is clearly speci�ed and statistically rigorous,

but that remains agnostic about the structure of the economy.

Following Stock and Watson (1998), if yt is the scalar variable that is being forecasted

and zt is an N-dimensional matrix of predictors (both written as deviations from means),

we can express (zt; yt+1) in a dynamic factor model representation with r common dynamic

factors, ft: zi;t = �i (L) ft + "i;t; (104)

yt+1 = � (L) ft + �t+1; (105)

where the disturbances are given by "t = ("1;t; :::; "N;t)
0. �t+1 is assumed to be a ho-

moskedastic martingale di¤erence sequence with respect to Ft where Ft = (zt; ft; �t; zt�1; ft�1; �t�1; :::);

and so E (�t+1jFt) = 0 and E
�
�2t+1jFt

�
= �2� : �i (L) and � (L) are �nite order lag polyno-

mials. We can rewrite equations (104) and (105) as:
zt = �F

0
t + "t; (106)

yt+1 = �0F 0t + �t+1; (107)

which is the static form, where F 0t = (ft; :::; ft�q) is an r� 1 vector [r = (q + 1) r] ; the ith

row of � = (�i;0; :::; �i;q) and � = (�0; :::; �q): The static factor model that we work with

arises when F 0t and "j;t are mutually uncorrelated and i.i.d. and E("i;t; "j;t) = 0;8i 6= j.

The factors estimated by Principal Components analysis are consistent as N ! 1 with
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a �xed T in a static factor model.100 This is proved by Schneeweiss and Mathes (1995)

when E (ztz0t), � and E ("t"
0
t) are known.

If It�1 is the full information set in equation (86), the causal model will use a reduced

information set, Jt�1; where Jt�1 � It�1;8t: The PC methodology aims to expand Jt�1

to be as large a subset of It�1 as possible, with Jt�1 = It�1 being optimal. However,

Hendry (2003) shows that incomplete information about the causal factors is not by itself

problematic. The forecast may be less accurate but it will be unbiased. If the process to

be predicted is:

yt = ft (It�1) + �t; where Et [�tjIt�1] = 0; (108)

Et [ytjJt�1] = Et [ft (It�1) jJt�1] = gt (Jt�1) : (109)

If we de�ne et = yt�gt (Jt�1) ; then Et [etjJt�1] = 0; so that et is a mean innovation with

respect to Jt�1: But taking expectations conditional on the full information set implies:

Et [etjIt�1] = ft (It�1)� Et [gt (Jt�1) jIt�1] = ft (It�1)� gt (Jt�1) 6= 0: (110)

Thus Vt [et] > Vt [�t] so the forecasts are less e¢ cient but are still unbiased.

The Unobserved Components model provides another benchmark forecast. Using the

SSF framework outlined in Appendix 2, the forecast of the state vector, �; h steps ahead

and the MSFE matrix are de�ned as:baT+hjT = E (�T+hjYT ) ; (111)

�2bPT+hjT = MSE (�T+hjYT ) : (112)

100See Connor and Korajczyk, (1993) for a more detailed discussion.
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The forecasts and MSFE matrix are generated recursively by:

baT+hjT = TbaT+h�1jT +W�
T+h

e�x; (113)

b�2bPT+hjT = b�2 �TbPT+h�1jTT0 +HH0
�
; (114)

and hence the resulting forecasts and MSFE matrices are given by:

byT+hjT = ZbaT+hjT +X�
T+h

e�x; (115)

b�2bFT+hjT = b�2 �ZPT+hjTZ0 +GG0� : (116)

The h-step forecasts are direct forecasts based on E(yT+hjyT ) and the hyperparameters

are not re-estimated at each h, i.e. the trend and cycle forecast estimates will be based

upon estimation of the hyperparameters at T . Iterated 1-step forecasts cannot be obtained

from this framework.

The �nal forecast statistics reported are for the average forecast. Pooling of forecasts

can improve forecasting accuracy immensely. This is because di¤erent forecasting models

are likely to be a¤ected by di¤erent breaks and averaging over them may lead to a more

robust forecast. Also, if di¤erent forecasts are biased in di¤erent directions, the average

should provide a more accurate forecast. We �nd the average does perform well.

6.2 Forecasts

The models were estimated over the period 1966q3-1997q4 and evaluated for forecasting

performance over the period 1998q1-2002q2. This analysis looks at the 1-step and 4-step

forecasts (both iterated and direct) over 18 quarters. Quarterly in�ation in the implicit

GDP de�ator is examined and the performance is judged on MSFE. The forecast period

is relatively stable, with a mean of 0.62% and a maximum range of 1.3%. Table 18 reports
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1-step Iterated 1-step (h=4) Direct 4-step
Model Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE
RW -0.018 0.432 0.606 -0.049 0.298 0.404 -0.049 0.298 0.404
UC 0.036 0.361 0.477 - - - 0.454 0.475 0.490
Model A -0.441 0.638 0.779 -0.544 0.702 0.847 -0.748 0.763 0.857
Model B -0.044 0.500 0.614 -0.102 0.446 0.555 0.169 0.480 0.594
Model C -0.128 0.450 0.566 -0.192 0.435 0.525 -0.532 0.645 0.719
Phillips -0.017 0.387 0.488 -0.275 0.488 0.556 -0.639 0.706 0.774
PC -0.016 0.496 0.590 -0.028 0.448 0.543 -0.029 0.394 0.486
Average -0.104 0.385 0.468 -0.198 0.378 0.459 -0.196 0.346 0.385
Ave (ex.UC) -0.127 0.400 0.479 -0.198 0.378 0.459 -0.305 0.450 0.492

Table 18: Forecast summary statistics for quarterly in�ation, 1998q1-2002q2.

the summary forecast statistics for models 1-9.101

A random walk, �pt = �pt�h+"t; can be written as a double di¤erenced model, where

E (�2pt) = 0 because the price level does not continuously accelerate. The iterated 1-step

and direct 4-step estimators are identical:

�pT+h = b�h�pT = e�h�pT when � = 1: (117)

Whilst RW performs well when there are large deterministic shifts, its success in quiet

periods is also intuitive. Since the forecast period captures a period of in�ation targeting

during which the Central Bank has the speci�c remit of providing low and stable in�ation,

we have observed relatively constant in�ation at approximately 2.5%pa. A RW that tracks

in�ation by h quarters captures this stability well. Thus, a causal model not only needs

to be robust to structural breaks during turbulent periods but it also needs to avoid being

contaminated by variables that are volatile during in quiet periods.

Surprisingly, the RMSE of the 4-step forecast is lower than that of the 1-step. This is

counter-intuitive as the 4-step forecast error is an accumulation of errors:

�pT+4 = �pT implies that eT+4jT =
4X
i=1

"T+i: (118)

101All statistics are multiplied by 100.
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Hence, MFSE
�c�pT+4� � MFSE

�c�pT+1� requires P4
i=1 "T+i � "T+1: As in�ation

�uctuates above and below a constant mean over the sample period, the errors tend to

cancel each other out over the 4 quarter horizon, resulting in a lower RMSE than the 1-

step. The 4-step forecasts pass through the short-run �uctuations, increasing the e¢ ciency

of the forecasts. The model provides a tough benchmark against which to assess other

forecasting models.

The second benchmark model is the Unobserved Components model based upon equa-

tions (24), (25), (26) and (27). The resulting model can be summarized by the parameters

(variance parameters are multiplied by 10�5):

�2� = 0 (restricted); �2� = 0:118; �
2
� = 12:02;

� = 0:922;
2�

�c
= 18:71; �2" = 0:00; b� = 1:36%;

LL = 521:595; QBL(10; 6) = 31:413
��; �2DH (2) = 22:299

�� (119)

Whilst the model is not a good �t based on the diagnostics, the forecasts perform very

well. The trend and cycle components are both stable over the forecast period, implying

that the forecasts smooth through the quarterly �uctuations giving a similar �t to a moving

average with a lag and lead of 2. The forecasts are very close to the average in�ation rate

over the period.102 However, the forecasts do not perform as well during volatile periods

because of their �smoothing�properties. Forecasting in�ation over 18 quarters following

the 1979 oil shock gave rise to systematic overpredictions of in�ation for the entire period

as the model could not distinguish between a temporary shock and a location shift.

Models A, B and C are the causal model and variants thereof based on equation (77).

The models are reported in table 19. In order to forecast over the period 1998q1-2002q2,

102The average forecast for the UC model is 0.58%, compared to an actual average over the 18 quarters
of 0.62%.
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Regressor Model A Model B Model C
constant 0.004 (3.73) 0.002 (1.16)
�pt�2 0.228 (3.22) 0.422 (5.66) 0.383 (4.69)
xd(pc)t�1 0.364 (8.40) 0.332 (7.12) 0.256 (4.89)
xd(u)t�2 -0.272 (-8.64) -0.177 (-5.69) -0.186 (-5.78)
(c� � p)t�1 0.061 (3.94) 0.059 (3.22) [�t�1] 0.078 (1.39)
(oil � p)t�1 0.008 (6.33) [�t�1] 0.004 (0.94)
�c�t�3 0.157 (3.93) 0.198 (4.39) 0.220 (4.54)
�rentt�4 0.129 (4.14) 0.174 (5.14) 0.189 (5.15)
�ppit�2 0.102 (2.28) 0.087 (1.95) 0.072 (1.871)
(rrsq � rrlq + �)t�2 -0.124 (-1.99) -0.157 (-1.97)
(reer + �)t�5 -0.024 (-2.08) [�t�5] -0.020 (-0.947)
�m4t�5 0.087 (2.83) 0.109 (3.15)
D73q2 -0.040 (-5.82) -0.034 (-4.94) -0.053 (-5.95)
D79q1 0.027 (4.10) 0.022 (3.37) 0.034 (3.96)b� 0.649% 0.766% 0.788%
FAR (5,108) = 0.812 (5,110) = 1.029 (5,108) = 0.221
FARCH (4,105) = 0.725 (4,107) = 4.704�� (4,105) = 2.029
�2N(2) 0.282 2.484 0.228
FHET (22,90) = 1.209 (18,96) = 1.344 (22,90) = 1.815�

FRESET (1,112) = 0.500 (1,114) = 0.100 (1,112) = 0.800

Table 19: In-sample forecasting equations.

the dominant model needs to be estimated over the in-sample period (as opposed to the

in�ation model derived in Chapter 5), or we would bias our results by using information

known during the forecast period to derive the best model. Given the parameter stability

of our in�ation model we would not expect the congruent dominant in-sample model to

di¤er too much. We again use a general to speci�c methodology.

Whilst Model A provides a good in-sample �t and passes all diagnostics, it has a

large RMSE and is easily beaten by the 2 benchmark models over both the 1 and 4-step

forecasts. Figure ?? records the model �t in panel a, with the 1-step forecasts, iterated

1-step forecasts and direct 4-step forecasts in panels b-d. The model appears to deliver

autocorrelated 1-step and iterated 1-step forecast errors, with a period of underprediction

in 1998q3-1999q3 followed by a period of overprediction. The forecast failure in this

structural model is likely to be due to breaks in the regressors over the forecast horizon. If
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the sample is extended to include the forecast horizon, the resulting residuals are smaller

than the forecast errors, implying that variables that break need not lead to poor in-sample

model speci�cation but do reduce forecasting ability. This emphasizes the fact that the

dominant congruent in-sample model will not necessarily produce the best out-of-sample

forecast.

The overprediction is suspected to be driven by oil prices. The petroleum spot price

more than doubled from 1999q1 to 2000q2, which is picked up by the 1-step and iterated

1-step forecasts. The impact of oil was large in the 1970s, and (oil � p) enters the model

highly signi�cantly although with a small coe¢ cient. However, if the economy has be-

come more robust to shifts in the oil price since the 1970s, we would expect the impact

upon in�ation to be reduced. This can be justi�ed by the reduction in the size of the

manufacturing sector, with the service sector not being as susceptible to oil price changes.

Hence, the impact of the substantial swings in the oil price in recent periods is likely to be

overestimated. The non-recursive direct forecasts do not pick up the oil price shock but

the forecasts are systematically higher than in�ation by 0.75% on average.

In an attempt to reduce the model�s susceptibility to variables that break, Model

B excludes oil prices, interest rates (which have the property of breaking when policy-

makers adjust the base rate and are therefore prone to location shifts) and exchange rates.

The model �t and forecasts are recorded in �gure ?? (graphs correspond to panels as in

�gure ??). The overprediction of the forecasts from 1999q3-2001q4 is eliminated, vastly

improving the RMSE. This does suggest that oil was driving the overprediction in the

causal model. Note that the 1-step forecasts still �uctuate substantially. An improvement

is obtained by forecasting over the longer 4 period horizon.

Model C attempts to robustify model A by di¤erencing the equilibrium correction
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terms. Instead of imposing the cointegrating vector as in equation (99), a more general

model is estimated by di¤erencing (c� � p) ; (oil � p) and (reer + 0:02), i.e. the estimated

coe¢ cients from Model A are not imposed.103 The resulting model excluded the growth

rate of money as this was insigni�cant. The forecasts are recorded in �gure ??. The

results suggest that some improvement can be gained from di¤erencing the EqCM, but

as the forecast period is stable (other than for oil) the bene�ts of the procedure are not

substantial. The direct 4-step forecasts do not improve with the di¤erenced EqCM.

Despite the controversy surrounding the Phillips curve, the model has been successful

in forecasting in�ation over the short-run. However, over the latter part of the 1990s, low

and falling in�ation has been observed with low and falling unemployment. This has led

to numerous papers asking whether the short-run Phillips curve has broken down.104 The

Phillips curve model forecasts are based upon an Expectations Augmented Phillips Curve:

�pt = �pt�1 + � (yt � y�t ) + "t, but is augmented with more complex dynamics:

�pt = 0:003
(2:01)

+ 0:331
(3:80)

�pt�1 + 0:248
(2:78)

�pt�2 + 0:238
(2:74)

�pt�2 + 0:237
(3:97)

xd(pc)t�5

R2 = 0:572 b� = 0:999% SC = �9:971 FAR(5; 116) = 0:841

�2N(2) = 5:959� FARCH(4; 113) = 0:826 FRESET (1; 120) = 0:337

FH(8; 112) = 0:720 FCHOW (18; 121) = 0:234 T = 1966q3� 1997q4: (120)

Whilst theoretical models assume a contemporaneous relationship between the output

103Solving for the static long-run solution of Model A results in pt � 0:66c�t � 0:26wpt � 0:08oilt: The
cointegrating vector can then be di¤erenced and estimated imposing the coe¢ cient of

�
I + ��0

�
using the

constrained simultaneous equations model in PcGive. As the model is not as �exible as Model C in the
above analysis, Model C was preferred. Also, as the coe¢ cient on c�t seems rather low in Model A, the
cointegrating vector was not imposed.
104Atkeson and Ohanian (2001) argue that, similar to its long-run predecessor, the short-run Phillips
curve does not represent a stable empirical relationship that can be exploited for the purpose of con-
structing reliable in�ation forecasts. Fisher, Liu, and Zhou (2002) �nd that naive in�ation forecasts
outperform Phillips curve forecasts. Also, Brayton et al. (1999) show that the standard Phillips curve
model consistently overpredicted in�ation during the late 1990s,
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gap and in�ation, it takes time for excess demand pressures to feed through, with the most

signi�cant e¤ect in the Phillips curve model impacting with a 5 quarter lag. This di¤ers to

the full in�ation model where excess demand enters with a 1 quarter lag. Also, the impact

of gap on in�ation is estimated to be smaller at 24% in the Phillips curve model. Note that

the unemployment gap was also tried. Whilst the model provides a poor in-sample �t,

with a residual standard error of 1%, the 1-step forecasts perform well. However, there is a

clear upward bias in the 4-step forecasts, reducing their accuracy considerably. Applying

an intercept correction to the iterated 1-step forecast and the direct 4-step forecast gives

a RMSE of 0.554% and 0.569% respectively. Hence, the reduced e¢ ciency from applying

the correction adversely a¤ects the iterated 1-step forecast but the correction does improve

the direct 4-step forecast.

The �nal model examined is the Principal Components model. The dominant in-sample

model is given as:

�pt = 0:005
(4:11)

+ 0:436
(6:48)

�pt�1 + 0:160
(2:55)

�pt�2 + 4:442
(8:35)

�PC1;t

+1:956
(9:07)

�PC2;t + 0:147
(3:36)

PC3;t � 0:589
(�6:94)

PC4;t + 0:757
(�7:36)

PC4;t�1

�0:525
(�5:64)

PC5;t + 0:617
(6:83)

PC5;t�1 � 0:422
(�5:59)

PC6;t + 0:387
(5:09)

PC6;t�1

R2 = 0:809 b� = 0:688% SC = �9:694 FAR(5; 109) = 3:061
�

�2N(2) = 6:118� FARCH(4; 106) = 2:052 FRESET (1; 113) = 3:159

FH(27; 102) = 1:151 FCHOW (18; 114) = 0:720 T = 1966q3� 1997q4: (121)

The model forecasts surprisingly well, beating model A over both the 1 and 4-step

horizons. Figure ?? records the model and forecasts. As the factors are not robust to

changes in the information set, we cannot conclude that Principal Component models

do perform well in forecasting, but rather that this particular speci�cation of variables
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appears to forecast reasonably accurately for this time horizon. Also, as the period in

question is relatively stable we would expect the model to do well and these results concur

with Stock and Watson�s (1999a) �ndings. However, in more volatile periods it is di¢ cult

to see how the model will be robust to structural breaks. More research is required before

we can conclude that the apparent success of the model is not just spurious for the stable

forecast period examined.

To conclude, it is very di¢ cult to beat benchmark naive forecasting models, not only

during periods when structural breaks are prevalent but also in periods of relative stabil-

ity. Both the RW and UC models produce accurate forecasts despite their simplicity. The

average forecast also performs well, and is the optimal model out of the set examined for

the 1-step forecasts. Whilst the in�ation model derived in Chapter 6 is a congruent, par-

simonious model, the resulting in�ation forecasts (for the in-sample model) have a larger

MSFE than the RW. The reduced form EqCM can be made more robust by excluding or

di¤erencing terms, yielding some improvement. A simple Phillips curve does perform well

despite recent criticism and, whilst the Principal Components model produces reasonably

accurate forecasts, the methodology requires more research before solid conclusions can

be made regarding the model�s forecast ability.

This analysis has emphasized that the dominant in-sample model need not be the

best forecasting model. What serves as a good forecasting model is one in which the

variables are insulated from breaks and where the model can recognize periods of stability.

A balance is needed as there is a trade-o¤ in terms of a wider information set increasing

the e¢ ciency of estimates for full structural models against the insulation from breaks

and hence reduced bias contained in naive devices. For multi-step forecasting in a single

equation framework, iterated 1-step forecasts are found to perform better than direct
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4-step forecasts in all cases apart from the Principal Components model. This accords

with Chevillon (2002) who �nds that the iterated 1-step forecasts are more accurate when

there is no drift term, which is the case for in�ation over the forecast period examined.

With regard to the implications for the measurement of excess demand, in order to derive

forecasts that can beat naive forecasting devices the output gap needs to be robust at the

end-of sample. Forecast uncertainty will be exacerbated by gap estimates that contain

end-point bias, reducing a causal model�s ability to beat simple devices.
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7 Conclusion

This thesis assesses a wide variety of both univariate and multivariate approaches in

common use for estimating the output gap. There has been a proliferation of techniques

employed for measuring the output gap. The current literature is torn between the agnostic

view that estimates of the gap should be based on models where the data �speaks for

itself�and theory driven models in which theoretical priors regarding what excess demand

should look like shape the estimates of the output gap. The exposition aims to highlight

the di¤ering hypotheses, both statistical and empirical, employed by the various measures

and to expose some well known pitfalls of the subsequent gaps.

The use of arti�cially generated data in Chapter 3 enables explicit evaluation of the

performance of univariate output gap measures. De�ning the �best�method of estimating

the gap as one that estimates the �true�cycle accurately in a variety of circumstances,

we conclude that none of the univariate methods performed substantially better than any

others. Whilst the broad pro�le of the gap is similar across the range of methods, the mag-

nitude of estimates at a point in time are imprecise, implying that the techniques employed

cannot easily distinguish between shocks to the transitory and permanent components of

output. This suggests augmenting the techniques by information that will improve signal

extraction accuracy.

A production function method of estimating the gap is initially undertaken in a static

and cointegrating framework. The residual estimate of TFP accords with our priors re-

garding this latent variable and the lack of cyclicality suggests that e¤orts to correct for

labour hoarding and capacity utilization are successful. Given the presence of substantial

and systematic measurement error in the capital stock, potential output is then modelled
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as the long-run solution to a dynamic model with a time varying intercept that proxies

TFP. The dynamic model attributes more of the �uctuations in output to changes in

potential output, resulting in a smaller gap.

Whilst the measures of excess demand do di¤er, there is some element of consensus

amongst the various measures. Hence, a composite measure of excess demand is extracted,

based on the reasoning that if all gap estimates measure the true gap with some error,

this should extract the signal relative to the errors. The paper provides a comparison

of various measures in order to derive some stylized facts regarding the business cycle.

The uncertainty in the gap estimates, particularly at the end-point, implies that the gap

is best treated as an indicator of the state of the world rather than an exact measure

of the precise level of the excess demand. Cointegration analysis exposes a lack of full

cointegration, implying that the variety of potential output estimates are driven by more

than one common trend.

An empirical model of post-war quarterly in�ation is developed, with most extant

theories of in�ation playing a role in the explanation. The impact of excess demand is

found to be substantial, but the magnitude of the impact is not robust to the measure of

excess demand used. Moreover, a general �business cycle�explanation of in�ation, based

on principal components analysis is refuted.

Chapter 6 evaluates the forecasting performance of a variety of in�ation models. Full

causal models have di¢ culty in beating benchmark naive forecasting devices, even for the

relatively stable forecast period examined. The average forecast is also found to perform

well. Multi-step forecast are assessed, with iterated 1-step forecasts outperforming direct

4-step forecasts due to the lack of drift in the in�ation rate over the forecast horizon.

The importance of robust estimates of excess demand at the forecast origin is empha-
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sized, exposing the problem of end-of-sample bias associated with many measures. This

highlights a key area of future research. The failure of many excess demand measures is

paramount at the end-point, which is precisely when accurate, unbiased and timely esti-

mates of excess demand are required, both for forecasting and policy-making. The use of

disaggregated data, high frequency data and more timely survey estimates may improve

on current measures.

The thesis assesses the importance of excess demand from a variety of angles. Whilst

the results of the paper may seem pessimistic at �rst sight, its importance lies in exposing

the di¢ culty of measuring excess demand and recognizing its fundamental importance

in empirical research. Although no solution to the measurement problem is o¤ered, the

results hopefully provide a guide as to the most appropriate methods of measuring the

gap depending upon their use and paves the way for future research on measures of excess

demand.
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8 Appendices

Appendix 1: Data De�nitions

(All data are seasonally adjusted)

Yt = Gross Domestic Product at constant 1995 prices, £million. [NS, ABMI]

Pt = Implicit de�ator of Gross Domestic Product (expenditure) at market prices,

(1995=100). [NS, YBGB]

GV At = Gross Value Added at basic prices, constant 1995 prices, £million. [NS,

ABMM]

M4t = Nominal broad money stock, £million. [NS, AUYN]

Rst = Three-month treasury bill rate. [DS, UKGBILL3]

Rlt = Yield on 20-year gilts. [DS, UKGBOND]

REERt =Real E¤ective Exchange Rate based on relative Unit Labour Costs, (1995=100).

[IFS, REUZF...]

Wt = Total compensation of employees, current price, £million. [NS, DTWM]

Zt = Total gross operating surplus, current price, £million. (Seasonally adjusted using

X-11). [NS, ABNF]

WPOPt = Population aged 16-59/64, �000s. [NS, YBTF from 1992. Pre-1992, EPG,

DEG, EG]

EMPt = Total number in employment, aged 16+, �000s. [NS, MGRZ from 1992.

Pre-1992, EPG, DEG, EG]

Ert = EMPt=WPOPt

Ut = WPOPt � EMPt

Urt = Ut=WPOPt

INACTrt = (Economically Inactive population)/(Population) Both for age 16+, �000s

[NS, MGSI/MGSL]

Prt = 1� INACTrt

Lt = WPOPt � Ert � Prt

Ht = Average actual weekly hours of work (all workers in main & 2nd job). [NS,

YBUV from 1992. Pre-1992, EPG, DEG, EG].

OHt = (Weekly overtime hours per operative on overtime � fraction of operatives on
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overtime)/average hours. [EPG, DEG, EG, LMT]

Kt = Net capital stock for the whole economy excluding dwellings sector, £million.

[BoE]

It = Total gross �xed capital formation, constant price, £million. [NS, NPQT]

�INV ENTt = Changes in inventories, constant 1995 prices. [NS, CAFU]

Uc;t = A capacity utilization index based on the CBI index, % working below capacity.

Calculated in appendix 5. [DS, UKCBICAB]

IMPORTt = Implicit price de�ator of imports: (total imports at current prices/total

imports at constant prices). [NS, IKBI/IKBL]

PPIt= Manufacturing output price index, (1995=100) [IFS, 11263...ZF...]

WPIt = Wholesale price index of materials and fuel purchased by manufacturing

industry, (1995=100). [DS, UKPPIMMNF]

Ct = Unit labour cost index for the whole economy, (1995=100). [NS, LNNL]

OILt = Petroleum spot price, sterling. [BoE]

NDt = Public sector net debt, £million. [NS, BKQK]

ASSETt = FTSE all share index/(GV A� P ). [DS, UKSHRPRCF]

RENTt = Actual rentals for housing + Imputed rentals for housing, £million. (Sea-

sonally adjusted using X11). [NS, ADFT+ADFU]

Ds = Impulse Dummy equal to unity in period s only

BDs = Blip dummy equal to 1 in period s and �1 in period s+ 1 only.

Sources: [NS] National Statistics database; [IFS] International Financial Statistics

Database; [BoE] Bank of England; [DS] Datastream; [EPG] Employment and Productiv-

ity Gazette, pre-1971; [DEG] Department of Employment Gazette, 1971-79; [EG] Employ-

ment Gazette, 1980-1995; [LMT] Labour Market Trends, 1996-present. Data source codes

also in brackets.

Appendix 2: SSF and Model Equivalence of BN and UC

The general multivariate framework for structural time series (STS) models is written

in state space form (SSF). Following Koopman et al. (1995), the SSF involves a measure-

ment equation which de�nes the �states�, �t; (equation (122)) and a transition equation
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(equation (123)), which outlines how the states evolve. This is modelled as a VAR(1)

process. The assumptions on the error process and the vector of regressors, b, are given

in equation (124).

yt = Zt�t +Xtb+Gtut (122)

�t+1 = Tt�t +Wtb+Htut (123)

where ut � NID
�
0; �2I

�
; b = c+B�; � � N

�
�; �2�

�
; (124)

for t = 1; :::; T . The initial condition is given as �1 = W0b +H0u0: Zt and Tt are the

�xed state system matrices, Xt andWt are the known regression system matrices and the

error system matrices are given by Gt and Ht; which transform the disturbance, ut; into

noise. The unknown values in these matrices are hyperparameters. The role of b allows

for a very general system, enabling many features of time series models to be treated in a

uniform manner. Equation (122) enables b to impact on the observations directly via the

Xt regressors. The states are also a¤ected directly by b viaWt in equation (123) and the

prior distribution of the initial state is also partly de�ned by b:

The SSF can be simpli�ed for STS models by making the following assumptions.

1. Set c = 0 such that b = B�: The matricesB and � can be partitioned into regression

e¤ects and initial e¤ects.

2. Let G0
tHt = 0 such that Gtut and Htut are independently distributed.

3. Assume a time-invariant SSF, i.e. Zt = Z; Tt = T; Gt = G and Ht = H:

Any STS model can be written in SSF but care should be taken when specifying the

initial state vector. The Kalman Filter (KF) enables the computation of the 1-step pre-

dictions and state vectors, along with the corresponding mean square error, via recursive

estimation. The likelihood function is computed using the 1-step ahead prediction error
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decomposition. The KF that STAMP uses, under the assumption that � = 0; computes:

atjt�1 = E (�tjYt�1; � = 0) ; (125)

�2Ptjt�1 = E
h�
�t � atjt�1

� �
�t � atjt�1

�0 jYt�1; � = 0i : (126)

Equation (125) gives the mean of the state and equation (126) estimates the mean

square error of the state. The corresponding recursive equations of the KF are given by:

vt = yt �Xtb� Zatjt�1;

Ft = ZPtjt�1Z
0 +GG0;

qt = qt�1 + v
0
tF

�1
t vt;

Kt = TPtjt�1Z
0F�1t ;

at+1jt = Tatjt�1 +Wtb+Ktvt;

Pt+1jt = TPtjt�1T
0 �KtFtK

0
t +HH

0;

where a1j0 = W0b; P1j0 = H0H
0
0, q0 = 0; and t = 1; :::; T (127)

Kt is the Kalman gain, vt is the 1-step prediction error and �2Ft is the corresponding

mean square error. The scaled innovations, F
� 1
2

t vt; are approximately NID with zero mean

and variance matrix given by the scale identity matrix in a correctly speci�ed model.

The estimate of �2 is given by b�2 = qT=NT: Ft must be a non-singular positive de�nite

matrix, although if this condition does not hold initially the KF can be initialized until the

condition is reached. If non-stationary components or �xed regression e¤ects are included

in the model, � 6= 0: In this case an augmented KF is applied. The equations in (127)
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remain as they are but are augmented by:

Vt = �XtB� ZAtjt�1;

At+1jt = TAtjt�1 +WtB+KtVt;

(st;St) = (st�1;St�1) +V
0
tF

�1
t (vt;Vt) ;

where A1j0 = W0B: (128)

The 1-step ahead predictions and the MSEs are given by:

batjt�1 = atjt�1 +Atjt�1S
�1
t�1st�1;

�2bPtjt�1 = �2
�
Ptjt�1 +Atjt�1S

�1
t�1A

0
tjt�1

�
: (129)

The estimated �2 is given as b�2 = 1
NT�d�kbqT ; where bqT = qT �s0TS�1T sT and d+k is the

number of columns in B: The full sample estimate of � is given by b� = S�1T sT with a MSE
given byMSE(b�) = �2S�1T : The likelihood is obtained via prediction error decomposition.

See Koopman et al. (1995) and de Jong (1991) for a more detailed analysis.

Having outlined the general SSF model and the KF, we have the apparatus with which

to analyze the di¤erences between the UC and BN decompositions, see Morley et al.

(2002). Basing the analysis on the UC model outlined in Chapter 2.1, equation (24) shall

be restricted by setting "t �NID(0; 0) so there is no irregular component, equation (26) is

restricted by imposing �t �NID(0; 0) so that the trend reduced to a random walk with drift

and the cycle is represented as an ARMA(p; q) process as opposed to the trigonometric

speci�cation given in equation (27):

�p (L) t = �q (L) �t (130)

where �t �NID(0; �2�) and Cov (�t; �t+k) = ��� for k = 0; 0 otherwise. Harvey and Jaeger
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(1993) suggest specifying p = 2: Writing the model in SSF implies that the trend and

cycle are uncorrelated, ��� = 0: The model is estimated using the KF as outlined above.

This model has an equivalent univariate ARIMA representation obtained by substituting

(25) and (130) into (24) and taking �rst di¤erences:

�p (L) (1� L) yt = �p (1) � + �p (L) �t + �q (L) (1� L) �t (131)

= �� + �q� (L)ut; (132)

where ut �NID(0; �2u) and q� = max (p; q + 1).105 Equation (132) is obtained using

Granger�s Lemma. The coe¢ cients of �q� (L) and �2u are derived by matching the au-

tocovariances of equations (131)and (132). The BN trend can be extracted from the Wold

representation of (132).

y
�(BN)
t = y

�(BN)
t�1 + ' (1)ut = ' (1)

tX
j=1

uj (133)

where ' (1) =
��q� (1)

�q(1)
and y�(BN)0 = 0: The variance of the innovation to the BN trend is

' (1)2 �2u: The existence of the BN decomposition guarantees that there will always be at

least one UC representation of any ARIMA process. It will not be a unique representation

because all the parameters may not be identi�ed. The trend process is always identi�ed

but the cycle may not be. Hence, identifying restrictions are required. In general, there

will be at least as many non-zero autocovariance relations as parameters if p � q+2: The

conditional expectation of the trend component, given large h and ergodicity of  t; is:

E [�tj
t] = lim
h!1

E
�
�t +  t+hj
t

�
: (134)

105The two representations have the same autocovariance structure, implying the same joint distribution
of the data under normality.
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Also the expected value of any future innovation in the trend is zero, implying:

E [�tj
t] = lim
h!1

E

"
�t +

hX
j=1

�t+j +  t+hj
t

#
= lim

h!1
E [yt+h � �hj
t] (135)

which is the BN trend, equation (17). The BN trend is the conditional expectation of the

RW component of any UC representation of an I(1) process. The conditional expectations

of the trend and cycle can always be computed from the ARIMA reduced form. Two

assumptions are required to identify the components:

1. The trend is a RW.

2. The cycles are ergodic.

Hence, if the parameters of the reduced form ARIMA are those implied by the UC

model, the KF estimates of the trend and cycle will be identical to the BN estimates.

The di¤erences observed in practice between the two models are due to the restrictions

imposed on the models. The UC model imposes the restriction that the innovations in the

trend and cycle components are uncorrelated, ��� = 0, whereas the BN is unrestricted.

Relaxing this assumption leads to identical decompositions from both methods.

Appendix 3: Results for the UC Model

The unobserved components model is set out in equations (24), (25), (26) and (27),

which comprise the measurement and transition equations. Various restricted versions

of the general model can be obtained by placing restrictions on the variance parameters.

Parameter estimates are reported in table 20, along with the maximized log likelihood

(LL), the Box-Ljung statistic QBL(p; q); and the Doornik Hansen (1994) normality test,

�2DH (2). Variance parameters are multiplied by 10
5: All models fail the normality test,
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Model 1 Model 2 Model 3 Model 4
Unrestricted �2� = 0 �2� = 0 �2� = �2" = 0

�2� 7.61 7.61 0(restricted) 0(restricted)
�2� 0.00 0(restricted) 0.00 0.00
�2� 0.00 0.00 6.87 8.50
� 1 1 0.96 0.95
2�
�c

21.11 21.11 53.06 60.53
�2" 0.69 0.69 0.76 0(restricted)
LL 685.274 685.274 684.295 683.674
QBL(p; q) 13.508 13.508 13.801 16.069
�2DH (2) 39.809�� 39.809�� 41.344�� 41.650��

Table 20: Unobserved Components models.

probably due to outliers in the 1970s, but pass the autocorrelation test at the 1% signif-

icance level. As the models are simple univariate decompositions we would not expect

them to be well speci�ed. This analysis examines smoothed estimates of the output gap

but �ltered estimates can also be obtained.

Model 1 estimates the unrestricted local linear trend, model 2 estimates a local level

and �xed slope, model 3 produces a smooth trend and model 4 results in a deterministic

trend. A HP �lter can be also be estimated within this framework by imposing the

restrictions:

�2" = 0; � = 0; �2� = 0;

 t = �t � NID
�
0; �2�

�
; �2� = �2�=1600: (136)

Hence, �2� is that only variance parameter to be estimated. The di¤erent UC models

highlight the di¤erences in estimates depending on a priori assumptions regarding the

smoothness of the trend. Figure 16 records the gap measures from models 1 and 2 in

panel a, model 3 in panel b, model 4 in panel c and the HP gap in panel d.

The unrestricted model estimates a short cycle of approximately 5 years, with a damp-

ening factor of 1. The estimate of the slope is 0. Hence, model 2 results in an identical
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Figure 16: Univariate UC estimates of the output gap.

decomposition. This restriction suggests that �yt is stationary, an assumption supported

by DF tests. Both models estimate the variance of the cycle to be 0, leading to a de-

terministic cycle but the sine-cosine waves are not representative of UK business cycles.

By imposing a smoothness prior as in model 3, the trend is an integrated random walk.

As the slope is estimated to be 0, all of the variation is absorbed into the cycle and ir-

regular. The smooth trend estimates a cycle frequency of 53 quarters, or approximately

13 years which is substantially larger than the stylized facts regarding classical business

cycles. Further restricting the model by imposing �2" = 0 implies that irregular variations

are incorporated into the cycle. This lengthens the frequency but does not alter the gap

substantially. Finally, by further restricting the model to derive a Hodrick-Prescott trend

and cycle, the restrictions on the cycle dampening factor lead to a slightly more volatile

cycle, with noticeably di¤erent end-point behaviour. The analysis in Chapter 4 uses a gap

derived from a smooth trend model as this gap measure accords with our priors regarding
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the cyclical behaviour of the economy over this period.

Appendix 4: Calculating the Elasticity of Output with respect

to Labour

A general form for the production function, which appears to be a good approximation

to actual production functions, is the Cobb-Douglas speci�cation. If we assume perfect

competition, where the marginal products of labour and capital are equal to the wage rate

and pro�t rate respectively, the elasticity of output with respect to labour, �; is equal to

the share of output going to labour. This can be calculated as the share of wages in total

income:
� =

W

W + Z
; (137)

where W =compensation of employees and Z =gross operating surplus. This should also

be augmented by the compensation of those who are self-employed but data shortages

restrict this. As the data is quite volatile, a HP �lter (� = 1600) is used to smooth the

data. The wage share is not constant, as can be seen in �gure 17. There is a gradual

decline from 1975-1985, when the ratio falls from an average of 0.72 to an average of

0.68. However, the series has a small standard deviation of 0.025 and the variation is

not substantial. As the share has a mean of 0.702, we can approximate the wage share

as being equal to 0.7 over the entire period. This is in line with the Bank of England�s

Macroeconomic Model. Note that any deviations from this will be picked up in the residual

TFP. The smoothed but stochastic series, �(HP ); was also tried but the results did not

vary substantially, indicating that the constant approximation does not have a large impact

upon the results.

Appendix 5: Calculation of a Capacity Utilization Index
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Figure 17: The wage share in national income.

The CBI industrial trends survey reports the response of �rms in the manufacturing

sector to the question: "Is your present level of output below capacity?" (de�ned as a

satisfactory or full rate of operation). Following Muellbauer (1984), we can de�ne the

proportionate deviation of capacity utilization, Uc; by:

�Uc = lnY (max)� lnY: (138)

If di¤erent �rms have the same view regarding satisfactory levels of operation, we can

de�ne z as:
Z = lnY (max)� lnY (sat): (139)

Assuming a distribution of utilization across �rms measured by lnY (max)�lnY , which

shifts through time with a limit �xed at zero, we can calculate the proportion of �rms

operating below the usual level of capacity, �; which is observed, and link this with the

unobserved mean of the distribution, E(�Uc):

If the distribution of capacity utilization is lognormal:

ln(�Uc) � N
�
�; �2

�
;

then:
� = 1� �

�
lnZ � �

�

�
:
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Therefore:
E [ln(�Uc)] = � = lnZ � ���1 (1� �) ; (140)

where � () is the distribution of the standard normal distribution. Due to the normality

assumption we can derive E(�Uc) from E [ln(�Uc)]:

E(�Uc) = exp
1

2
�2 exp�

= � exp
�
����1 (1� �)

�
; (141)

where � = Z exp
1

2
�2:

In order to calculate this, Amemiya (1981) suggests that if x is a standard normal, the

distribution can be well approximated by a logistic distribution:

� (x) � exp (1:6x)

1 + exp (1:6x)
� Log

�
0;

1:62

(�2=3)

�
: (142)

Using this approximation, we can derive E(�Uc) as:

E(�Uc) = �

�
�

1� �

� �
1:6

: (143)

Muellbauer (1984) recommends empirical magnitudes of � = 0:64 and z = 0:09, which

suggests that full capacity is approximately 91% of the physical maximum. These values

where found by estimating a production function with
�
�
1:6

�
ranging from 0.2 to 0.6.
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Appendix 6: Factor Loadings for the PCs of In�ation

PC1 PC2 PC3 PC4 PC5 PC6 PC7
ppi -0.333 -0.024 0.029 0.064 0.005 0.045 0.006
wpi -0.326 -0.005 0.028 0.102 -0.009 0.101 -0.043
c� -0.330 -0.044 0.024 0.078 0.014 0.058 -0.011
import -0.325 -0.116 0.037 0.044 0.005 0.028 -0.019
nd -0.327 0.043 0.040 0.067 -0.018 0.071 -0.014
oil -0.289 -0.212 -0.004 0.081 0.063 0.031 -0.065
rent -0.329 -0.006 0.032 0.082 0.011 0.070 -0.034
Rl 0.090 -0.449 -0.011 -0.037 0.071 -0.021 -0.065
Rs 0.023 -0.384 0.036 0.085 0.077 0.075 0.090
m4 -0.327 0.012 0.045 0.082 -0.007 0.069 -0.017
assets -0.004 0.437 0.089 -0.006 -0.123 -0.047 0.086
reer -0.013 0.226 -0.251 0.233 0.164 0.143 0.143
Ur -0.241 -0.141 0.022 -0.149 0.119 -0.296 0.124
xd(pc) -0.033 -0.056 0.290 -0.399 -0.280 -0.164 0.140
xd(u) -0.201 -0.197 -0.024 -0.300 -0.045 -0.210 0.164
�ppi 0.079 -0.270 -0.179 -0.216 0.060 0.286 0.052
�wpi 0.019 -0.133 0.0432 -0.043 -0.444 0.033 -0.457
�c� 0.132 -0.280 -0.084 0.152 -0.220 0.183 0.157
�import 0.132 -0.189 0.314 0.028 0.191 -0.136 -0.269
�oil 0.005 -0.005 0.024 0.028 -0.008 -0.023 -0.046
�Rl 0.087 -0.033 0.406 0.163 0.139 0.267 0.159
�Rs 0.042 -0.029 0.380 -0.016 0.070 0.209 0.298
�m4 0.085 -0.235 -0.060 0.212 -0.259 -0.193 0.395
�assets -0.056 0.048 -0.250 -0.137 0.053 -0.499 0.070
�reer -0.047 -0.024 -0.301 0.044 -0.473 0.219 -0.105
�Ur 0.069 -0.146 -0.291 0.188 0.437 -0.116 -0.157
�xd(pc) -0.029 0.077 0.130 -0.468 0.200 0.197 -0.202
�xd(u) -0.004 -0.038 -0.273 -0.354 0.127 0.305 -0.134

Table 21: Factor loadings for the �rst seven principal components for in�ation.
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